
Introduction to Programming Languages

Jaemin Hong and Sukyoung Ryu

August 10, 2023



Acknowledgement

The contents of this book are based on the KAIST Programming Languages course. We thank PLT
1
since the

course referred to many materials from PLT in the beginning. We also thank every student who took the

course before. We have learned many things from the interaction with the students, and those lessons have

affected various parts of the book. In addition, we thank all the previous and current teaching assistants of

the course. They gave opinions to the course and wrote some of the exercises in the book. Especially, Jihyeok

Park highly contributed to the course, and Jihee Park helped us edit the exercises.

Wewould be delighted to receive comments and corrections,whichmay be sent to jaemin.hong@kaist.ac.kr.

We thank in advance everyone who will contribute to the book in the future.

1 https://racket-lang.org/people.html

https://racket-lang.org/people.html


Contents

Acknowledgement ii

Contents iii

1 Introduction 1

1.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Scala 4

2 Introduction to Scala 5

2.1 Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 REPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.5 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.6 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.7 Classes and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 SBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Immutability 19

3.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Tail Call Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Functions 28

4.1 First-Class Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Anonymous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 First-Class Functions and Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 For Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Pattern Matching 40

5.1 Algebraic Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Conciseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 Exhaustivity Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.3 Reachability Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Patterns in Scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Constant and Wildcard Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.2 Or Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



5.3.3 Nested Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.4 Patterns with Binders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.5 Type Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.6 Tuple Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.7 Pattern Guards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.8 Patterns with Backticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Applications of Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.1 Variable Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.2 Anonymous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.3 For Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Untyped Languages 56

6 Syntax and Semantics 57

6.1 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Syntactic Sugar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Identifiers 73

7.1 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.4 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 First-Order Functions 80

8.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 First-Class Functions 85

9.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.4 Syntactic Sugar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10 Recursion 97

10.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.4 Recursion as Syntactic Sugar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



11 Boxes 106

11.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12 Mutable Variables 114

12.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

12.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

12.4 Call-by-Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

13 Garbage Collection 123

13.1 Stack and Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

13.1.1 Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

13.1.2 Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

13.2 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

13.2.1 Manual Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

13.2.2 Automatic Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

13.3 Reference Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

13.3.1 Pros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

13.3.2 Cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

13.4 Mark-and-Sweep GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

13.4.1 Pros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

13.4.2 Cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

13.5 Copying GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

13.5.1 Pros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

13.5.2 Cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

13.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

14 Lazy Evaluation 150

14.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

14.2 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

14.3 Call-by-Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

14.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

15 Continuations 160

15.1 Redexes and Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

15.2 Continuation-Passing Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

15.3 Interpreter in CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

15.4 Small-Step Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

16 First-Class Continuations 177

16.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

16.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

16.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

16.4 Use of First-Class Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

16.4.1 Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

16.4.2 Break and Continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

16.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



17 First-Order Representation of Continuations 184

17.1 First-Order Representation of Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

17.2 Big-Step Semantics of KFAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

17.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

18 Nameless Representation of Expressions 193

18.1 De Bruĳn Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

18.2 Evaluation of Nameless Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

18.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Typed Languages 200

19 Type Systems 201

19.1 Run-Time Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

19.2 Detecting Run-Time Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

19.3 Type Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

19.4 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

19.5 TFAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

19.5.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

19.5.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

19.5.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

19.5.4 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

19.5.5 Type Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

19.6 Extending Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

19.6.1 Local Variable Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

19.6.2 Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

19.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

20 Typing Recursive Functions 215

20.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

20.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

20.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

20.4 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

20.5 Type Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

20.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

21 Algebraic Data Types 220

21.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

21.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

21.3 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

21.4 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

21.4.1 Well-Formed Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

21.4.2 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

21.5 Type Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

21.6 Type Soundness of TVFAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

21.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

22 Parametric Polymorphism 235

22.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

22.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237



22.3 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

22.3.1 Well-Formed Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

22.3.2 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

22.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

23 Subtype Polymorphism 243

23.1 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

23.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

23.1.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

23.1.3 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

23.2 Subtype Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

23.3 Subtyping of Record Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

23.4 Subtyping of Function Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

23.5 Top and Bottom Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

23.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

24 Type Inference 257

24.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

24.2 Type Inference as Decision Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

24.2.1 Type Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

24.2.2 Non-Algorithmic Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

24.3 Type Variables and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

24.4 Type Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

24.4.1 Collecting Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

24.4.2 Solving Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

24.5 Improving Type Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

24.5.1 Solving while Collecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

24.5.2 Removing Names of Type Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

24.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Appendix 278

A Solutions to Exercises 279

Bibliography 303

List of Terms 304

Alphabetical Index 305



Introduction 1

What is a programming language?

The simplest answer is “it is a language used for programming.” However, this answer does not help us

understand programming languages. We need a better question to get a better answer.

What does a programming language consist of?

There is a good answer for this question: “in a narrow sense, a programming language consists of syntax and

semantics, and in a broad sense, it additionally has a standard library and an ecosystem.”

Syntax and semantics are principal concepts to understand programming languages. Syntax determines how

a language looks like, and semantics fills the inside. If we consider a programming language as a human,

we can say that syntax is one’s appearance, and semantics is one’s thoughts. Programmers write programs

according to syntax. Syntax decides characters used in source code. Once programs are written, semantics

decides what each program does. Without semantics, all the programs are useless. Programs can work

as being expected only after semantics determines the meaning of them. A programming language with

syntax and semantics is complete. Programmers using that language can write programs with the syntax

and execute the programs with the semantics. From a theoretical perspective, syntax and semantics are all of

a programming language.

For programmers, syntax and semantics are not the only elements of a programming language. First, the

standard library of a language is another element. The standard library provides various utilities required

by applications: data structures like lists and maps, functions handling file and network IO, and so on. The

standard library is like clothes for humans. A human without clothes is a human; a programming language

without a standard library is a programming language. At the same time, clothes are important to humans as

they make bodies warm and protect bodies from dangerous objects. Similarly, a standard library is important

to a programming language as it supplies diverse functionalities for applications. Each person wears clothes

different from others, and each language puts different things from other languages in its standard library.

Some languages include many utilities in their standard libraries, while others include much less. Some

languages treat lists and maps as built-in concepts in their semantics, while others define them with other

primitives in their standard libraries. Programmers avoid using a language without a standard library because

such a language increases the effort to write programs.

Another important element to programmers is the ecosystem of a programming language. The ecosystem

includes everything related to the language: developers and companies using the language, third-party

libraries written in the language, and so on. It is like a society for humans. If many programmers and

companies use a programming language, one can easily get help and find complementary materials by

using the same language. There will be more chances of cooperative work and employment, too. Third-party

libraries also take important roles in software development. The standard library offers only general facilities

and often lacks domain-specific features. When a required functionality cannot be found in the standard

library, a third-party library can provide the exact functionality. For these reasons, the ecosystem of a

programming language is important to programmers.

Practically, the standard library and the ecosystem of a language are important elements. Unlike syntax and

semantics, they are not essential. A programming language can exist even without its standard library and

ecosystem. However, developers take standard libraries and ecosystems into account as well as syntax and

semantics to choose languages they use. From a practical perspective, a programming language consists of

syntax, semantics, a standard library, and an ecosystem.

This book is not for helping readers use a specific programming language. It does not recommend a specific

programming language, either. This book helps readers learn new programming languages easily. You can

acquaint any programming languages once you completely read and understand this book. Obviously, this
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goal cannot be achieved if the book discusses various languages separately. It is possible only by discussing

the underlying principles of every programming language.

The principles of programming languages can be found from their semantics. Each language seems very

different from the others, but it is actually not the case. Precisely speaking, their insides are quite the same,

while their appearances look different. They look different because their syntax and standard libraries, which

determine the appearances, are different. However, their insides, the semantics, fundamentally share the

same mathematical principles. If you understand essential concepts residing in the semantics of multiple

languages, it is easy to understand and learn new languages.

Peoplewho know the key principles and can separate the elements of a language can easily learn programming

languages. As an analogy, consider a man learning how to use a computer. It is a big problem if he cannot

distinguish a keyboard from a computer. For example, he thinks “to say hello, my right index finger presses

the keyboard, my left middle finger presses the keyboard, my right ring finger presses the keyboard three

times.” If the layout of the keyboard changes, he should learn the whole computer again. On the other hand, if

he knows that a keyboard is just a tool to input text, he will less suffer from the change of the keyboard layout.

As he thinks “to say hello, I press H, E, L, L, and O,” he does not need to learn the whole computer again. Of

course, he should learn the new keyboard layout, but it will be much easier. In addition, it is straightforward

to apply his knowledge to do new things. For example, he will easily figure out “to say lol, I press L, O, and

L.” If he does not distinguish a keyboard from a computer, he cannot find any common principles between

saying hello and saying lol. Learning programming languages is the same. People who cannot distinguish

syntax and semantics believe that they should learn the whole language again when the syntax changes. On

the other hand, people who can distinguish syntax and semantics know that semantics remains the same

even if syntax may vary. They know that understanding the principles of semantics is important to learn

languages. Becoming familiar with the new syntax is all they need to use a new language fluently.

This book explains the semantics of principal concepts in programming languages. Chapters 2, 3, 4, and

5 introduce the Scala programming language. This book uses Scala to implement interpreters and type

checkers of languages introduced in the book. Chapter 6 explains syntax and semantics. Then, the book

finally introduces various features of programming languages.

I Chapter 7 introduces identifiers.

I Chapters 8, 9, and 10 introduce functions.

I Chapters 11 and 12 introduce mutation.

I Chapter 13 introduces garbage collection.

I Chapter 14 introduces lazy evaluation.

I Chapters 15, 16, and 17 introduce continuations.

I Chapter 18 introduces De Bruĳn indices.

I Chapters 19 and 20 introduce basic type systems.

I Chapter 21 introduces algebraic data types.

I Chapter 22 introduces parametric polymorphism.

I Chapter 23 introduces subtype polymorphism.

I Chapter 24 introduces type inference.

Each chapter explains a feature by defining a small language providing the feature. Those languages may

seem inconvenient in practice because they are too small. However, the simplicity will allow us to focus on

the topic of each chapter.

1.1 Exercises

Exercise 1.1 Write the name of a programming language that you have used. What are the pros and cons

of the language?
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Exercise 1.2 Write the names of two programming languages you know and compare them.



Scala
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This book uses Scala as an implementation language, and this chapter thus introduces the Scala programming

language. Scala stands for a scalable language [OSV16]. It is a multi-paradigm language that allows both

functional and object-oriented styles. This book focuses on the functional nature of Scala. In this chapter, we

will see what functional programming is and why this book uses functional programming. In addition, we

will install Scala and write simple programs in Scala.

2.1 Functional Programming

What is functional programming? According to Wikipedia,

It is a declarative programming paradigm in which function definitions are trees of expressions

that map values to other values, rather than a sequence of imperative statements which update

the running state of the program.

According to the book Functional Programming in Scala [CB14],

Functional programming (FP) is based on a simple premise with far-reaching implications: we

construct our programs using only pure functions—in other words, functions that have no side

effects.

The above two sentences are enough to describe functional programming.

First, consider the phrase “trees of expressions that map values to other values.” From the perspective of

functional programming, a program is a single mathematical expression and the execution of the program is

finding a value denoted by the expression. Each expression consists of zero or more subexpressions and

evaluates to a value.

Let us discuss how functional programming is different from imperative programming with code examples.

int x = 1;

int y = 2;

if (y < 3)

x = x + 4;

else

x = x - 5;

The above code is written in C, which represents imperative languages. Imperative programming mimics a

way in which computers operate. During the execution of a program, a state, which can be interpreted as the

memory of a computer, exists and the execution modifies the state. The execution of the above C program

has the following steps:

1. A state that both x and y are uninitialized

2. A state that x is 1 and y is uninitialized

3. A state that x is 1 and y is 2

4. Since y < 3 is true under the state of the third step, go to the next line.

5. A state that x is 5 and y is 2

The state keeps changes throughout the execution of the program. Each line modifies the current state rather

than resulting in some value.
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let x = 1 in

let y = 2 in

if y < 3 then x + 4 else x - 5

The above code is written in OCaml, which represents functional languages. A program is an expression

and the result of the execution is the result of evaluating the expression. The execution does not require the

notion of a state. The execution of the above OCaml program has the following steps:

1. Given the fact that x equals 1, evaluate let y = 2 in if y < 3 then x + 4 else x - 5.

2. Given the fact that x equals 1 and y equals 2, evaluate if y < 3 then x + 4 else x - 5.

3. Given the fact that x equals 1 and y equals 2, evaluating y < 3 yields true, and the next step is to

evaluate x + 4.

4. Given the fact that x equals 1 and y equals 2, evaluate x + 4.

5. The result is 5.

There is no state. Each expression consists of subexpressions. The result of an expression is determined by

the results of its subexpressions.

Since the programs are simple, two programs look similar, but it is important to understand two different

perspectives of what a program is.

Now, look at the phrase “using only pure functions.” Functional programming avoids mutable variables,

mutable data structures, and mutable objects. The term mutablemeans being able to change. Its opposite is

immutable, which means not being able to change. States change throughout the execution of programs. In

functional programming, states do not exist since things never change. Due to the lack of states, a function

always does the same stuff and always returns the same value for the same arguments. Such functions are

called pure functions.

In practice, especially for large-scale projects, using only immutable things in the whole code is often

inefficient. Most real-world functional languages provide mutation via language constructs like var of Scala,

ref of OCaml, and set! and box of Racket. However, functional programming uses immutable things in

most cases. Even without mutation, we can still express most programs without difficulties.

As we have seen so far, immutability is the most important concept of functional programming. Immutability

allows modular programming and eases the reasoning of programs. Because of immutability, programs

that have to be trustworthy or require parallel computing are good applications of functional programming.

Chapter 3 will discuss the advantages of immutability in detail and how to write interesting programs

without mutation.

There are other important characteristics of functional programming as well as immutability. Use of first-class

functions and pattern matching also take the key roles in functional programming. Both first-class functions

and pattern matching are valuable as they help abstraction. First-class functions allow programmers to

abstract computation; pattern matching allows programmers to abstract data. Because of the ability of

abstraction, programs whose input has complex and abstract structures like source code are typically written

in functional languages. Chapter 4 and Chapter 5 will respectively discuss first-class functions and pattern

matching in Scala.

This book implements interpreters and type checkers. They take source code as input and process the input

according to the mathematical semantics of programming languages. It is important to reason about the

correctness of interpreters and type checkers. These properties exactly match the strengths of functional

programming. It is why this book uses functional programming and Scala.

Before moving on to the next section, let us see how people use functional programming in industry.
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Akka
1
is a concurrent, distributed computing library written in Scala. Many companies have been using Akka.

Apache Spark,
2
a well-known library for data processing, also is written in Scala. Play

3
is a widely-used web

framework based on Akka.

Facebook has developed Infer,
4
a static analyzer for Java, C, C++, and Objective-C, in OCaml. Facebook and

other companies including Amazon and Mozila use Infer to find bugs statically in their programs. Facebook

has developed also Flow,
5
a static type checker for JavaScript. Jane Street

6
is a financial company well-known

in the programming language community and has developed its own software in OCaml. According to the

OCaml website,
7
various companies including Docker use OCaml.

Haskell Wiki
8
describes that Google, Facebook, Microsoft, Nvidia, and many other companies use Haskell.

Erlang is a functional language for concurrent and parallel computing. Elixir operates on the Erlang virtual

machine and is used for the same purpose as Erlang. An article from Code Sync
9
said that various companies

including WhatsApp, Pinterest, and Goldman Sachs use Erlang and Elixir.

2.2 Installation

As Scala programs are compiled to Java bytecode, which runs on the Java Virtual Machine (JVM), you must

install Java before installing Scala. Java has various versions. Scala 2.13, which is used in this book, needs

JDK 8 or higher. JDK 8 is the most recommended one. The Scala website
10
discusses compatibility issues

regarding the other versions.

The Oracle website
11
provides an installation file for JDK 8.

You can download an installation file for Scala 2.13 from the Scala website.
12
Note that you need a file in

the “Other resources” section at the bottom of the page. On macOS, you may use Homebrew instead. By

installing Scala, you can use the Scala REPL, interpreter, and compiler. Section 2.3, Section 2.4, and Section

2.5 will discuss their usages respectively.

Another thing to install is SBT. SBT is a build tool for Scala. An installation file for SBT is available at the SBT

website.
13
Section 2.6 will discuss the usage of SBT.

2.3 REPL

Once you install Scala, you can launch Scala REPL by typing scala in your command line.

$ scala

Welcome to Scala 2.13.5.

Type in expressions for evaluation. Or try :help.

scala>

1 https://akka.io/
2 https://spark.apache.org/
3 https://www.playframework.com/
4 https://fbinfer.com/
5 https://flow.org/
6 https://www.janestreet.com/
7 http://ocaml.org/learn/companies.html
8 http://wiki.haskell.org/Haskell_in_industry
9 https://codesync.global/media/successful-companies-using-elixir-and-erlang/
10 https://docs.scala-lang.org/overviews/jdk-compatibility/overview.html
11 https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
12 https://www.scala-lang.org/download/
13 https://www.scala-sbt.org/download.html

https://akka.io/
https://spark.apache.org/
https://www.playframework.com/
https://fbinfer.com/
https://flow.org/
https://www.janestreet.com/
http://ocaml.org/learn/companies.html
http://wiki.haskell.org/Haskell_in_industry
https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://docs.scala-lang.org/overviews/jdk-compatibility/overview.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.scala-lang.org/download/
https://www.scala-sbt.org/download.html
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The term REPL stands for read, eval, print, and loop. It is a program that iteratively reads code from a user,

evaluates the code, and prints the result. REPL is not a place to write a program but is a good place to write

short code and see how it works.

If you input an integer to REPL, it will evaluate the integer and show the result.

scala> 0

val res0: Int = 0

It means that the expression 0 evaluates to the value 0 and the type of 0 is Int. You can try some arithmetic

expressions as well.

scala> 1 + 2

val res1: Int = 3

A boolean is true or false in Scala.

scala> true

val res2: Boolean = true

You can also use basic logical operators.

scala> true && false

val res3: Boolean = false

String literals require double quotation marks.

scala> "hello"

val res4: String = hello

Operations regarding strings can be done by calling methods.

scala> "hello".length

val res5: Int = 5

scala> "hello".substring(0, 4)

val res6: String = hell

Strings in Scala provide the same methods as those in Java.
14

The println function prints a given message into the console.

scala> println("Hello world!")

Hello world!

Note that there is no result of println("Hello world!"). Actually, println("Hello world!") evaluates to

(), which is called unit. Unit implies that the result does not have any meaningful information. It is similar

to None in Python and undefined in JavaScript. At the same time, functions returning unit are similar to

functions whose return types are void in C or Java. Since unit does not have meaningful information, REPL

does not show the result when it is unit.

The remainder of this section introduces basic features of Scala, such as variables and functions, with REPL.

14 https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
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2.3.1 Variables

The syntax of a variable definition is as follows:

val [name]: [type] = [expression]

It defines a variable whose name is [name]. The result of the expression becomes the value denoted by the

variable and must belong to the type.

scala> val x: Int = 1

val x: Int = 1

If the type of the result does not match a given type, the variable will not be defined due to a type mismatch.

scala> val y: Boolean = 2

^

error: type mismatch;

found : Int(2)

required: Boolean

You can omit the : [type] part and use the following syntax instead:

val [name] = [expression]

In this case, a type mismatch never happens, and the type of the variable becomes the same as the type of its

value. People usually omit the type annotations of local variables.

scala> val x = 3

val x: Int = 3

Variables defined by val cannot be mutated, i.e. their values never change. Reassignment will incur an error.

We call such variables immutable variables.

scala> x = 4

^

error: reassignment to val

Sometimes, mutable variables, i.e. variables whose values can change, are useful. Scala provides mutable

variables as well as immutable variables. You need to use var instead of val to define mutable variables. You

may or may not write the type of a variable.

scala> var z = 5

var z: Int = 5

scala> z = 6

// mutated z

scala> z

val res8: Int = 6
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To assign a new value to a mutable variable, the value must conform to the type of the variable. Otherwise, a

type mismatch will happen.

scala> z = true

^

error: type mismatch;

found : Boolean(true)

required: Int

2.3.2 Functions

The syntax of a function definition is as follows:

def [name]([name]: [type], ...): [type] = [expression]

Many programming languages require return to specify the return value of a function. On the other hand,

functions in Scala are like functions in mathematics: return is unnecessary. The return value of a function is

the result of the body expression, which is the expression at the right side of = in the definition. The type

annotation after each parameter specifies the type of the parameter. The type after the parentheses is the

return type, which must be the same as the type of the return value.

scala> def add(x: Int, y: Int): Int = x + y

def add(x: Int, y: Int): Int

scala> add(3, 7)

val res9: Int = 10

The return types of functions can be omitted.

scala> def add(x: Int, y: Int) = x + y

def add(x: Int, y: Int): Int

However, parameter types cannot be omitted.

scala> def add(x, y) = x + y

^

error: ':' expected but ',' found.

To write multiple expressions including variable and functions definitions in the body of a function, we put

expressions separated by line breaks inside curly braces. Each line will be evaluated in the order, and the

result of the last line will be the return value.

scala> def quadruple(x: Int): Int = {

| val y = x + x

| y + y

| }

def quadruple(x: Int): Int
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Inside quadruple, the variable y is defined and used for the computation of the return value.
15

Multiple expressions inside curly braces are collectively treated as a single expression. We call such an

expression a sequenced expression. Like any other expressions, a sequenced expression can occur anywhere

an expression is needed. For example, it can be used to define a variable.

scala> val a = {

| val x = 1 + 1

| x + x

| }

val a: Int = 4

There are many other things related to functions: recursion, first-class functions, closures, and anonymous

functions. Chapter 3 will discuss recursion, and Chapter 4 will discuss the other topics.

2.3.3 Conditionals

A conditional expression performs computation depending on a certain condition, i.e. a boolean value. The

syntax of a conditional expression is as follows:

if ([expression]) [expression] else [expression]

The first expression is the condition; the second expression is the true branch; the last expression is the false

branch.

scala> if (true) 1 else 2

val res10: Int = 1

A conditional expression evaluates to a value. It is more similar to the ternary operator ? : in C than a if

statement. We do not need to make a variable mutable to initialize the variable with a conditional value.

scala> val x = if (true) 1 else 2

val x: Int = 1

On the other hand, people write code like below in languages like C.

int x;

if (true)

x = 1;

else

x = 2;

Conditional expressions in Scala are more expressive than the ternary operator in C because we can make

complex computation a single expression with expression sequencing, which is impossible in C.

scala> if (true) {

| val x = 2

| x + x

| } else {

| val x = 3

| x * x

| }

val res11: Int = 4
15
Vertical bars (|) at the beginning of lines are not part of code. They have been automatically inserted by REPL.
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2.3.4 Lists

A list is a collection of zero or more elements. A list maintains the order between its elements. Lists in Scala

are immutable. Once a list is created, its elements never change. There are two ways to create a new list in

Scala:

I List([expression], ..., [expression])

I [expression] :: ... :: [expression] :: Nil

The type of a list whose elements have type T is List[T].

scala> List(1, 2, 3)

val res12: List[Int] = List(1, 2, 3)

scala> 1 :: 2 :: 3 :: Nil

val res13: List[Int] = List(1, 2, 3)

List(...) is more convenient than :: for creating a new list from scratch. However, :: is more flexible since

it can prepend a new element in front of an existing list.
16

scala> val l = List(1, 2, 3)

val l: List[Int] = List(1, 2, 3)

scala> 0 :: l

val res14: List[Int] = List(0, 1, 2, 3)

The length method computes the length of a list; parentheses are used to fetch the element at a specific

index.
17

scala> l.length

val res15: Int = 3

scala> l(0)

val res16: Int = 1

In functional programming, accessing an arbitrary element of a list by an index is rare. We use pattern

matching in most cases. The syntax of pattern matching for a list is as follows:
18

[expression] match {

case Nil => [expression]

case [name] :: [name] => [expression]

}

The expression in front of match is the target of pattern matching. If it is an empty list, it matches case Nil.

The expression of the Nil case will be evaluated. Otherwise, it is a nonempty list and matches case [name]

:: [name]. The first name denotes the head
19
of the list, and the second name denotes the tail

20
of the list.

The expression of the :: case will be evaluated.

The following function takes a list of integers as an argument and returns the head. The return value is zero

when the list is empty.

16
It does not mutate the existing list to prepend the new element. It creates a new list with the element and the list.

17
The first index is 0.

18
The order between the cases can vary, which means that the :: case may come first.

19
the first element

20
a list consisting of all the elements except the head
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scala> def headOrZero(l: List[Int]): Int = l match {

| case Nil => 0

| case h :: t => h

| }

def headOrZero(l: List[Int]): Int

scala> headOrZero(List(1, 2, 3))

val res17: Int = 1

scala> headOrZero(List())

val res18: Int = 0

Chapter 3 will show use of pattern matching for lists in recursive functions, and Chapter 5 will discuss

pattern matching in detail.

2.3.5 Tuples

A tuple contains two or more elements and maintains the order between its elements. We use parentheses to

create a new tuple:

([expression], ..., [expression])

The type of a tuple whose elements have types from T1 to Tn respectively is (T1, ..., Tn). For example,

the type of a tuple whose first element is Int and second element is Boolean is (Int, Boolean).

scala> (1, true)

val res19: (Int, Boolean) = (1,true)

To fetch the i-th element of a tuple, we can use ._i.21

scala> (1, true)._1

val res20: Int = 1

Tuples look similar to lists but have important differences from lists. First, a tuple’s elements can have different

types, while a list’s elements cannot. For example, a tuple of the type (Int, Boolean) has one integer and

one boolean, while a list of the type List[Int] can have only integers. We say that tuples are heterogeneous,

while lists are homogeneous. Second, a list allows accessing an arbitrary index of a list, while a tuple does

not. For example, l(f()) is possible where l is a list and f returns an integer, while there is no way to access

the f()-th element of a tuple since the return value of f is unknown before execution.

We use lists and tuples for different purposes. Lists are appropriate when the number of elements can vary

and an arbitrary index should be accessible. For instance, a list should be used to represent a collection of the

heights of students in a certain class.

List(189, 167, 156, 170, 183)

It allows us to fetch the height of the i-th student.

On the other hand, tuples are appropriate when the number of elements are fixed and each index has a specific

meaning. For instance, a tuple can represent the information of a single student, where the information

consists of one’s name, one’s height, and whether one has payed the school expense or not.

21
The first index is 1.
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("John Doe", 173, true)

We can use ._1 to find the name, ._2 to find the height, and ._3 to check whether one has payed.

We call a length-2 tuple a pair and a length-3 tuple a triple. Also, we can consider unit as a length-0 tuple.

2.3.6 Maps

Amap is a collection of pairs, where each pair consists of a key and a value. It provides the corresponding

value when a key is given. Maps in Scala are immutable as well. Below is the syntax to create a new map:

Map([expression] -> [expression], ...)

The type of a map whose keys have type T and values have type S is Map[T, S].

scala> val m = Map(1 -> "one", 2 -> "two", 3 -> "three")

val m: Map[Int,String] = Map(1 -> one, 2 -> two, 3 -> three)

To find the value corresponding to a certain key, we use parentheses.

scala> m(2)

val res21: String = two

Maps provide various methods.
22

2.3.7 Classes and Objects

An object is a value with fields and methods. Fields store values, and methods are operations related to

the object. A class is a blueprint of objects. We can easily create multiple objects of the same structure by

defining a single class. This book uses only “case” classes of Scala. Case classes are similar to classes but

more convenient, e.g. automatic support for pretty printing and pattern matching.

The syntax of a class definition is as follows:

case class [name]([name]: [type], ...)

The first name is the name of a new class. The names inside the parentheses are the names of the fields of the

class. A class definition must specify the types of its fields.

scala> case class Student(name: String, height: Int)

class Student

Creating new objects is similar to a function call.

scala> val s = Student("John Doe", 173)

val s: Student = Student(John Doe,173)

Fields can be accessed by .[name].

22 https://www.scala-lang.org/api/current/scala/collection/immutable/Map.html

https://www.scala-lang.org/api/current/scala/collection/immutable/Map.html
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scala> s.name

val res22: String = John Doe

Objects in Scala are immutable by default. If we add var to a field when defining a class, the field becomes

mutable.

scala> case class Student(name: String, var height: Int)

class Student

scala> val s = Student("John Doe", 173)

val s: Student = Student(John Doe,173)

scala> s.height = 180

// mutated s.height

scala> s.height

val res23: Int = 180

2.4 Interpreter

An interpreter is a program that takes source code as input and runs the code. The Scala interpreter takes

Scala source code as input. To use the interpreter, we need to save source code into a file. Make a file with the

following code, and save it as Hello.scala.

println("Hello world!")

You can execute the interpreter by typing scalawith the name of a file in your command line. Here, we need

to say scala Hello.scala.

$ scala Hello.scala

Hello world!

You can write multiple lines in a single file. Fix Hello.scala like below.

val x = 2

println(x)

val y = x * x

println(y)

Then, execute the interpreter again.

$ scala Hello.scala

2

4
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2.5 Compiler

A compiler is a program that takes source code as input and translates it into another language. Usually, the

target language is a low-level language like machine code or bytecode of a particular virtual machine. The

Scala compiler takes Scala source code as input and translates it into Java bytecode. Once code is compiled,

we can run the generated bytecode with the JVM.

For compilation, we need to define the main method of a program. The main method is the entrypoint of

every program running on the JVM. Make a file with the following code, and save it as Hello.scala.

object Hello {

def main(args: Array[String]): Unit = {

println("Hello world!")

}

}

You can make the compiler compile the code by typing scalacwith the name of the file in your command

line.

$ scalac Hello.scala

After compilation, you will be able to find the Hello.class file in the same directory. The file contains Java

bytecode.

You can run the bytecode with the JVM by the scala command. In this time, you should write only the class

name.

$ scala Hello

Hello world!

You can change the behavior of a program by modifying the main method. Each time you modify, you need

to re-compile the program to re-generate the bytecode.

Running bytecode is much more efficient than interpreting Scala source code. You can easily notice that

scala Hello takes much less than scala Hello.scala even though their results are the same.

Scala has two sorts of errors: compile-time errors and run-time errors. Compile-time errors occur during

compilation, i.e. while running scalac. If the compiler finds things that might go wrong at run time, it raises

errors and aborts the compilation. For example, an expression adding an integer to a boolean results in a

compile-time error because such an addition cannot succeed at run time.

true + 1

error: type mismatch;

found : Int(1)

required: String

true + 1

^
Compile-time error

Unfortunately, some bad behaviors cannot be detected by the compiler. The compiler does not generate any

errors for those behaviors. Such problems will incur run-time errors during execution, i.e. while running

scala, and terminate the execution abnormally. Division by zero is one example of run time errors.

1 / 0
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java.lang.ArithmeticException: / by zero
Run-time error

2.6 SBT

SBT is a build tool for Scala. Build tools help programmers work on large projects with many files and

libraries by tracking dependencies between files and managing libraries. There are various build tools in the

world, and SBT is the most popular one for Scala.

You can create a new Scala project by the sbt new command.

$ sbt new scala/scala-seed.g8

[info] welcome to sbt 1.4.7

[info] loading global plugins from ~/.sbt/1.0/plugins

[info] set current project to ~/ (in build file:~/)

[info] set current project to ~/ (in build file:~/)

A minimal Scala project.

name [Scala Seed Project]: hello

Template applied in ~/hello

After the creation, the directory structure is as follows:

hello
build.sbt
project

Dependencies.scala
build.properties

src
main

scala
example

Hello.scala
test

scala
example

HelloSpec.scala

The build.sbt file configures the project. It manages the version of Scala used for the project, third-party

libraries used in the project, and many other things. Source files are in the src directory. Files in main are

main source files, while files in test are only for testing. You can add files into the src/main/scala directory

and edit them to write code.

An SBT console can be started by the sbt command. The current working directory of your shell should be

the base directory of the project.

$ sbt

[info] welcome to sbt 1.4.7

[info] loading global plugins from ~/.sbt/1.0/plugins

[info] loading project definition from ~/hello/project

[info] loading settings for project root from build.sbt ...

[info] set current project to hello (in build file:~/hello/)



2 Introduction to Scala 18

[info] sbt server started at

local:///~/.sbt/1.0/server/d4cd702f998423203dfe/sock

[info] started sbt server

sbt:hello>

You can compile, run, and test the project by executing SBT commands in the console.

I compile: compile the project.

I run: run the project (re-compile if necessary).

I test: test the project (re-compile if necessary).

I exit: terminate the console.

sbt:hello> compile

[info] compiling 1 Scala source to ~/hello/target/scala-2.13

| => root / Compile / compileIncremental 0s

[success] Total time: 4 s

sbt:hello> test

[info] compiling 1 Scala source to ~/hello/target/scala-2.13

[info] HelloSpec:

[info] The Hello object

[info] - should say hello

[info] Run completed in 455 milliseconds.

[info] Total number of tests run: 1

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 1, failed 0, canceled 0, ignored 0

[info] All tests passed.

[success] Total time: 2 s

sbt:hello> run

[info] running example.Hello

hello

[success] Total time: 0 s

sbt:hello> exit

[info] shutting down sbt server

To learn SBT more, refer to the SBT website.
23

23 https://www.scala-sbt.org/learn.html

https://www.scala-sbt.org/learn.html
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Immutabilitymeans not changing. Immutable variables never change their values after initialization; immutable

data structures never change their elements once created. The opposite of immutability is mutability.

While imperative programming uses numerous mutable variables, data structures, and objects, functional

programming leverages the power of immutable varibles, data structures, and objects. This chapter explains

why immutability is important and valuable. Also, we will see how to program without mutation.

3.1 Advantages

The book Programming in Scala [OSV16] discusses four strengths of immutability:

First, immutable objects are often easier to reason about than mutable ones, because they do not

have complex state spaces that change over time. Second, you can pass immutable objects around

quite freely, whereas you may need to make defensive copies of mutable objects before passing

them to other code. Third, there is no way for two threads concurrently accessing an immutable

to corrupt its state once it has been properly constructed, because no thread can change the state

of an immutable. Fourth, immutable objects make safe hash table keys. If a mutable object is

mutated after it is placed into a HashSet, for example, that object may not be found the next time

you look into the HashSet.

We will focus on the first two advantages: easier reasoning and no need for defensive copies.

First, let us see why immutability makes things easy to reason about.

val x = 1

...

f(x)

At the first line of the code, x is 1. Since x is immutable, there is no doubt that x is still 1 when x is passed as

an argument for f at the last line of the code.

var x = 1

...

f(x)

On the other hand, if x is a mutable variable, one should read every line of code in the middle to find the

value of x at the time when the function call happens.

When x is mutable, without tracking every modification of x throughout the code, the value of x at the last

line is unknown. It hampers programmers from understanding the code and possibly leads to more bugs.

The program with immutable x does not suffer from such problems. Remembering only one line of the code

is enough to track the value of x.

Mutable data structures cause similar problems.

val x = List(1, 2)

...

f(x)

...

x
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As List is immutable, x is a list always containing 1 and 2.

import scala.collection.mutable.ListBuffer

val x = ListBuffer(1, 2)

...

f(x)

...

x

On the other hand, ListBuffer is a mutable data structure in the Scala standard library. It is possible to add

an item to or remove an item from the list referred by x. Programmers cannot be certain about the content of

x unless they read all the lines in between. Besides, a function f also is able to change the content of x. If one

writes a program with a wrong assumption that f does not modify x, then the program might be buggy.

Mutable global variables make code much harder to understand than mutable local variables.

def f(x: Int) = g(x, y)

The return value of function f depends on the value of a global variable y. If y is mutable, f is not a pure

function and expecting the behavior of f is nontrivial. y can be declared in any arbitrary file and all files are

able to change the value of y. In the worst case, an external library defines y and source code modifying y is

not available for reading.

The examples are small and seem artificial, but immutability greatly improves maintainability and readability

of code in practice, especially for large projects.

Now, let us see why immutability free us from making defensive copies.

val x = ListBuffer(1, 2)

...

f(x)

...

x

Since ListBuffer creates mutable lists, there is no guarantee that the content of x is not changed by f. If it is

necessary to prevent modification, copying x is essential.

val x = ListBuffer(1, 2)

val y = x.clone

...

f(y)

...

x

In cases that x has many elements and the code is executed multiple times, copying x increases the execution

time significantly.

In the code, using the clonemethod is enough to copy the list because the list contains only integers. However,

to pass lists containing mutable objects safely to functions, defining additional methods for deep copy is

inevitable.

Immutability has several clear advantages. Immutability is an important concept in functional programming.

Functional programs use immutable variables and data structures in most cases. If you write a large program

whose logic is complex and correctness is important, you should adopt the functional paradigm. However,
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mind that immutability is not the silver bullet for every program. For example, implementing algorithms in a

functional style is usually inefficient. It would be better to use mutable data structures like arrays, mutable

variables, and loops to implement algorithms. They make programs much more efficient and faster. Choosing

a proper programming paradigm for the purpose of a program is the key to writing good code.

3.2 Recursion

Repeating the same computation multiple times is a common pattern in programming. Loops allow concise

code expressing such cases. However, if everything is immutable, going back to the beginnings of loops

does not change any states. Therefore, it is impossible to apply the same operation on different values for

each iteration or to terminate the loops. As a consequence, loops are useless in functional programming.

Functional programs use recursive functions instead of loops to rerun computation. A recursive function is a

function that calls itself.
1
To do more computation, the function calls itself with proper arguments. Otherwise,

it terminates the computation by returning some value.

The below factorial function calculates the factorial of a given integer. For simplicity, we do not consider

when the input is negative. The following implementation uses an imperative style:

def factorial(n: Int) = {

var i = 1, res = 1

while (i <= n) {

res *= i

i += 1

}

res

}

We can implement the same function in a functional style with recursion.

def factorial(n: Int): Int =

if (n <= 0)

1

else

n * factorial(n - 1)

Note that recursive functions always require explicit return types in Scala, unlike non-recursive functions,

whose return types can be omitted.

The recursive version is preferred over the imperative version since its correctness is easily verified.

To check the correctness of the imperative factorial function, one should find a loop invariant, which is a

proposition that is always true at the loop head. The loop invariant of this case is ((i− 1)! = res) ∧ (i ≤ n+ 1).
By using this invariant, we can conclude that i = n+ 1 and, therefore, res = (i− 1)! = n! at the last line of the

function, which implies that it correctly implements factorial. It is nontrivial to find a proper loop invariant

and show that the loop invariant holds at the beginning of each iteration.

On the other hand, recursive functions usually reveal their mathematical definitions more clearly than

functions using loops. Consider the following mathematical definition of factorial:

=! =

{
1 if = = 0

= × (= − 1)! otherwise

1
In general, a definition that refers to itself is a recursive definition. There can be recursive variables, recursive types, and so on.
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You can see that the implementation of the factorial function using recursion is identical to themathematical

definition of factorial. It is almost trivial to show that the recursive factorial function is correct. Recursion

allows concise and intuitive descriptions of mathematical functions. In many cases, functions with recursion

are much easier to be verified formally or informally than functions with loops.

Recursive functions are also good at treating recursive data structures like lists. A list is recursive since a

nonempty list consists of a head element and a tail list, which means that a nonempty list has another list as

its component. Writing some functions regarding lists helps understanding and practicing recursion.

The following function takes a list as an argument and returns a list whose elements are one larger than the

elements of the given list.

def inc1(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h + 1 :: inc1(t)

}

When a given list is empty, the function returns the empty list. Otherwise, the return value is a list whose

head is one larger than the head of the given list and tail has elements that are one larger than the elements

of the tail of the given list.

Similarly, square takes a list of integers as an argument and returns a list whose elements are the squares of

the elements of the given list.

def square(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h * h :: square(t)

}

The following function takes a list of integers as an argument and returns a list whose elements are odd

integers.

def odd(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (h % 2 != 0)

h :: odd(t)

else

odd(t)

}

For a nonempty list, the function checks whether the head is odd or not. If the head is odd, the resulting list

contains the head, and its tail has only odd integers. Otherwise, the head is removed.

Similarly, positive takes a list of integers as an argument and returns a list whose elements are positive.

def positive(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (h > 0)

h :: positive(t)

else

positive(t)

}
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The following function calculates the sum of the elements of a given list.

def sum(l: List[Int]): Int = l match {

case Nil => 0

case h :: t => h + sum(t)

}

The sum of elements in the empty list is zero as there are no elements. When a list is nonempty, the sum of its

elements can be calculated by adding the value of the head to the sum of its tail’s elements.

Similarly, product calculates the product of the elements of a given list.

def product(l: List[Int]): Int = l match {

case Nil => 1

case h :: t => h * product(t)

}

Recursion has some disadvantages: overheads of function calls and stack overflow. Most modern CPUs

have enough computing power to ignore function call overheads. However, loops are still more ideal than

recursive functions in performance-critical programs. Stack overflow happens when a stack lacks space

due to repetitive function calls. It is a critical problem since it causes immediate termination of execution

without yielding meaningful output. Moreover, programs like web servers do not finish their execution, and

their stacks will eventually overflow. To prevent stack overflow, many functional languages provide tail call

optimization. The following section explains tail call optimization in detail.

3.3 Tail Call Optimization

If the last action of a function is a function call, then the call is a tail call. When a tail call happens, the callee

does every computation, and thus the local variables of the caller have no need to remain after the call. The

stack frame of the caller can be destroyed. Most functional languages exploit this fact to optimize tail calls.

This optimization is called tail call optimization. At compile time, compilers check whether calls are tail calls. If

a call is a tail call, the compilers generate code that eliminates the stack frame of the caller before the call.

They do not optimize non-tail function calls because the local variables of the callers can be used after the

callees return. If every function call in a program is a tail call, the stack never grows so that the program is

safe from stack overflow.

def factorial(n: Int): Int =

if (n <= 0)

1

else

n * factorial(n - 1)

The previous factorial function multiplies n and the return value of the recursive factorial(n - 1) call.

The multiplication is the last action. The recursive call is not a tail call. The stack frame of the caller must

remain. The following process computes factorial(3):

I factorial(3)

I 3 * factorial(2)

I 3 * (2 * factorial(1))

I 3 * (2 * (1 * factorial(0)))

I 3 * (2 * (1 * 1))

I 3 * (2 * 1)
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I 3 * 2

I 6

At most four stack frames coexist. For a large argument, a stack grows again and again and finally overflows.

factorial(10000)

java.lang.StackOverflowError

at .factorial
Run-time error

To implement the function with a tail call, instead of multiplying n and factorial(n - 1), the function has

to pass both n and n - 1 as arguments and make the callee multiply n and (n - 1)!. This strategy can be

interpreted as passing an intermediate result.

I factorial(3)

I factorial(2, intermediate result = 3)

I factorial(1, intermediate result = 3 * 2)

I factorial(1, intermediate result = 6)

I factorial(0, intermediate result = 6 * 1)

I factorial(0, intermediate result = 6)

I 6

There is no need to return to the caller. The below code shows the factorial function with a tail call. The

function needs one more parameter that takes an intermediate result as an argument. factorial(n, i)

computes n! × i.

def factorial(n: Int, inter: Int): Int =

if (n <= 0)

inter

else

factorial(n - 1, inter * n)

The function uses a tail call. More precisely, the function is tail-recursive. Its last action is calling itself.

Unlike most functional languages, Scala cannot optimize general tail calls. Scala optimizes only tail-recursive

calls. The Scala compiler generates Java bytecode, which is executed by the JVM. The JVM does not allow

bytecode to jump to the beginning of another function. In the JVM, functions can only either return or call

functions. Therefore, the Scala compiler cannot generate optimized code by removing the stack frame of

a caller. Instead, they transform tail-recursive calls into loops. The factorial function is compiled to the

following bytecode:

public int factorial(int, int);

Code:

0: iload_1

1: iconst_0

2: if_icmpgt 9

5: iload_2

6: goto 20

9: iload_1

10: iconst_1

11: isub

12: iload_2

13: iload_1

14: imul

15: istore_2
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16: istore_1

17: goto 0

20: ireturn

We can check that there is no function call at all.
2
The function just jumps to instructions inside the function.

Due to the tail call optimization, the function never incurs stack overflow.

Even with tail recursion, the result is still incorrect because of integer overflow.

assert(factorial(10000, 1) == 0) // weird result

The BigInt type resolves integer overflow.

def factorial(n: BigInt, inter: BigInt): BigInt =

if (n <= 0)

inter

else

factorial(n - 1, inter * n)

assert(factorial(10000, 1) > 0)

The optimization of the Scala compiler not only prevents stack overflow but also removes the overheads of

function calls. The downside is that mutually recursive functions using tail calls lie beyond the scope of the

optimization. Mutual recursion is recursion involving two or more definitions. The following functions can

cause stack overflow in Scala even though they use tail calls because they are not tail-recursive:

def even(n: Int): Boolean = if (n <= 0) true else odd(n - 1)

def odd(n: Int): Boolean = if (n == 1) true else even(n - 1)

In Scala, programmers can ask the compiler to check whether functions are tail-recursive with annotations.

The annotations prevent programmers from making functions non-tail-recursive by mistakes.

import scala.annotation.tailrec

@tailrec def factorial(n: BigInt, inter: BigInt): BigInt =

if (n <= 0)

inter

else

factorial(n - 1, inter * n)

A non-tail-recursive function with the tailrec annotation results in a compile-time error.

@tailrec def factorial(n: Int): Int =

if (n <= 0)

1

else

n * factorial(n - 1)

^

error:

could not optimize @tailrec annotated method factorial:

it contains a recursive call not in tail position
2 invokevirtual is a function call instruction.
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Compile-time error

The annotation does not affect the behavior of the resulting bytecode. Regardless of the existence of the

annotation, the compiler always optimizes tail-recursive functions. Still, using the annotations is desirable to

prevent mistakes.

Calling the tail-recursive version of factorial needs the unnecessary second argument. The below code

defines a new factorial function with one parameter and uses the tail-recursive one as a local function

inside the function.

def factorial(n: BigInt): BigInt = {

@tailrec def aux(n: BigInt, inter: BigInt): BigInt =

if (n <= 0)

inter

else

aux(n - 1, inter * n)

aux(n, 1)

}

Some functions treating lists also can be rewritten in a tail-recursive way. Below is a tail-recursive version of

sum.

def sum(l: List[Int]): Int = {

@tailrec def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, inter + h)

}

aux(l, 0)

}

aux(l, n) calculates n plus the sum of l’s elements.

Similarly, product can be implemented in a tail-recursive way.

def product(l: List[Int]): Int = {

@tailrec def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, inter * h)

}

aux(l, 1)

}

3.4 Exercises

Exercise 3.1 Consider the following definition of Student:

case class Student(name: String, height: Int)

Implement a function names:

def names(l: List[Student]): List[String] = ???
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that takes a list of students as an argument and returns a list containing the names of the students.

Exercise 3.2 Consider the same definition of Student. Implement a function tall:

def tall(l: List[Student]): List[Student] = ???

that takes a list of students as an argument and returns a list of students whose heights are greater than 170.

Exercise 3.3 Implement a function length:

def length(l: List[Int]): Int = ???

that takes a list of integers as an argument and returns the length of the list.

Note that there is a built-in method l.length, but try to implement by yourself with recursion.

Exercise 3.4 Implement a function append:

def append(l: List[Int], n: Int): List[Int] = ???

that takes a list of integers and an integer as arguments and returns a list obtained by appending the

integer at the end of the list. Then, compare the time complexity of appending a new element to that of

prepending a new element by ::, which is $(1).

Note that there is a built-in method l.appended(n), but try to implement by yourself with recursion.
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This section focuses on use of functions in functional programming. In functional programming, functions

are first-class. First-class functions allow programmers to abstract complex computation easily. This section

explains what first-class functions are. In addition, anonymous functions and closures, which are related to

first-class functions, will be introduced. To show the power of first-class functions, we will re-implement the

functions in Chapter 3 (inc1, square, etc.) with first-class functions.

4.1 First-Class Functions

An entity in a programming language is first-class if it satisfies the following conditions:

I It can be an argument of a function call.

I It can be a return value of a function.

I A variable can refer to it.

Anything that is first-class can be used as a value. Functions are highly important and treated as values in

functional languages. Functions that are first-class are called first-class functions.

Some people use the term higher-order functions. Higher-order functions are functions that are not first-order,
where first-order functions neither take functions as arguments nor return functions. Therefore, higher-order

functions can take functions as arguments and return functions. Strictly speaking, they are different from

first-class functions because first-class functions are functions that can be passed as arguments or returned

from functions. However, any languages that support first-class functions support higher-order functions

and vice versa. The reason is obvious: to pass first-class functions as arguments, there should be higher-order

functions, and to pass functions to higher-order functions, there should be first-class functions. Consequently,

in most contexts, people do not distinguish first-class functions and higher-order functions, and you can

consider first-class functions and higher-order functions as exchangeable terms.

Now, let us see how we can use first-class functions in Scala with some code examples.

def f(x: Int): Int = x

def g(h: Int => Int): Int = h(0)

assert(g(f) == 0)

The function g has one parameter h. The type of h is Int => Int. An argument passed to g is a function that

receives one integer and returns an integer. In Scala, => expresses the types of functions. Functions without

parameters have types of the form () => [return type]. [parameter type] => [return type] is the

type of a function with a single parameter. Parentheses are required to express the types of functions with

two or more parameters: ([parameter type], ... ) => [return type]. The function f has one integer

parameter and returns an integer, i.e. its type is Int => Int. Thus, it can be an argument for g. Evaluating

g(f) equals evaluating f(0), which results in 0.

def f(y: Int): Int => Int = {

def g(x: Int): Int = x

g

}

assert(f(0)(0) == 0)
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The function f returns the function g. Since the return type of f is Int => Int, its return value must be a

function that takes an integer as an argument and returns an integer. g satisfies the condition. f(0) is the

same as g and therefore is a function. f(0)(0) equals g(0), which returns 0.

val h0 = f(0)

assert(h0(0) == 0)

A variable can refer to f(0). h0 refers to the return value of f(0) and has type Int => Int. Calling variables

referring to function values is possible. h0(0) is a valid expression and results in 0.

val h1 = f

^

error: missing argument list for method f

Unapplied methods are only converted to functions

when a function type is expected.

You can make this conversion explicit

by writing `f _` or `f(_)` instead of `f`.
Compile-time error

On the other hand, defining a variable referring to f results in a compile error. In Scala, a function defined by

def is not a value per se. Since f is the name of a function but not a variable referring to a value, h1 cannot

refer to the value of f. As the above error message implies, underscores convert function names into function

values.

val h1 = f _

assert(h1(0)(0) == 0)

Compiling the above code succeeds. The type of h1 is Int => (Int => Int). Int => Int => Int denotes

the same type because => is a right-associative type operator. h1(0)(0) is valid and yields 0.

Actually, above expressions except val h1 = f use function names as values successfully. The Scala compiler

transforms function names into function valueswhen they occurwhere function types are expected. Therefore,

enforcing the type of h1 to be a function type corrects the code without the underscore. The following code

works well:

val h1: Int => Int => Int = f

When programmers use function names as values, they usually place the names where function types are

expected. In these cases, underscores and explicit type annotations are unnecessary. Code rarely becomes

problematic and needs underscores or type annotations like the above to enforce the transformations.

How does the compiler create function values from function names? If the parameter type of function f is

Int, the corresponding function value is (x: Int) => f(x). The transformation is called eta expansion. (x:
Int) => f(x) is a function value without a name and does the same thing as f. The following section covers

functions without names.

4.2 Anonymous Functions

In functional programming, functions often appear only once as an argument or a return value. Naming

functions used only once is unnecessary. The meaning of a function value is how it behave. While the
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parameters and body of a function decide its behavior, its name does not affect the behavior. Naturally,

functional languages provide syntax to define functions without giving them names. Such functions are

anonymous functions.

The syntax of an anonymous function in Scala is as follows:

([parameter name]: [parameter type], ...) => [expression]

Like functions declared by def, anonymous functions can be arguments, return values, or values referred by

variables. Directly calling them is possible as well.

def g(h: Int => Int): Int = h(0)

g((x: Int) => x)

def f(): Int => Int = (x: Int) => x

f()(0)

val h = (x: Int) => x

h(0)

((x: Int) => x)(0)

The code does similar things to the previous code but uses anonymous functions.

Anonymous functions need explicit parameter types as named functions do. However, annotating every

parameter type is verbose and inconvenient. The Scala compiler infers the types of parameters when

anonymous functions occur where the compiler expects function types.

def g(h: Int => Int): Int = h(0)

g(x => x)

Since g has a parameter of type Int => Int, the compiler expects x => x to have the type Int => Int. It

infers the type of x as Int.

val h: Int => Int = x => x

h has an explicit type annotation. Int => Int is the expected type of x => x. The compiler infers the type of

x as Int.

val h = x => x

^

error: missing parameter type
Compile-time error

Unlike previous one, this code is problematic. Since there is no information to infer the type of x in x => x,

the compiler generates an error.

Most cases using anonymous functions are arguments for function calls. Those functions do not require

explicit parameter types. However, beginners might not be sure about whether parameter types can be

omitted or not. Specifying parameter types is safe when you are not sure.

Scala provides one more syntax for anonymous functions: syntax using underscores. Underscores help

programmers to create anonymous functions in a concise and intuitive way. Underscores can be used only
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when certain conditions are satisfied. Every parameter must occur exactly once in the body of a function in

the order. Moreover, the function must not be an identity function like (x: Int) => x. In functions satisfying

the conditions, underscores can replace parameters in the body. Otherwise, it is impossible to use underscores

to create anonymous functions.

def g0(h: Int => Int): Int = h(0)

g0(_ + 1)

def g1(h: (Int, Int) => Int): Int = h(0, 0)

g1(_ + _)

The compiler transforms _ + 1 into x => x + 1. Similarly, _ + _ becomes (x, y) => x + y. The compiler

automatically creates parameters asmany as underscores and substitutes the underscores with the parameters.

The mechanism clearly shows why the aforementioned conditions exist.

val h0 = (_: Int) + 1

val h1 = (_: Int) + (_: Int)

Underscores can have explicit types. Programmers should supply parameter types to succeed compiling

when the compiler cannot infer them.

The transformation happens for the shortest expression containing underscores. Expressing anonymous

functions with underscores is sometimes tricky.

def f(x: Int): Int = x

def g1(h: Int => Int): Int = h(0)

g1(f(_))

As intended, f(_) becomes x => f(x), whose type is Int => Int.1

g1(f(_ + 1))

^

error: missing parameter type for expanded function

((<x$1: error>) => x$1.$plus(1))
Compile-time error

On the other hand, f(_ + 1) becomes f(x => x + 1) but not x => f(x + 1). As f takes an integer, not a

function, it results in a compile-time error.

def g2(h: (Int, Int) => Int): Int = h(0, 0)

g2(f(_) + _)

f(_) + _ becomes (x, y) => f(x) + y, whose type is (Int, Int) => Int, and the compilation suc-

ceeds.

g2(f(_ + 1) + _)

^

error: missing parameter type for expanded function

((<x$2: error>) => f(((<x$1: error>) => x$1.$plus(1)))

1
Actually, there is no need to write g(f(_)) because it is equal to g(f).



4 Functions 32

.<$plus: error>(x$2))
Compile-time error

f(_ + 1) + _ becomes y => f(x => x + 1) + y but not (x, y) => f(x + 1) + y.

Like type inference of parameter types, novices may not be sure about how anonymous functions with

underscores are transformed. It is recommended to use normal anonymous functions without underscores

for those who are not confident about the mechanism of underscores.

4.3 Closures

Closures are function values that capture environments, which store the values of existing variables, when

they are defined. The bodies of closures may have variables not defined in themselves, and the environments

store the values of those variables.

def makeAdder(x: Int): Int => Int = {

def adder(y: Int): Int = x + y

adder

}

The definition of adder, def adder(y: Int): Int = x + y, does not define but uses x. However, the code

is correct.

val add1 = makeAdder(1)

assert(add1(2) == 3)

val add2 = makeAdder(2)

assert(add2(2) == 4)

add1 and add2 refer to the same adder function, but the former returns an integer one larger than an argument,

and the latter returns an integer two larger than an argument. The results of add1(2) and add2(2) are 3 and

4, respectively. It is possible because the closures capture the environments when they are created. add1

refers to a thing like (adder, x = 1) instead of just adder. Similarly, add2 is actually (adder, x = 2). Since

the environment of add1 stores the fact that x is 1, add1(2) results in 3. Under the environment of add2, x

denotes 2, and thus x + y is 4when y is 2.

4.4 First-Class Functions and Lists

This section shows how first-class functions allow generalization of the functions defined in Chapter 3.

def inc1(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h + 1 :: inc1(t)

}

def square(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h * h :: square(t)

}

inc1 increases every element of a given list by one, and square squares every element. The two functions are

remarkably similar. To make the similarity clearer, let us rename the functions to g.
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def g(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h + 1 :: g(t)

}

def g(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h * h :: g(t)

}

The only difference is the left operand of :: in the third line: h + 1 versus h * h. By adding one parameter,

the functions become entirely identical.

def g(l: List[Int], f: Int => Int): List[Int] = l match {

case Nil => Nil

case h :: t => f(h) :: g(t, f)

}

g(l, h => h + 1)

def g(l: List[Int], f: Int => Int): List[Int] = l match {

case Nil => Nil

case h :: t => f(h) :: g(t, f)

}

g(l, h => h * h)

This function is called map. The returned list has elements obtained by mapping a given function to the

elements of a given list.

def map(l: List[Int], f: Int => Int): List[Int] = l match {

case Nil => Nil

case h :: t => f(h) :: map(t, f)

}

inc1 and square can be redefined with map.

def inc1(l: List[Int]): List[Int] = map(l, h => h + 1)

def square(l: List[Int]): List[Int] = map(l, h => h * h)

An underscore makes inc1 conciser.

def inc1(l: List[Int]): List[Int] = map(l, _ + 1)

Let us compare odd and positive.

def odd(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (h % 2 != 0)

h :: odd(t)

else

odd(t)
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}

def positive(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (h > 0)

h :: positive(t)

else

positive(t)

}

They look similar. They can become identical by renaming and adding parameters.

def filter(l: List[Int], f: Int => Boolean): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (f(h))

h :: filter(t, f)

else

filter(t, f)

}

The function is called filter because it filters unwanted elements out from a given list.

odd and positive can be redefined with filter.

def odd(l: List[Int]): List[Int] =

filter(l, h => h % 2 != 0)

def positive(l: List[Int]): List[Int] =

filter(l, h => h > 0)

Underscores make the functions conciser.

def odd(l: List[Int]): List[Int] = filter(l, _ % 2 != 0)

def positive(l: List[Int]): List[Int] = filter(l, _ > 0)

Let us compare sum and productwithout tail recursion.

def sum(l: List[Int]): Int = l match {

case Nil => 0

case h :: t => h + sum(t)

}

def product(l: List[Int]): Int = l match {

case Nil => 1

case h :: t => h * product(t)

}

After renaming the names to g, two differences exist: 0 versus 1 and h + g(t) versus h * g(t). By adding

two parameters, an initial value and a function taking h and g(t) as arguments, the functions become

identical.
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def foldRight(

l: List[Int],

n: Int,

f: (Int, Int) => Int

): Int = l match {

case Nil => n

case h :: t => f(h, foldRight(t, n, f))

}

This function is called foldRight since it appends an initial value at the right side of a list and folds the list

from the right side with a given function.

sum and product can be redefined with foldRight.

def sum(l: List[Int]): Int =

foldRight(l, 0, (h, gt) => h + gt)

def product(l: List[Int]): Int =

foldRight(l, 1, (h, gt) => h * gt)

They may use underscores for conciseness.

def sum(l: List[Int]): Int = foldRight(l, 0, _ + _)

def product(l: List[Int]): Int = foldRight(l, 1, _ * _)

The following equations give an intuitive interpretation of foldRight:

foldRight(List(a, b, .., y, z), n, f)

= f(a, f(b, .. f(y, f(z, n)) .. ))

foldRight(List(1, 2, 3), 0, add)

= add(1, add(2, add(3, 0)))

foldRight(List(1, 2, 3), 1, mul)

= mul(1, mul(2, mul(3, 1)))

Let us compare tail-recursive sum and product.

def sum(l: List[Int]): Int = {

def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, inter + h)

}

aux(l, 0)

}

def product(l: List[Int]): Int = {

def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, inter * h)

}

aux(l, 1)

}
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After renaming, there are two differences: inter + h versus inter * h and 0 versus 1. Similarly, adding

two parameters makes the functions identical.

def foldLeft(

l: List[Int],

n: Int,

f: (Int, Int) => Int

): Int = {

def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, f(inter, h))

}

aux(l, n)

}

This function is called foldLeft. Its semantics is different from foldRight. While foldRight appends an

initial value at the right side and folds a list from the right side, foldLeft prepends an initial value at the left

side and folds a list from the left side. The following equations give an intuitive interpretation:

foldLeft(List(a, b, .., y, z), n, f)

= f(f( .. f(f(n, a), b), .. , y), z)

foldLeft(List(1, 2, 3), 0, add)

= add(add(add(0, 1), 2), 3)

foldLeft(List(1, 2, 3), 1, mul)

= mul(mul(mul(1, 1), 2), 3)

The order traversing a list does not affect the results of sum and product. Both foldRight and foldLeft can

express the functions.

def sum(l: List[Int]): Int = foldLeft(l, 0, _ + _)

def product(l: List[Int]): Int = foldLeft(l, 1, _ * _)

On the other hand, the order is important for some functions. Consider a function that takes a list of digits as

arguments and returns the decimal number obtained by concatenating the digits. foldLeft is the easiest way

to implement this function.

def digitToDecimal(l: List[Int]) =

foldLeft(l, 0, _ * 10 + _)

foldLeft(List(1, 2, 3), 0, f)

= f(f(f(0, 1), 2), 3)

= ((0 * 10 + 1) * 10 + 2) * 10 + 3

= (1 * 10 + 2) * 10 + 3

= 12 * 10 + 3

= 123

Using foldRightwith the same arguments will yield completely different result.

def digitToDecimal(l: List[Int]) =

foldRight(l, 0, _ * 10 + _)
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foldRight(List(1, 2, 3), 0, f)

= f(1, f(2, f(3, 0)))

= 1 * 10 + (2 * 10 + (3 * 10 + 0))

= 1 * 10 + (2 * 10 + 30)

= 1 * 10 + 50

= 60

map, filter, foldRight, and foldLeft are powerful functions. The four functions offer concise implementa-

tion for many procedures dealing with lists. Since they are so useful, the Scala standard library provides

map, filter, foldRight, and foldLeft as the methods of the List class. You do not need to implement map,

filter, foldRight, and foldLeft by yourself.

map(l, f) can be rewritten to l.map(f) by using the mapmethod instead.

def inc1(l: List[Int]): List[Int] = l.map(_ + 1)

def square(l: List[Int]): List[Int] = l.map(h => h * h)

filter(l, f) can be rewritten to l.filter(f) by using the filtermethod instead.

def odd(l: List[Int]): List[Int] = l.filter(_ % 2 != 0)

def positive(l: List[Int]): List[Int] = l.filter(_ > 0)

foldRight(l, n, f) can be rewritten to l.foldRight(n)(f) by using the foldRightmethod instead.

def sum(l: List[Int]): Int = l.foldRight(0)(_ + _)

def product(l: List[Int]): Int = l.foldRight(1)(_ * _)

foldLeft(l, n, f) can be rewritten to l.foldLeft(n)(f) by using the foldLeftmethod instead.

def sum(l: List[Int]): Int = l.foldLeft(0)(_ + _)

def product(l: List[Int]): Int = l.foldLeft(1)(_ * _)

def digitToDecimal(l: List[Int]) = l.foldLeft(0)(_ * 10 + _)

The methods in the standard library are polymorphic, i.e. they can take arguments of various types. For

example, our map function takes only a list of integers. To use map for a list of students, we need to define a new

version of map. However, the mapmethod in the standard library can take lists of any types as arguments.

case class Student(name: String, height: Int)

def heights(l: List[Student]): List[Int] = l.map(_.height)

The standard library provides many other useful methods for lists.
2

4.5 For Loops

Scala has for loops. In Scala, a for loop is an expression, which evaluates to a value. For expressions are highly

expressive. Unlike while, which work with mutable variables or objects, for of Scala helps programmers to

write code in a functional and readable way.

The syntax of a for expression is as follows:

2 https://www.scala-lang.org/api/current/scala/collection/immutable/List.html

https://www.scala-lang.org/api/current/scala/collection/immutable/List.html
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for ([name] <- [expression])

yield [expression]

The first expression should result in a collection. Its result is a collection containing the result of evaluating

the second expression at each iteration. Therefore, for expressions can replace use of the mapmethod.

val l = for (n <- List(0, 1, 2)) yield n * n

assert(l == List(0, 1, 4))

For expressions can appear at any places expecting expressions.

def square(l: List[Int]): List[Int] =

for (n <- l)

yield n * n

In Scala, for is just syntactic sugar. Instead of giving specific semantics to for, syntactic rules transform code

using for into the code using methods of collections and anonymous functions. The above function becomes

the following function, which uses map, by the transformation:

def square(l: List[Int]): List[Int] =

l.map(n => n * n)

For this reason, for expressions are powerful. Any user-defined types can appear in for expressions if the

types define map.

For expressions can replace use of the filtermethod as well.

def positive(l: List[Int]): List[Int] =

for (n <- l if n > 0)

yield n

Elements not satisfying a given condition will be omitted during iteration.

In addition, combination of map and filter can be expressed with a for loop concisely. Consider a function

that takes a list of students and returns a list of the names of students whose height is greater than 170. The

function can be implemented with map and filter like below.

def tall(l: List[Student]): List[String] =

l.filter(_.height > 170).map(_.name)

We can use a for expression instead.

def tall(l: List[Student]): List[String] =

for (s <- l if s.height > 170)

yield s.name

4.6 Exercises
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Exercise 4.1 Implement a function incBy:

def incBy(l: List[Int], n: Int): List[Int] = ???

that takes a list of integers and an integer as arguments and increases every element of the list by the given

integer. Use the mapmethod.

Exercise 4.2 Implement a function gt:

def gt(l: List[Int], n: Int): List[Int] = ???

that takes a list of integers and an integer as arguments and filters elements less than or equal to the given

integer out from the list. Use the filtermethod.

Exercise 4.3 Implement a function append:

def append(l: List[Int], n: Int): List[Int] = ???

that takes a list of integers and an integer as arguments and returns a list obtained by appending the integer

at the end of the list. Use the foldRightmethod.

Exercise 4.4 Implement a function reverse:

def reverse(l: List[Int]): List[Int] = ???

that takes a list of integers and returns a list obtained by reversing the order between the elements. Use the

foldLeftmethod.
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This section explains pattern matching of Scala. Pattern matching is one of the key features of functional

programming. It helps programmers handle complex, but structured data. We have already used a simple

form of pattern matching for lists. This section discusses the benefits of pattern matching and various

patterns available in Scala. In addition, it will introduce the option type, which is widely-used in functional

programming.

5.1 Algebraic Data Types

It is common to include values of various shapes in a single type.

A natural number is

I zero or

I the successor of a natural number.

A list is

I the empty list or

I a pair of an element and a list.

A binary tree is

I the empty tree or

I a tree containing a root element and two child trees.

An arithmetic expression is

I a number,

I the sum of two arithmetic expressions, or

I the difference of two arithmetic expressions.

An expression of the lambda calculus is

I a variable,

I a function, which is a pair of a variable and an expression, or

I a function application, which is a pair of two expressions.

As the examples show, in computer science, a single type often includes values of various shapes. Algebraic
data types (ADT) express such types. An ADT is the sum type of product types. That is why it is called

“algebraic.” A product type is a type whose every element is an enumeration of values of types in the same

specific order. Tuple types are typical product types. A sum type, whose another name is a tagged union type,
has values of multiple types as its values. Unlike a union type, each component of a sum type has a tag to be

distinguished from other components. In an ADT, one form of values that can be distinguished from the

other forms is called a variant.

For example, an arithmetic expression, which has three variants, is

I a number,

I the sum of two arithmetic expressions, or

I the difference of two arithmetic expressions.

Therefore, we can define the AE type, which is the type of an arithmetic expression, as the sum type of

I the Int type tagged with Num,
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I the AE * AE type tagged with Add, and

I the AE * AE type tagged with Sub,

where AE * AE denotes the product type of AE and AE.

ADTs are common in functional languages. Most functional languages allow users to define new ADTs. The

following OCaml code defines arithmetic expressions:

type ae =

| Num of int

| Add of ae * ae

| Sub of ae * ae

Scala does not provide a direct way to define ADTs. Instead, Scala provides traits and classes, which are more

general mechanisms to define new types, and programmers can express ADTs with traits and classes.

A new type can be defined as a trait. The syntax of a trait definition is as follows:

trait [name]

It defines a type whose name is [name]. The following code defines the AE type, which is the type of arithmetic

expressions:

sealed trait AE

The sealed modifier prevents AE being extended outside the file that defines AE. We will get back to this

point when we discuss the exhaustivity checking of pattern matching.

Once a type is defined as a trait, the type can be used just like any other types. For example, we can define an

identity function for arithmetic expressions.

def identity(ae: AE): AE = ae

However, traits do not have ability to construct new values. It means that there is no way to create a value of

the type AE yet. We need to define the variants of AE as case classes by extending AE.

case class Num(value: Int) extends AE

case class Add(left: AE, right: AE) extends AE

case class Sub(left: AE, right: AE) extends AE

As you have seen in Chapter 2, we can easily create values of case classes.

val n = Num(10)

val m = Num(5)

val e1 = Add(n, m)

val e2 = Sub(e1, Num(3))

Like traits, case classes also define types. The name of each class is the name of the defined type. Every

instance of a class belongs to the type corresponding to the class.

val n: Num = Num(10)

val m: Num = Num(5)

val e1: Add = Add(n, m)

val e2: Sub = Sub(e1, Num(3))
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In addition, because of the extends keyword, Num, Add, and Sub are subtypes of AE. It means that any value

of the types Num, Add, or Sub is also a value of the type AE.

val n: AE = Num(10)

val m: AE = Num(5)

val e1: AE = Add(n, m)

val e2: AE = Sub(e1, Num(3))

We know that we can access the fields of objects with their names.

val n: Num = Num(10)

n.value

However, we cannot access the fields of an object when its type becomes AE.

val m: AE = Num(10)

m.value

^

error: value value is not a member of AE
Compile-time error

The reason is that m can be Add or Sub, which do not have the field value, as AE consists of not only Num

but also Add and Sub. The compiler thinks that mmay not have the field value and considers m.value as an

unsafe expression, which should be rejected.

The best way to use ADTs is pattern matching. The following function evaluates a given arithmetic expression

and returns the number denoted by the arithmetic expression.

def eval(e: AE): Int = e match {

case Num(n) => n

case Add(l, r) => eval(l) + eval(r)

case Sub(l, r) => eval(l) - eval(r)

}

assert(eval(Sub(Add(Num(3), Num(7)), Num(5))) == 5)

When e is Num(n), eval simply returns n. When e is Add(l, r), eval respectively evaluates l and r, which

are arithmetic expressions. eval returns the sum of the results of l and r. The Sub(l, r) case is similar. eval

returns the difference of the results of l and r.

The list type is another good example of an ADT. The Scala standard library defines lists similar to the

following code:

sealed trait List[+A]

case object Nil extends List[Nothing]

case class ::[A](head: A, tail: List[A]) extends List[A]

This code omits some details but clearly shows the high-level idea to define lists.
1
A list is either the empty

list or a nonempty list, which is a pair of its head and tail. Nil is defined as a case object, not a case class,

since there is only one empty list. Every empty list is identical. We use a case object to express this idea. Nil is

created only once during entire execution, and every Nil is identitcal. The name :: looks a bit weird, but it is

for readability of pattern matching. Scala allows writing class names as infix operators in patterns. It means

that both case ::(h, t) => and case h :: t => are allowed. Due to the class name ::, we can write case

h :: t => in pattern matching.

1
We will not see what [+A] and Nothing are here. You can understand the overall ADT structure without knowing those concepts.
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5.2 Advantages

5.2.1 Conciseness

Without pattern matching, handling ADTs becomes a complicated job. We need to use dynamic type tests to

distinguish variants and type casting to access the fields of values.

Below is evalwithout pattern matching:

def eval(e: AE): Int =

if (e.isInstanceOf[Num])

e.asInstanceOf[Num].value

else if (e.isInstanceOf[Add]) {

val e0 = e.asInstanceOf[Add]

eval(e0.left) + eval(e0.right)

} else {

val e0 = e.asInstanceOf[Sub]

eval(e0.left) - eval(e0.right)

}

e.isInstanceOf[Num] tests whether e is an instance of class Num. If it is true, eval should return the

value of the field value of e. However, value cannot be directly accessed since e’s type is AE. Because

e.isInstanceOf[Num] is true, we are sure that e’s actual type is Num. In this case, we can inform this

knowledge to the compiler with type casting. e.asInstanceOf[Num] does not change the value denoted by e

but lets the compiler know that the programmer guarantees the type of e to be Num. Therefore, the compiler

considers e.asInstanceOf[Num] to belong Num and allows accessing the field value. These type tests and

casting processes should be done for the other variants, Add and Sub, too.

The code is long and complicated despite its simple functionality. Dynamic type tests and explicit type casting

occupy most of the code, while real computation requires short code. Besides, such code is error-prone. For

example, programmers may write code like below by mistake:

else if (e.isInstanceOf[Add]) {

val e0 = e.asInstanceOf[Sub]

eval(e0.left) + eval(e0.right)

}

While the condition checks whether e is an instance of Add, e becomes casted to Sub. Such code will trigger an

error at run time and terminate the execution abnormally. It is easy to check whether eval is correct because

it is short. However, complex types and computation will increase the possibility of mistakes.

Pattern matching gives us a much better solution. Pattern matching hides type tests and casting and makes

code concise. At the same time, pattern matching removes the possibility of mistakes.

5.2.2 Exhaustivity Checking

Pattern matching checks the exhaustivity of patterns. At run time, a match error occurs when a given value

matches none of given patterns.

def eval(e: AE): Int = e match {

case Add(l, r) => eval(l) + eval(r)

case Sub(l, r) => eval(l) - eval(r)

}
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The function lacks the Num pattern.

eval(Num(3))

scala.MatchError: Num(3) (of class Num)
Run-time error

An argument of type Num results in a match error at run time.

Fortunately, we can easily avoid such mistakes. The Scala compiler checks whether patterns are exhaustive

and warns if they are not.

def eval(e: AE): Int = e match {

case Add(l, r) => eval(l) + eval(r)

case Sub(l, r) => eval(l) - eval(r)

}

^

warning: match may not be exhaustive.

It would fail on the following input: Num(_)
Compile-time warning

The compiler warns programmers about that the patterns are not exhaustive. Moreover, it precisely informs

which patterns are missing to help debugging. Exhaustivity checking is beneficial for complex programs. It

helps programmers make error-free programs and thus is a crucial strength of pattern matching.

For exhaustivity checking, the sealedmodifier of traits is necessary. Without sealed, a trait can be extended

outside the file that defines it. The unit of compilation is a single file, so it is impossible to find all the variants

by scanning a single file when a trait is not sealed. Exhaustivity checking during pattern matching will be

impossible. The sealed keyword resolves the problem. Since sealed traits cannot be extended further, it is

enough to check only the file that defines a sealed trait to find every variant of the trait. It is why we use

sealed traits to define ADTs.

5.2.3 Reachability Checking

Like switch-case, pattern matching compares a value to patterns sequentially from top to bottom and selects

the first matching pattern. If there are duplicated patterns, the latter will not be reachable. The compiler

warns programmers when they find unreachable patterns to prevent such code.

def eval(e: AE): Int = e match {

case Num(n) => 0

case Add(l, r) => eval(l) + eval(r)

case Num(n) => n

case Sub(l, r) => eval(l) - eval(r)

}

case Num(n) => n

^

warning: unreachable code
Compile-time warning

When code is simple and short, it is easy to check whether there are unreachable patterns. However, in

complex code, programmers often insert unreachable patterns bymistake andmake critical bugs. Reachability

checking of the compiler is an important feature to prevent such bugs.
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5.3 Patterns in Scala

5.3.1 Constant and Wildcard Patterns

switch-case statements divide a given value into multiple cases in imperative languages. Pattern matching is

a general form of switch-case. The following code is an example using a switch-case statement in Java:

String grade(int score) {

switch (score / 10) {

case 10: return "A";

case 9: return "A";

case 8: return "B";

case 7: return "C";

case 6: return "D";

default: return "F";

}

}

Constant and wildcard patterns exist in Scala. Constant patterns are literals like integers and strings. A

constant pattern matches a given value if a value denoted by the pattern equals the given value. The

underscore denotes the wildcard pattern, which matches every value, and is equivalent to default of

switch-case. The following function rewrites the previous function with pattern matching:

def grade(score: Int): String =

(score / 10) match {

case 10 => "A"

case 9 => "A"

case 8 => "B"

case 7 => "C"

case 6 => "D"

case _ => "F"

}

assert(grade(85) == "B")

5.3.2 Or Patterns

switch-case statements use the fall-through semantics; if break does not exist, after executing code

corresponding to a case, the flow of the execution moves to code corresponding to the next case. Since the

results of cases 10 and 9 are identical, the function can use fall-through.

String grade(int score) {

switch (score / 10) {

case 10:

case 9: return "A";

case 8: return "B";

case 7: return "C";

case 6: return "D";

default: return "F";

}

}
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In contrast, pattern matching disallows fall-through. Instead, or patterns give a way to write the same

expression only once for multiple patterns. The syntax of an or pattern is [pattern] | [pattern] | ...,

which is a sequence of multiple patterns with vertical bars in between. A | Bmatches values that match A or

B.

def grade(score: Int): String =

(score / 10) match {

case 10 | 9 => "A"

case 8 => "B"

case 7 => "C"

case 6 => "D"

case _ => "F"

}

assert(grade(100) == "A")

5.3.3 Nested Patterns

Nested patterns are patterns containing patterns. The optimizeAdd function optimizes a given arithmetic

expression by eliminating additions of zeros.

def optimizeAdd(e: AE): AE = e match {

case Num(_) => e

case Add(Num(0), r) => optimizeAdd(r)

case Add(l, Num(0)) => optimizeAdd(l)

case Add(l, r) => Add(optimizeAdd(l), optimizeAdd(r))

case Sub(l, r) => Sub(optimizeAdd(l), optimizeAdd(r))

}

Nested patterns help programmers treat values with complex structures easily.

5.3.4 Patterns with Binders

Assume that we have one more variant of AE:

case class Abs(e: AE) extends AE

It denotes the absolute value of an operand. Optimizing an arithmetic expression decorated by two consecutive

Abs operators results in the arithmetic expression with only one Abs operator.

def optimizeAbs(e: AE): AE = e match {

case Num(_) => e

case Add(l, r) => Add(optimizeAbs(l), optimizeAbs(r))

case Sub(l, r) => Sub(optimizeAbs(l), optimizeAbs(r))

case Abs(Abs(e0)) => optimizeAbs(Abs(e0))

case Abs(e0) => Abs(optimizeAbs(e0))

}

A flaw of the implementation is that a value matching Abs(e0) cannot be an argument of optimizeAbs

directly, and constructing a new Abs instance containing a value matching e0 is essential. The @ symbol makes

code efficient by binding a value matching to a pattern to a variable. Pattern [variable] @ [pattern]makes

the variable refer to a value matching the pattern.
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def optimizeAbs(e: AE): AE = e match {

case Num(_) => e

case Add(l, r) => Add(optimizeAbs(l), optimizeAbs(r))

case Sub(l, r) => Sub(optimizeAbs(l), optimizeAbs(r))

case Abs(e0 @ Abs(_)) => optimizeAbs(e0)

case Abs(e0) => Abs(optimizeAbs(e0))

}

5.3.5 Type Patterns

In optimizeAbs, the first Num(_) pattern does no more than checking whether a value belongs to type Num.

A type pattern helps to rewrite the function. Type patterns are in the form of [name]: [type]. If a value

belongs to the type, it matches the pattern, and the variable refers to the value. The wildcard pattern can

substitute the name if the variable is unnecessary.

def optimizeAbs(e: AE): AE = e match {

case _: Num => e

case Add(l, r) => Add(optimizeAbs(l), optimizeAbs(r))

case Sub(l, r) => Sub(optimizeAbs(l), optimizeAbs(r))

case Abs(e0 @ Abs(_)) => optimizeAbs(e0)

case Abs(e0) => Abs(optimizeAbs(e0))

}

Type patterns are useful for dynamic type checking. The following function takes any value as an argument

and check whether it is a string or not.
2

def show(x: Any): String = x match {

case s: String => s + " is a string"

case _ => "not a string"

}

assert(show("1") == "1 is a string")

assert(show(1) == "not a string")

Note that type patterns cannot check type arguments of polymorphic types. Using type patterns against

polymorphic types is dangerous.

def show(x: Any): String = x match {

case _: List[String] => "a list of strings"

case _ => "not a list of strings"

}

^

warning: non-variable type argument String in type pattern

List[String] is unchecked since it is eliminated by erasure
Compile-time warning

val l: List[Int] = List(1, 2, 3)

assert(show(l) == "a list of strings") // weird result

Although the type of the argument is List[Int], it matches the first pattern. As the warnings imply, the

JVM uses type erasure semantics, and type arguments are unavailable at run time.

2
Every type is a subtype of Any, i.e. every value belongs to Any.
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5.3.6 Tuple Patterns

The syntax of a tuple pattern is ([pattern], ..., [pattern]). It matches a tuple whose elements respec-

tively match the internal patterns.

The following function uses tuple patterns to check whether two lists are identical:

def equal(l0: List[Int], l1: List[Int]): Boolean =

(l0, l1) match {

case (h0 :: t0, h1 :: t1) =>

h0 == h1 && equal(t0, t1)

case (Nil, Nil) => true

case _ => false

}

5.3.7 Pattern Guards

A binary search tree is

I the empty tree or

I a tree containing an integral root element and two child trees.

sealed trait Tree

case object Empty extends Tree

case class Node(root: Int, left: Tree, right: Tree) extends Tree

The function add takes a tree and an integer as arguments and returns a tree obtained by adding the integer

to the tree. If the integer is an element of the given tree, the tree itself is the return value.

def add(t: Tree, n: Int): Tree =

t match {

case Empty => Node(n, Empty, Empty)

case Node(m, t0, t1) =>

if (n < m)

Node(m, add(t0, n), t1)

else if (n > m)

Node(m, t0, add(t1, n))

else

t

}

An expression corresponding to the second pattern uses if-else. Pattern guards allow adding constraints to

patterns. A pattern in the form of [pattern] if [expression] matches a value if the value matches the

pattern, and the expression results in true. The following version of add uses pattern guards:

def add(t: Tree, n: Int): Tree =

t match {

case Empty => Node(n, Empty, Empty)

case Node(m, t0, t1) if n < m =>

Node(m, add(t0, n), t1)

case Node(m, t0, t1) if n > m =>

Node(m, t0, add(t1, n))

case _ => t

}
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Guarded patterns may be inexhaustive and need care.

def add(t: Tree, n: Int): Tree =

t match {

case Empty => Node(n, Empty, Empty)

case Node(m, t0, t1) if n < m =>

Node(m, add(t0, n), t1)

case Node(m, t0, t1) if n > m =>

Node(m, t0, add(t1, n))

}

The patterns in the above code is not exhaustive, but the compiler does not warn programmers about the

inexhaustivity.

5.3.8 Patterns with Backticks

The function remove takes a tree and an integer as arguments and returns a tree obtained by removing the

integer from the tree. If the integer is not an element of the tree, the given tree itself is the return value.

removeMin is a helper function used by remove. It returns the pair of the smallest element of a given tree and

a tree obtained by removing the element from the tree.

def removeMin(t: Node): (Int, Tree) = {

t match {

case Node(n, Empty, t1) =>

(n, t1)

case Node(n, t0: Node, t1) =>

val (min, t2) = removeMin(t0)

(min, Node(n, t2, t1))

}

}

def remove(t: Tree, n: Int): Tree = {

t match {

case Empty =>

Empty

case Node(m, t0, Empty) if n == m =>

t0

case Node(m, t0, t1: Node) if n == m =>

val res = removeMin(t1)

val min = res._1

val t2 = res._2

Node(min, t0, t2)

case Node(m, t0, t1) if n < m =>

Node(m, remove(t0, n), t1)

case Node(m, t0, t1) if n > m =>

Node(m, t0, remove(t1, n))

}

}

Node(`n`, t0, Empty) can replacecase Node(m, t0, Empty) if n == m. ThepatternNode(n, t0, Empty)

defines a new variable n and makes n refer to the root element; it does not check whether the root element

equals n. However, backticks prohibit defining a new variable and allow to compare the root element to n in

the scope.
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def remove(t: BinTree, n: Int): BinTree = {

t match {

case Empty =>

Empty

case Node(`n`, t0, Empty) =>

t0

case Node(`n`, t0, t1: Node) =>

val res = removeMin(t1)

val min = res._1

val t2 = res._2

Node(min, t0, t2)

case Node(m, t0, t1) if n < m =>

Node(m, remove(t0, n), t1)

case Node(m, t0, t1) if n > m =>

Node(m, t0, remove(t1, n))

}

}

5.4 Applications of Pattern Matching

5.4.1 Variable Definitions

It is possible to define variables with pattern matching.

val (n, m) = (1, 2)

assert(n == 1 && m == 2)

val (a, b, c) = ("a", "b", "c")

assert(a == "a" && b == "b" && c == "c")

val h :: t = List(1, 2, 3, 4)

assert(h == 1 && t == List(2, 3, 4))

val Add(l, r) = Add(Num(1), Num(2))

assert(l == Num(1) && r == Num(2))

Pattern matching helps programmers declare variables concisely, but a match error occurs when the pattern

does not match the right-hand-side value. It is desirable to use pattern matching only when there is a

guarantee that the match succeeds. Since a tuple pattern always matches a tuple value of the same length,

tuple patterns are widely used for variable definitions.

5.4.2 Anonymous Functions

The function toSum takes a list of pairs of two integers as arguments and returns a list whose elements are the

sums of the integers in the pairs.

def toSum(l: List[(Int, Int)]): List[Int] =

l.map(p => p match {

case (n, m) => n + m

})
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val l = List((0, 1), (2, 3), (3, 4))

assert(toSum(l) == List(1, 5, 7))

The anonymous function directly uses parameter p as the target of the pattern matching. Scala allows

simplification of x => x match { ... } to { ... }. Therefore, we can use an enumeration of patterns as

an anonymous function.

def toSum(l: List[(Int, Int)]): List[Int] =

l.map({ case (n, m) => n + m })

5.4.3 For Loops

toSum can use a for expression instead of map.

def toSum(l: List[(Int, Int)]): List[Int] =

for (p <- l)

yield p match { case (n, m) => n + m }

For expressions directly support pattern matching.

def toSum(l: List[(Int, Int)]): List[Int] =

for ((n, m) <- l)

yield n + m

The code is readable and concise.

5.5 Options

The option type is awidely-usedADT. It represents a valuewhose existence is optional. This section introduces

the option type and explains the usage of options.

Consider the function get, which takes a list and integer n as arguments and returns the nth element of the

list. It is problematic when n is negative or exceeds the length of the list. Throwing exceptions is a widely

used solution in imperative languages. In Scala, throw [expression] throws an exception. For convenience,

we define the function error, which throws an exception, like below and use it throughout the book.

def error(msg: String) = throw new Exception(msg)

def get(l: List[Int], n: Int): Int =

if (n < 0)

error("index out of bounds")

else l match {

case Nil =>

error("index out of bounds")

case h :: t =>

if (n == 0)

h

else

get(t, n - 1)

}



5 Pattern Matching 52

Throwing an exception is a simple and effective solution. However, exceptions have two problems. First,

exceptions should be handled by exception handlers.

try {

get(List(1, 2), 2)

} catch {

case e: Exception =>

// prints "index out of bounds"

println(e.getMessage)

}

If an exception is not handled properly, it will eventually cause a run-time error and terminate the execution.

get(List(1, 2), 2)

java.lang.Exception: index out of bounds
Run-time error

The Scala compiler does not check whether exceptions are handled properly. It means that there will not be

any compile-time error even if there is a possibility of unhandled exceptions.

Another problem of exceptions is that exception handling is not local. When an exception is thrown, the

control flow suddenly jumps to the position of the nearest exception handler. Non-local transition of the

control flow usually hinders programmers from understanding code. Therefore, implementing get without

exceptions is desirable.

The first attempt is to use null. null is a value that denotes that it does not refer to any existing object. We

can try to make get return nullwhen a given index is invalid.

def get(l: List[Int], n: Int): Int =

if (n < 0)

null

else l match {

case Nil => null

case h :: t =>

if (n == 0)

h

else

get(t, n - 1)

}

null

^

error: an expression of type Null is ineligible

for implicit conversion

case Nil => null

^

error: an expression of type Null is ineligible

for implicit conversion
Run-time error

Unfortunately, null is not an element of Int in Scala. The compiler rejects the code. Even with the assumption

that we can treat null as Int, using null is a bad solution. Dereferencing null causes a run-time error,

which is the well-known NullPointerException. The compiler does not check whether null is dereferenced.

Therefore, using null is nothing better than using exceptions. Use of null has been criticized enormously
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because null is extremely error-prone. Even Tony Hoare, the inventor of null, said that inventing nullwas a

terrible mistake:

I call it my billion-dollar mistake. It was the invention of the null reference in 1965.
3

The second attempt is to use a particular error-indicating value, e.g. -1.

def get(l: List[Int], n: Int): Int =

if (n < 0)

-1

else l match {

case Nil =>

-1

case h :: t =>

if (n == 0)

h

else

get(t, n - 1)

}

The strategy has an obvious problem. The caller cannot distinguish two situations:

I The list contains -1.

I The index is invalid.

Default values can be successful solutions for certain purposes but do not fit get.

Instead of using a fixed particular value in get, the caller can specify the default value.

def getOrElse(l: List[Int], n: Int, default: Int): Int =

if (n < 0)

default

else l match {

case Nil =>

default

case h :: t =>

if (n == 0)

h

else

getOrElse(t, n - 1, default)

}

It works well when an appropriate default value exists. However, when checking failures is per se important,

the new strategy is as bad as the previous strategy. There is no way to distinguish an element and the default

value.

Functional languages provide the option type to handle erroneous situations safely. As the name implies, it

represents an optional existence of a value. The Scala standard library defines the option type like below.
4

sealed trait Option[+A]

case object None extends Option[Nothing]

case class Some[A](value: A) extends Option[A]

3 https://en.wikipedia.org/wiki/Null_pointer#History
4
We will not see what [+A] and Nothing are here. You can understand the overall ADT structure without knowing those concepts.

https://en.wikipedia.org/wiki/Null_pointer#History
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An option that may have a value of type T has type Option[T]. An option is either None or Some. None is a

value that does not denote any value and similar to null. It indicates a problematic situation. Like Nil, it is

defined as a case object because every None is identical. Some constructs a value that denotes that a value

exists. It is similar to a reference to a real object and indicates that computation has succeeded.

The following code defines getOption, which returns an option.

def getOption(l: List[Int], n: Int): Option[Int] =

if (n < 0)

None

else l match {

case Nil =>

None

case h :: t =>

if (n == 0)

Some(h)

else

getOption(t, n - 1)

}

assert(getOption(List(1, 2), 0) == Some(1))

assert(getOption(List(1, 2), 2) == None)

For an invalid index, the return value is None. The caller can notice that the operation has failed by None.

Otherwise, the function packs an element inside Some to make the return value.

The Scala standard library uses options in many places. Various methods return options. For example,

headOption of a list returns Nonewhen the list is empty. Otherwise, Some containing the head of the list is

returned.

assert(List().headOption == None)

assert(List(1).headOption == Some(1))

Also, get of a map returns Nonewhen the map does not have a given key. Otherwise, Some containing the

value corresponding to the key is returned.

val m = Map(1 -> "one", 2 -> "two")

assert(m.get(0) == None)

assert(m.get(1) == Some("one"))

Pattern matching allows programmers to deal with options by distinguishing the None and Some cases. In

addition, like the methods of lists, options also provide methods to abstract common patterns. We are going

to see two methods: map and flatMap.

map can be used when we want to apply some computation only when the previous computation has

succeeded. map takes a single argument, which must be a function. opt.map(f) results in None when opt is

None. If opt is Some(v), then opt.map(f) evaluates to Some(f(v)).

As an example, let us consider a map containing students. Names are the keys, and students are the values.

We want to find a student by a name and get one’s height only when the student exists. It can be implemented

with map.

def getHeight(

m: Map[String, Student],
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name: String

): Option[Int] =

m.get(name).map(_.height)

If m.get(name) is None, then m.get(name).map(_.height) also is None. Otherwise, m.get(name) should be

Some(student), and m.get(name).map(_.height)will result in Some(student.height).

In summary, map is useful when the computation consists of two steps, and the first step can fail.

flatMap is similar to map but a bit different. It is useful when the computation consists of two steps, and

both steps can fail. flatMap takes a single argument, which must be a function that returns an option.

opt.flatMap(f) results in None when opt is None. If opt is Some(v), then opt.flatMap(f) evaluates to

f(v).

Let us consider a list of names and a map like before. When the list is nonempty, we will find a student with

the first name in the list from the map. It is a typical application of flatMap.

def getStudent(

l: List[String],

m: Map[String, Student]

): Option[Student] =

l.headOption.flatMap(m.get)

The standard library provides many other useful methods for options.
5

5 https://www.scala-lang.org/api/current/scala/Option.html

https://www.scala-lang.org/api/current/scala/Option.html
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This chapter is about syntax and semantics.

Syntax of a programming language decides the appearance of the language. Syntax consists of concrete

syntax and abstract syntax. While concrete syntax describes programs as strings, abstract syntax describes

the structures of programs as trees. Parsing is the process bridging the gap between concrete syntax and

abstract syntax. A string is transformed to a tree by parsing. This chapter explains concrete syntax, abstract

syntax, and parsing.

Semantics of a programming langauge determines the behavior of each program. This chapter explains how

we can define the semantics of a language. In addition, we will see what syntactic sugar is.

6.1 Concrete Syntax

People write programs with strings. Some strings are valid programs, while other strings are not. For example,

consider the following code:

println()

It is a valid Scala program. On the other hand, the following code is not a valid Scala program.

println(

Concrete syntax determines whether a certain string is a program or not. According to the concrete syntax

of Scala, println() is a program, but println( is not because the closing parenthesis is missing. Without

concrete syntax, programmers cannot know whether a given string is a program or not. Concrete syntax is

one of the essential elements of a programming language. This section defines concrete syntax formally and

explains how concrete syntax can be specified.

The first thing to do is to define strings since programs are represented as strings. A string is a finite sequence

of characters. The definition of a character varies in programming languages. In some languages, a character

is limited to those expressed by the ASCII code. In other cases, every Unicode symbol is considered as a

character. As we want to deal with general programming languages, we do not fix the characters to be a

specific set. Instead, we assume that a set of characters is given and do not care about which characters exactly

exist in the set. From now on, � is the set of every character:

� = the set of every character = {2 | 2 is a character}

Now, a character is an element of �.

Once characters are defined, we can define strings with the definition of characters. ( is the set of every

string:

( = the set of every string = {"21 · · · 2=" | 21 , · · · , 2= ∈ �}

A string is an element of (, which is a sequence of zero or more characters. For example, if ’a’, ’b’ ∈ �, then
"aba" ∈ (.

The definition of strings differs from the definition of programs because some strings are not programs. As

we have seen already, "println()" is a program, but "println(" is not although both are strings.
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Defining concrete syntax is to define which strings are programs. Therefore, we can say that concrete syntax

determines the set of every program. Let % be the set of every program.

% = the set of every program = {? | ? is a program}

A program is an element of %. Then, % has only one restriction: % should be a subset of ( as every program is

a string.

% ⊆ (

The concrete syntax of each language defines its own % as a subset of (. Each language has different % from

each other. For instance, "println()" ∈ % and "println(" ∉ %, where % is defined by the concrete syntax of

Scala. At the same time, there can be a language whose % does not have "println()" as an element.

To define the concrete syntax of a language, we need to define the set %. The problem is that % is usually an

infinite set. There are infinitely many programs in each language. Defining an infinite set is difficult because

we cannot enumerate every element of an infinite set. We need a way to define infinite sets to define concrete

syntax.

The most popular way to define concrete syntax is Backus-Naur form (BNF). It defines a set of strings in an

intuitive way. It provides a constructive definition, i.e. it lets us know how we can construct an element of the

set. To define concrete syntax with BNF, we need to discuss the concepts used in BNF first.

BNF has three concepts: terminals, nonterminals, and expressions. A terminal is a string. For example, "0" and

"ab" are terminals. A nonterminal is a name between a pair of angle brackets and denotes a set of strings. For

instance, <digit> is a nonterminal and may denote the set {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}.
An expression is an enumeration of one or more terminals/nonterminals. Therefore, all of the following are

expressions:

I "abc" (a single terminal)

I "0" "1" (multiple terminals)

I <digit> (a single nonterminal)

I <digit> <number> (multiple nonterminals)

I "-" <number> (a single terminal and a single nonterminal)

An expression also denotes a set of strings. The set denoted by an expression is the concatenation of strings

denoted by its components. For example, in the expression "0" "1", "0" denotes "0", and "1" denotes "1".

Therefore, "0" "1" denotes the set {"01"}. If <digit> denotes the set {"0", "1", "2", "3", "4", "5", "6", "7",
"8", "9"}, then "0" <digit> denotes {"00", "01", "02", "03", "04", "05", "06", "07", "08", "09"}.

Now, let us see how we can define a new set from scratch. BNF allows us to define the set denoted by a

nonterminal with the following form:

[nonterminal] ::= [expression] | [expression] | ...

The vertical bars in the right hand side separate distinct expressions. The expressions define the set denoted

by the nonterminal. The union of the sets denoted by the expressions equals the set denoted by the nonterminal.

For example, the followingdefinitionmakes<digit>denote {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}:

<digit> ::= "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9"

From now on, we are going to define the concrete syntax of a tiny language named AE to show example usage

of BNF. AE stands for arithmetic expressions. Its features is limited to addition and subtraction of decimal

integers.
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AE programs should be able to express decimal integers. Thus, the following strings should be programs of

AE:

I "0"

I "1"

I "-10"

I "42"

At the same time, programs should be able to express addition and subtraction. Thus, the following strings

also should be programs:

I "0+1"

I "-2-1"

I "1+-3+42"

I "4-3+2-1"

First, we can define the set of every string that represents a decimal integer in BNF. It can be done with the

following definitions:

<digit> ::= "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9"

<nat> ::= <digit> | <digit> <nat>

<number> ::= <nat> | "-" <nat>

We know that <digit> denotes {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}. Since <digit> is one way

to construct an element of <nat>, every string denoted by <digit> is also a string of <nat>. Hence, {"0", "1",
"2", "3", "4", "5", "6", "7", "8", "9"} is a subset of the set denoted by <nat>. At the same time, <digit>

<nat> is the other way to construct an element. We can make a new element of <nat> by selecting strings

from <digit> and <nat>, respectively. For example, <digit> can denote "1", and <nat> can denote "0".

Therefore, "10" is an element of <nat>. By repeating this process, we can construct infinitely many strings,

e.g. "110" by concatenating "1" and "10", "1110" by concatenating "1" and "110", and so on. In the end, we

can conclude that <nat> denotes the set of every string that consists of the characters from ’0’ to ’9’, i.e.

every string that represents a decimal natural number.
1

Finding the set denoted by <number> is easier. Since <nat> is one way to construct an element of <number>,

the set denoted by <nat> is a subset of the set denoted by <number>. The expression "-" <nat> is the other

way to construct an element. It implies that if we concatenate "-" and a string denoted by <nat>, we can get a

new element of <number>. In conclusion, <number> denotes the set of every string that represents a decimal

integer.

It is enough to add only addition and subtraction to complete the definition of the concrete syntax.

<expr> ::= <number> | <expr> "+" <expr> | <expr> "-" <expr>

In a similar way, we can figure out which set is denoted by <expr>. The set includes every string that

represents arithmetic expression consisting of decimal integers, addition, and subtraction. We can say that

<expr> defines % of AE, and the concrete syntax of AE is defined now.

6.2 Abstract Syntax

Defining syntax solely with concrete syntax has problems from both language users’ and language designers’

perspectives.

1
This book considers zero as a natural number.



6 Syntax and Semantics 60

Programmers usually learn multiple languages. Languages considerably vary in their concrete syntax.

Consider a function that takes two integers as arguments and returns the sum of the integers. We can

implement the function in four different languages like below.

I Python

def add(n, m):

return n + m

I JavaScript

function add(n, m) {

return n + m;

}

I Racket

(define (add n m) (+ n m))

I OCaml

let add n m = n + m

They look so different even though they define the same function. The keyword to define a function is def in

Python, function in JavaScript, define in Racket, and let in OCaml. It is not the only difference. Python

and JavaScript need parentheses and commas for parameters, while Racket and OCaml do not. JavaScript

puts function bodies inside curly braces. Racket treats + as a prefix operator, while the others treat + as an

infix operator. These differences are the differences between the concrete syntax of each language. Various

forms of concrete syntax hinder programmers from learning multiple languages easily.

However, their structures are quite the same. In every language, a function definition consists of a name,

parameters, and a body expression. The above example defines a function whose name is add, parameters

are n and m, and body is an expression that adds n and m. In every language in the example, an addition

expression consists of two operands. The body expression uses n and m as the operands of the addition.

Thus, programmers should focus on the structures of programs, rather than strings per se, to learn multiple

languages easily. The structures remain the same even when the strings vary.

At the same time, concrete syntax cares about tedious details that language designers want to ignore. For

example, both "2+1" and "02+001" are AE programs. They are different strings but represent the same

arithmetic expression: 2 + 1. When the designers of AE define logic to evaluate arithmetic expressions,

distinction between 2 + 1 and 2 − 1 is important, but distinction between "2+1" and "02+001" is completely

unnecessary. The designers want to focus only on the structures of programs but not strings.

For both programmers and designers, concrete syntax is problematic because it describes only strings and

does not give good abstraction of structures even though people want to focus on the structures. Of course,

we cannot discard the notion of concrete syntax. Everyone write programs as strings, and concrete syntax

is essential for that step. At the same time, we need a way to describe the structures of programs without

being affected by differences in strings. To meet the need, we introduce another notion of syntax: abstract

syntax. Concrete syntax and abstract syntax are complementary. They collectively construct the syntax of a

language.

Abstract syntax describes the structure of a program as a tree. A program consists of multiple components.

Each component consists of subcomponents again. Trees formally express such recursive structures. A

component can be represented as a tree whose root describes the sort of a component and children are the

trees representing the subcomponents.

As an example, let us express the function add as a tree. The function definition has four components:

the name add, the first parameter n, the second parameter m, and the body expression. The following tree

represents the function definition:
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FunDef

add n m

The root of the tree is the symbol FunDef, which explains that this tree represents a function definition. The

tree has four children: add, n, m, and the body expression. We do not know how to draw the tree representing

the body expression yet.

The body expression is an addition expression. It has two components: the operands of the addition.

FunDef

add n m Add

The root of the tree is Add as the expression is addition. It has two children: the operand expressions.

The first operand expression consists of a single component: n.

FunDef

add n m Add

Name

n

The root of the tree is Name, since the expression is just a name. The only child is n.

The second operand expression can be similarly represented as a tree.

FunDef

add n m Add

Name

n

Name

m

The above tree represents the structure of the function definition. It is independent of its underlying

programming language. The tree can be a Python function definition and a JavaScript function definition at

the same time. By expressing programs with trees, we can ignore unnecessary details in strings and focus on

the structures of programs.
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As abstract syntax treats programs as trees, defining the abstract syntax of a language is to define the set of

every tree that represents a program. Let us define the abstract syntax of AE. In AE, every natural number is

a program. A natural number program has only one component: the natural number itself. Therefore, the

following fact is true, where � denotes the set of every program:

If = ∈ ℤ, then

Num

=

∈ �.

Addition of two arithmetic expressions is also a program. Such a program has two components: the left and

right operands. Each operand is an arithmetic expression and thus a program. Therefore, the following fact is

true:

If 41 , 42 ∈ �, then
Add

41 42

∈ �.

Subtraction is similar.

If 41 , 42 ∈ �, then
Sub

41 42

∈ �.

By collecting all the above facts, we can define the abstract syntax of AE as the smallest set � satisfying the

following conditions.

If = ∈ ℤ, then

Num

=

∈ �.

If 41 , 42 ∈ �, then
Add

41 42

∈ �.

If 41 , 42 ∈ �, then
Sub

41 42

∈ �.

For example, the following tree represents an AE program:
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Add

Sub

Num

5

Num

1

Num

3

We call a tree that is an element of the set defined by abstract syntax an abstract syntax tree (AST).

Abstract syntax can be easily implemented with ADTs in Scala. The following code implements the abstract

syntax of AE:

sealed trait AE

case class Num(value: Int) extends AE

case class Add(left: AE, right: AE) extends AE

case class Sub(left: AE, right: AE) extends AE

Num(=) corresponds to

Num

=

Add(41, 42) corresponds to

Add

41 42

Sub(41, 42) corresponds to

Sub

41 42

The previous AST can be written as Add(Sub(Num(5), Num(1)), Num(3)) in Scala.

It is inconvenient to draw a tree every time we need to express a program. For this reason, people usually use

notations that look like code to represent trees. For example, we can simply write = instead of drawing a tree

whose root is Num and only child is = when it is clear that = denotes an AST from the context. Similarly, we

can use 41 + 42 and 41 − 42 instead of trees that represent addition and subtraction, respectively. Note that +
and − in the notations are not the mathematical addition and subtraction operators. They are just parts of the

notations and do not have any meaning.

We can define the abstract syntax of AE again by using the above notations. � is the smallest set satisfying the

following conditions:
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I If = ∈ ℤ, then = ∈ �.
I If 41 , 42 ∈ �, then 41 + 42 ∈ �.
I If 41 , 42 ∈ �, then 41 − 42 ∈ �.

Even though the notations themselves do not look like trees at all, they still represent ASTs. Also, symbols like

+ and − do not have any meaning. It is extremely important to keep these points in your mind. Otherwise,

you will mix abstract syntax using notations up with concrete syntax in the end.

Notations are just notations. You can define different notations and use them. For example, one may use

ADD 41 42 instead of 41 + 42 to represent addition. You can freely choose notations, but once you define them,

you should consistently use them not to make other people confused.

To make the definition of abstract syntax more concise, we adopt BNF to the definition of abstract syntax. We

can re-define the abstract syntax of AEwith BNF:

4 ::= = | 4 + 4 | 4 − 4

We call each symbol that denotes a particular element in abstract syntax ametavariable. It is calledmetavariable

because it is a variable at a meta-level, not the level of the defined programming language. For example, 4 is a

metavariable that ranges over programs, and = is a metavariable that ranges over integers.

We often use parentheses to express elements of abstract syntax without ambiguity. For instance, 3 − 1 + 2

can be interpreted in two ways:

Add

Sub

Num

3

Num

1

Num

2

or

Sub

Num

3

Add

Num

1

Num

2

If we write (3 − 1) + 2, it is clear that it denotes the former. Otherwise, we write 3 − (1 + 2) to denote the

latter.

6.3 Parsing

Concrete syntax considers programs as strings, while abstract syntax considers programs as trees. Parsing

bridges this gap. Parsing is a process of transforming a string following concrete syntax into an AST. A parser

is a program that parses input. We can consider a parser as a partial function from ( (the set of every string)

to � (the set of every AST).

parse : ( ↦→ �

Partial functions

A partial function from a set � to a set � is a function from a subset ( of � to �. ( is called the domain of

definition, or just domain in short, of the partial function. While �→ � is a set of functions from � to �,

� ↦→ � is a set of partial functions from � to �.



6 Syntax and Semantics 65

Let 5 be a partial function from � to �. Then, there can be 0 ∈ � such that 5 (0) is undefined. From a

programmers’ perspective, 5 can be interpreted as a function from � to Option[�], where Nonemeans

that the image is undefined and Some(1)means that the image is 1.

The result of parse is undefined when an input does not belong to % (the set of every program). That is why

parse is a partial function. When an input belongs to %, parse results in its corresponding AST.

Consider the parser of AE. The results of parse are undefined for the following strings as they are not AE

programs:

I 1+

I 2*4

I 0++3

On the other hand, below is an example of when parse succeeds.

parse("-1+002") =

Add

Num

−1

Num

2

= −1 + 2

This book does not discuss implementation of parsers.

6.4 Semantics

Syntax is an essential element of a programming language. It allows us to knowwhich strings are programs and

what the structures of programs are. However, syntax does not explain execution of programs. Programmers

write programs to execute them. They should know what will happen when their programs are executed.

Therefore, we need semantics in addition to syntax. Semantics is the other essential element of a programming

language. It defines the behaviors of programs.

Let us define the semantics of AE. Semantics is defined based on abstract syntax. The structure of a program

determines its behavior. Since abstract syntax represents the structure, it is natural to use abstract syntax for

semantics. The semantics of AE defines the semantics of each AE program, where the semantics of a program

means things that happen when the program is executed. When an AE program is executed, it does one thing:

outputs the result of the evaluation of the arithmetic expression. For example, 0 + 1 should result in 1 if the

semantics is defined correctly. Note that + in 0 + 1 does not mean addition, and we cannot say anything

about the result of 0+ 1 until the semantics is defined. To make AE a reasonable language, we must define the

semantics of AE so that 0 + 1 results in 1.

There are infinitely many programs. We cannot define the semantics of each program separately. We need to

utilize the structures of programs defined by the abstract syntax. According to the abstract syntax, programs

can split into three groups: =, 41 + 42, and 41 − 42. By defining the semantics of each group once, we can

complete the semantics of infinitely many programs in a finite method.

The simplest case is =. = is an expression consisting of an integer. An integer evaluates to itself. We represent

this semantics as the following rule:

Rule Num

= evaulates to =.
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We can conclude the following facts by using Rule Num.

I 1 evaulates to 1.

I 5 evaulates to 5.

The next case is 41 + 42. As 41 is an arithmetic expression, it results in some integer. Let =1 be the integer.

Similarly, 42 also results in some integer. Let =2 be the integer. Then, the result of 41 + 42 is the sum of =1

and =2. In this chapter, we use +
ℤ
instead of + to denote mathematical addition. It will help you distinguish

mathematical addition from + used for the abstract syntax. Once you become familiar with syntax and

semantics, you can easily distinguish them by checking the context even if both are denoted by +. From the

next chapter, we will use + for both abstract syntax and mathematical addition. The following rule defines

the semantics of 41 + 42.

Rule Add

If 41 evaluates to =1, and 42 evaluates to =2,

then 41 + 42 evaluates to =1 +ℤ
=2.

We can define the semantics of 41 − 42 in a similar way. Like +
ℤ
, we use −

ℤ
for mathematical subtraction in

this chapter. The following rule defines the semantics of 41 − 42.

Rule Sub

If 41 evaluates to =1, and 42 evaluates to =2,

then 41 − 42 evaluates to =1 −ℤ
=2.

These three rules are all of the semantics of AE. We now know the behavior of every AE program. For example,

consider (3 − 1) + 2. The following steps show why (3 − 1) + 2 evaluates to 4.

1. (By Rule Num) 3 evaluates to 3.

2. (By Rule Num) 1 evaluates to 1.

3. (By Rule Sub) If 3 evaluates to 3 and 1 evaluates to 1, then 3 − 1 evaluates to 2.

4. (By 1, 2, and 3) 3 − 1 evaluates to 2.

5. (By Rule Num) 2 evaluates to 2.

6. (By Rule Add) If 3 − 1 evaluates to 2 and 2 evaluates to 2, then (3 − 1) + 2 evaluates to 4.

7. (By 4, 5, and 6) (3 − 1) + 2 evaluates to 4.

Now, let us define the semantics of AE in a more mathematical way. The semantics defines the result of the

execution of each program. Here, the result is an integer. We can say that semantics outputs an integer when

a program is given. Thus, the semantics can be considered as a function from a program to an integer.

eval : �→ ℤ

For each 4 ∈ �, there should exist a unique integer eval(4). It is obviously true in AE. Every arithmetic

expression evaluates to a unique integer.

However, defining semantics as a function is a bad choice in other languages. Some programs do not produce

any results. Nonterminating programs are such examples. Programs that incur run-time errors also belong to

this category. You will see programs with run-time errors in the next chapter. Moreover, there is a program

whose result is not unique. We call such programs nondeterministic programs. For example, the behavior of

a concurrent program with multiple threads depends on how the threads are interleaved during execution. If

the threads are interleaved differently, the result may change. Programs without results and nondeterministic

programs prevent us from defining semantics as a function. We should define semantics as a relation. Even

though the semantics of AE can be defined as a function, we define the semantics as a relation to make the

discussion of this chapter easily extendable to other languages.

We define the semantics of AE as⇒, a binary relation over � and ℤ.
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Binary relations

A binary relation over sets � and � is a subset of � × �, where � × � = {(0, 1) | 0 ∈ � ∧ 1 ∈ �}.

Let ' be a binary relation over � and �. Then, ' ⊆ � × �. For 0 ∈ � and 1 ∈ �, we write 0 ' 1 when

(0, 1) ∈ '. For example, < is a binary relation over ℤ and ℤ, and we can write 1 < 2 instead of (1, 2) ∈<.

⇒⊆ � ×ℤ

(4 , =) ∈⇒, i.e. 4 ⇒ = implies that 4 evaluates to =.

Let us define the semantics again with mathematical concepts.

Rule Num

= ⇒ =.

Rule Add

If 41 ⇒ =1 and 42 ⇒ =2,

then 41 + 42 ⇒ =1 +ℤ
=2.

Rule Sub

If 41 ⇒ =1 and 42 ⇒ =2,

then 41 − 42 ⇒ =1 −ℤ
=2.

We use one more mathematical concept: inference rules. An inference rule is a rule to prove a new proposition

from given propositions. An inference rule has the following form:

premise
1

premise
2

· · · premise=
conclusion

It consists of a horizontal line, propositions above the line, and a proposition below the line. We call the

propositions above the line premises and the proposition below the line a conclusion. The rule means that if

every premise is true, then also the conclusion is true. A single inference rule can have zero or more premises.

A rule without premises implies that its conclusion is always true. When a rule does not have any premises,

we can omit the horizontal line.

Let us define the semantics of AEwith inference rules.

= ⇒ = [Num]

41 ⇒ =1 42 ⇒ =2

41 + 42 ⇒ =1 +ℤ
=2

[Add]

41 ⇒ =1 42 ⇒ =2

41 − 42 ⇒ =1 −ℤ
=2

[Sub]

As you can see, the rules are much clearer and more concise than the rules written in a natural language.

We can prove (3 − 1) + 2⇒ 4 with the rules. We usually draw a proof tree when we prove a proposition with

inference rules. A proof tree is a tree whose root is the proposition to be proven. Each node of the tree is a

proposition, and the children nodes of a node are evidences supporting that the proposition of the node is
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true. Unlike most trees in computer science, we place the root of a proof tree at the bottom. Every node is

placed below its children.

The following proof tree proves 3⇒ 3.

3⇒ 3

The tree has only the root node because Rule Num does not have any premises.

Similarly, the following proof tree proves 1⇒ 1.

1⇒ 1

We draw the following proof tree with Rule Sub and the above trees to prove 3 − 1⇒ 2.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

By using Rule Num again, we prove 2⇒ 2.

2⇒ 2

Finally, we get the proof tree of (3 − 1) + 2⇒ 4.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

To explain what proof trees are, we have drawn the proof tree from its leaf nodes. However, we usually draw

a proof tree from the root node. We start by drawing a horizontal line and writing the program we want to

evaluate.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

Then, we find which inference rule can be applied. In this case, we can use Rule Add since the program is

addition.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

We need to evaluate 3 − 1 and 2 respectively. Let us focus on 3 − 1 first. Since 3 − 1 is subtraction, we use Rule

Sub.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4
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We can conclude that 3⇒ 3 from Rule Num.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

Similarly, 1⇒ 1.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

By subtracting 1 from 3, we get 2.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

We use Rule Num again and get 2⇒ 2.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

Finally, we can complete the proof tree and prove (3 − 1) + 2⇒ 4.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

Sometimes, we call a proof tree proving the result of a program a evaluation derivation since the tree explains

how the result of the program is derived.

The way of defining semantics we have seen so far is big-step operational semantics. It is called “operational”

because it focuses on which operations happen during execution and “big-step” because it finds the result of

a program by taking a single big step. There are other ways to define semantics: denotational semantics and

small-step operational semantics. Most part of this book uses big-step operational semantics. However, it will

use small-step operational semantics to deal with continuations later.

An interpreter is a program that takes a program as input and evaluates the program. We can easily implement

an interpreter of AE according to its semantics. The interpreter consists of a single function that takes an AST

as an argument and returns an integer.

def interp(e: AE): Int = e match {

case Num(n) => n

case Add(l, r) => interp(l) + interp(r)

case Sub(l, r) => interp(l) - interp(r)

}
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6.5 Syntactic Sugar

Syntactic sugar adds a new feature to a language by defining syntactic transformation rules instead of

changing the semantics. Syntactic sugar is widely used in real-world programming languages because it

allows languages to provide useful features without increasing the burden of the language designers too

much.

Suppose that we want to add integer negation to AE. It can be done by modifying both syntax and semantics

of AE. First, we fix the concrete syntax to add integer negation.

<expr> ::= <number> | <expr> "+" <expr>

| <expr> "-" <expr> | "-" "(" <expr> ")"

Similarly, we fix the abstract syntax, too.

4 ::= = | 4 + 4 | 4 − 4 | − 4

The parser should be changed accordingly. For example, -(03+4) is parsed to −(3 + 4).

Finally, we add a new rule to the semantics to handle the −4 case.

Rule Neg

If 4 evaluates to =,

then −4 evaluates to −
ℤ
=.

Note that −
ℤ
denotes mathematical negation.

We can express the same thing as an inference rule.

4 ⇒ =

−4 ⇒ −
ℤ
=

Neg

It requires considerable amount of work as we need to fix every component of the language.

Another way to add integer negation to AE is to add it as syntactic sugar. It is enough to modify the concrete

syntax and the parser. The change in the concrete syntax is the same as before. Now, we fix the parser to

parse "-" "(" expr ")" to 0 − 4 when expr is parsed to 4. For example, -(03+4) is parsed to 0 − (3 + 4).
Since 0 −

ℤ
= = −

ℤ
= for any integer =, we are done. It is the power of syntactic sugar. Language designers can

easily add new features by syntactically transforming them to existing features. The procedure removing

syntactic sugar by transformation is called desugaring.

We can find various examples of syntactic sugar in real-world languages. For instance, for loops in Scala are

supported as syntactic sugar.

A for comprehension for (? <- 4) yield 4′ is translated to 4.map { case ? => 4′ }.2

In addition, macros in languages like C, Scala, LISP, and Rust can be considered as user-defined syntactic

sugar.

6.6 Exercises

2 https://www.scala-lang.org/files/archive/spec/2.13/06-expressions.html#for-comprehensions-and-for-loops

https://www.scala-lang.org/files/archive/spec/2.13/06-expressions.html#for-comprehensions-and-for-loops
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Exercise 6.1 Consider the following concrete syntax:

<expr> ::= <num>

| "{" "+" <expr> <expr> "}"

| "{" "*" <expr> <expr> "}"

| "{" "let" "{" <id> <expr> "}" <expr> "}"

| <id>

Describe whether each of the following is expr and why. <id> consists of one or more latin alphabets (a-z,

A-Z), and <num> consists of one or more digits (0-9). Assume that it is allowed to add whitespaces among

terminals freely.

1. {let {x 5} {+ 8 {* x 2 3}}}

2. {with {x 0} {with {x 7}}}

3. {let {3 5} {+ 8 {- x 2}}}

4. {let {3 y} {+ 8 {* x 2}}}

5. {let {x y} {+ 8 {* x 2}}}

Exercise 6.2 Consider the following concrete syntax:

<ice-cream> ::= "sprinkles" "on" <ice-cream>

| "cherry" "on" <ice-cream>

| "scoop" "of" <flavor> "on" <ice-cream>

| "sugar-cone"

| "waffle-cone"

<flavor> ::= "vanilla"

| "lettuce"

Assume that it is allowed to add whitespaces among terminals freely. Describe whether each of the

following is <ice-cream> and why.

1. sprinkles

2. sugar-cone

3. vanilla

4. scoop of vanilla on waffle-cone

5. sprinkles on lettuce on waffle-cone

6. scoop of vanilla on sprinkles on waffle-cone

7. cherry on scoop of lettuce on scoop of vanilla on sugar-cone

Exercise 6.3 Consider the following concrete syntax:
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"espresso" ∈ <coffee>
41 ∈ <milk> 42 ∈ <coffee>

41 "on" 42 ∈ <coffee>

41 ∈ <coffee> 42 ∈ <milk>
41 "on" 42 ∈ <coffee>

41 ∈ <flavor> 42 ∈ <coffee>
41 "on" 42 ∈ <coffee>

"milk-foam" ∈ <milk> "steamed-milk" ∈ <milk>

"caramel" ∈ <flavor> "cinnamon" ∈ <flavor>

"cocoa-powder" ∈ <flavor> "chocolate-syrup" ∈ <flavor>

Assume that it is allowed to add whitespaces among terminals freely. Describe whether each of the

following is <coffee> and why.

1. caramel latte macchiato

2. espresso

3. steamed-milk on caramel on milk-foam on espresso

4. chocolate-syrup on cocoa-powder on cinnamon on milk-foam on steamed-milk on espresso

5. steamed-milk on espresso on chocolate-syrup

6. cocoa-powder on milk-foam on steamed-milk on espresso
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Variables are one of the basic concepts of programming languages. A variable relates a name to a value. We

use the value of a variable by writing the name of the variable. For example, the following Scala program

prints 3.

val x = 3

println(x)

The program defines a variable whose name is x and value is 3. At the second line, the name x denotes the

value 3.

We call the names of variables identifiers. An identifier is a name related to a certain entity in a program. Not

only the names of variables are identifiers; there are various kinds of identifiers:

I Function names, which are related to functions

I Parameter names, which are related to the values of arguments

I Field names, which are related to values of fields

I Method names, which are related to methods

I Class names, which are related to classes

This chapter introduces identifiers. Identifiers in programs can split into three groups: binding occurrences,

bound occurrences, and free identifiers. We will see what they are. This chapter discusses identifiers based on

the use of variables in programs. We will define VAE by extending AE of Chapter 6 with variables. Variables

of VAE are immutable. We will deal with mutable variables in Chapter 12. In VAE, the names of variables are

the only identifiers. However, as you have seen already, real-world programming languages have many kinds

of identifiers.

7.1 Identifiers

Identifiers name entities like variables and functions. Let us discuss notions related to identifiers with the

following Scala program:

f(0)

def f(x: Int): Int = {

val y = 2

x + y

}

f(1)

x - z

In this program, f, x, y, and z are identifiers. Strictly speaking, Int also is an identifier, but we ignore it

because we do not want to take types into account here.

A single identifier can occur multiple times in a program. For instance, f occurs three times in the program:

line 1, line 2, and line 6. We can classify occurrences of identifiers into three categories: binding occurrences,

bound occurrences, and free identifiers.

An occurrence of an identifier is called a binding occurrence if the identifier occurs to be defined. A binding

occurrence relates the identifier to a particular entity. The program has three binding occurrences:
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I f at line 2

It relates f to a function.

I x at line 2

It relates x to the value of an argument given to f.

I y at line 3

It relates y to the value 2.

Every binding occurrence has its own scope. The scope of a binding occurrence means a code region where the

identifier defined by the binding occurrence is alive, i.e. usable. The scope of each identifier in the program is

as follows:

I f

A function can be used in its body (as Scala allows recursive function definitions) and at the lines below

its definition. The scope of f is from line 3 to line 7.

I x

A parameter of a function can be used only in the function body. The scope of x is line 3 and line 4.

I y

A variable can be used at the lines below its definition. The scope of y is line 4.

An occurrence of an identifier is called a bound occurrence if the identifier occurs to use the entity related to

itself. Since an identifier becomes related to an entity by its binding occurrence, any bound occurrences must

reside in the scope of the binding occurrence. The program has three bound occurrences:

I f at line 6

It denotes the function defined at line 2.

I x at line 4

It denotes the value of an argument passed to f.

I y at line 4

It denotes the value 2.

An occurrence of an identifier is called a free identifier if it is neither binding nor bound. A free identifier neither

introduces a new name nor uses a name defined already. It is not in the scope of any binding occurrence of

the same identifier. The program has three free identifiers:

I f at line 1

It is outside the scope of f.

I x at line 7

It is outside the scope of x.

I z at line 7

The program never defines z.

We call a free identifier a free variablewhen it is the name of a variable. Therefore, both x and z at line 7 are

free variables.

Now, consider a binding occurrence that resides in the scope of a binding occurrence of the same identifier.

For example, the following program has two binding occurrences of x, and the second binding occurrence is

in the scope of the first binding occurrence.

def f(x: Int): Int = {

def g(x: Int): Int =

x

g(x)

}

In this case, shadowing happens. Shadowing means that the innermost binding occurrence shadows, i.e.

temporarily invalidates, the outer binding occurrences of the same name. Therefore, x at line 2 shadows x at
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line 1. x at line 3 belongs to the scope of both binding occurrences simultaneously. It denotes the value of an

argument given to g, not f, because of shadowing. On the other hand, x at line 4 denotes the value of an

argument given to f since it belongs to the scope of only x at line 1.

7.2 Syntax

Let us define the abstract syntax of VAE. We do not consider concrete syntax anymore. Therefore, the term

syntax will be used to mean abstract syntax. Also, from now on, we use the term expressions rather than
programs when we discuss languages like VAE. For example, we say that 1 + 2 is an expression of AE, and 1

and 2 are the subexpressions of 1 + 2.

Recall the example at the beginning of the chapter:

val x = 3

println(x)

To add variables to AE, we need two kinds of expressions. The first kind is expressions defining a variable, i.e.

binding an identifier. In the example, val x = 3; println(x) is such an expression. It defines the variable x

and starts the scope of x so that x can be used in println(x). We can conclude that an expression defining a

variable consists of three parts: the name of the variable, an expression determining the value of the variable,

and an expression that can use the variable. These parts are x, 3, and println(x), respectively, in the example.

The second kind is expressions using a variable, i.e. a bound occurrence. In the example, x at the second line

is such an expression. It uses the variable x to denote the value 3. Based on this observation, we can define

the syntax of VAE.

First, we need to add a new syntactic element: identifiers. The metavariable G ranges over identifiers. Let Id
be the set of every identifier.

G ∈ Id

We do not care what Id really is.

The syntax of VAE is as follows:
1

4 ::= · · · | val G=4 in 4 | G

I val G=41 in 42
It defines a new variable whose name is G. Therefore, the occurrence of G is a binding occurrence. 41
decides the value denoted by the variable. The scope of the variable includes 42 but excludes 41.

I G

It uses a variable; it is either a bound occurrence of G or a free identifier. If it belongs to the scope of a

binding occurrence of the same name, then it is a bound occurrence and denotes the value associated

with the identifier. Otherwise, it is a free identifier, which denotes nothing.

7.3 Semantics

To define the semantics of VAE, we need an additional semantic element that stores the values denoted by

variables. Without such an element, we cannot know the value of each variable. We call the element an

environment. An environment is a finite partial function.
2
The metavariable � ranges over environments.

1
We omit the common part to AE.

2
A finite partial function is a partial function whose domain is a finite set.
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Env = Id
fin↦→ ℤ

� ∈ Env

For example, consider an environment �. If �(x) = 1, the value of a variable named x is 1. An environment is

a partial function because it does not have the values related to free identifiers. If a variable named y is free in

�, then �(y) is undefined. In addition, it is finite since every program defines only finitely many identifiers.

Every expression in VAE can evaluate to an integer only under some environment. The reason is obvious:

without environments, there is no way to find the values of variables, and thus environments are essential to

evaluation.

The following rule defines the semantics of G:

Rule Id

If G is in the domain of �,
then G evaluates to �(G) under �.

If G is an element of the domain of �, G is a bound occurrence. The environment gives us the value denoted by

G, which is �(G). Then, the result is �(G). Otherwise, G is not in the domain and is a free identifier. In that case,

we cannot evaluate G. The evaluation terminates immediately. It can be interpreted as a run-time error.

Formally, the semantics of VAE is a ternary relation over Env, �, and ℤ since it must take environments into

account.

⇒⊆ Env × � ×ℤ

(�, 4 , =) ∈⇒ is true if and only if 4 evaluates to = under �. We write � ` 4 ⇒ = instead of (�, 4 , =) ∈⇒.

Intuitively, � and 4 are inputs, and = is the corresponding output.

Rule Id can be formulated as the following inference rule:
3

G ∈ Domain(�)
� ` G ⇒ �(G)

[Id]

When a variable is defined, the value of the variable is added to the environment. We write �[G ↦→ =] to
denote an environment obtained by adding the fact that G denotes = to �. Then, the following property

holds:

�[G ↦→ =](G′) =
{
= if G = G′

�(G′) if G ≠ G′

The following rule defines the semantics of val G=41 in 42:

Rule Val

If 41 evaluates to =1 under �, and 42 evaluates to =2 under �[G ↦→ =1],
then val G=41 in 42 evaluates to =2 under �.

To evaluate val G=41 in 42, we need to determine the value of G first. It can be done by evaluating 41. Since

the scope of G excludes 41, the evaluation proceeds under �, which is a given environment. The result of 41
is the value of G, and this information must be added to the environment. By adding the fact to �, we get

3 Domain(�) denotes the domain of �.
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�[G ↦→ =1]. As 42 is the scope of G, 42 is evaluated under �[G ↦→ =1]. The result of 42 is the final result.

This semantics naturally explains shadowing. Let G already be in the domain of �. Suppose that �(G) = =.
However, 42 is evaluated under �[G ↦→ =1], and �[G ↦→ =1](G) = =1. When G is used in 42, its value is =1, not

=. Therefore, we can say that the innermost definition of G is used for the evaluation of 42. This behavior

exactly matches the concept of shadowing explained before.

Rule Val can be expressed as the following inference rule:

� ` 41 ⇒ =1 �[G ↦→ =1] ` 42 ⇒ =2

� ` val G=41 in 42 ⇒ =2

[Val]

The remaining cases are =, 41 + 42, and 41 − 42. Rules for those cases are basically identical to the rules of AE.
However, we need to additionally take environments into account.

Rule Num

= evaluates to = under �.

Rule Add

If 41 evaluates to =1 under �, and 42 evaluates to =2 under �,
then 41 + 42 evaluates to =1 + =2 under �.

Rule Sub

If 41 evaluates to =1 under �, and 42 evaluates to =2 under �,
then 41 − 42 evaluates to =1 − =2 under �.

Integers, addition, and subtraction never update environments. An integer evaluates to itself. Addition and

subtraction evaluates their subexpressions under the same environment.

We can express the rules in a natural language as the following inference rules:

� ` = ⇒ = [Num]

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

[Add]

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 − 42 ⇒ =1 − =2

[Sub]

The following proof tree proves that val x=1 in x + x evaluates to 2 under the empty environment. Note that

[G1 ↦→ =1 , · · · , G< ↦→ =<] denotes an environment whose domain includes from G1 to G< and each G8 is

mapped to =8 .

∅ ` 1⇒ 1

x ∈ Domain([x ↦→ 1])
[x ↦→ 1] ` x⇒ 1

x ∈ Domain([x ↦→ 1])
[x ↦→ 1] ` x⇒ 1

[x ↦→ 1] ` x + x⇒ 2

∅ ` val x=1 in x + x⇒ 2
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7.4 Interpreter

The following Scala code implements the abstract syntax of VAE:

sealed trait Expr

case class Num(n: Int) extends Expr

case class Add(l: Expr, r: Expr) extends Expr

case class Sub(l: Expr, r: Expr) extends Expr

case class Val(x: String, i: Expr, b: Expr) extends Expr

case class Id(x: String) extends Expr

An identifier is an arbitrary string. Val(G, 41, 42) corresponds to val G=41 in 42; Id(G) corresponds to G.

We use a map to represent an environment. The type of an environment is Map[String, Int].

type Env = Map[String, Int]

We can add a pair of a key and a value to a map with the + operator. For example, where m is Map(1 ->

"one"), m + (2 -> "two") is the same as Map(1 -> "one", 2 -> "two").

def interp(e: Expr, env: Env): Int = e match {

case Num(n) => n

case Add(l, r) => interp(l, env) + interp(r, env)

case Sub(l, r) => interp(l, env) - interp(r, env)

case Val(x, i, b) => interp(b, env + (x -> interp(i, env)))

case Id(x) => env(x)

}

Since the structure of the code is almost identical to the semantics rules, there is nothing much to explain. In

the Id case, when x is a key in env, the corresponding value becomes the result of interp. Otherwise, an

exception is thrown, and the execution terminates without producing any results.

7.5 Exercises

Exercise 7.1 For each of the following expression:

I val x=(val x=3 in 5 − x) in 1 + x
I val x=3 in val y=5 in 1 + x
I val x=3 in val x=5 in 1 + x

1. Draw arrows from each bound occurrence to its binding occurrence.

2. Draw dotted arrows from each shadowing variable to its shadowed variable.

Exercise 7.2 This exercise asks you to implement the shadowing function, which takes a VAE expression as

an argument and returns the set of every identifier that becomes shadowed at least once in the expression.

For example, shadowing(4) equals Set("x")where 4 denotes val x=y in val x=1 in z. The shadowing function
calls the helper function, which tracks the set of every identifier defined already to detect shadowing.

Complete the following implementation:

def shadowing(e: Expr): Set[String] = helper(e, Set())
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def helper(e: Expr, env: Set[String]): Set[String] =

e match {

case Num(n) => ???

case Add(l, r) => ???

case Id(x) => ???

case Val(x, e, b) => ???

}
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A function is one of the most important concepts in programming languages. It is the key feature of functional

languages, as the term functional implies. Even in imperative languages, functions are important and

widely-used. This chapter focuses on first-order functions. First-order functions are functions that cannot take
or return functions. They are much restrictive than first-class functions but still very useful.

Consider the following Scala program:

def twice(x: Int): Int = x + x

println(twice(3) + twice(5))

It defines a function, twice. The function takes one argument and returns twice of the argument. The program

can call the function whenever we want. twice(3) passes 3 as an argument to twice. Its result is 6, which is

twice of 3. Similarly, twice(5) results in 10. Therefore, the program prints 16.

This chapter defines F1VAE by adding first-order functions to VAE. Every function in F1VAE is top-level. It

means that a function definition cannot be a part of an expression.We assume that a F1VAE program is a single

expression that is evaluated under an environment and a list of function definitions. This design prevents us

from exploring interesting topics like closures but enables us to focus on the semantics of function calls. The

next chapter will introduce first-class functions and closures, which make functions more expressive.

8.1 Syntax

We can figure out the components of a function definition from the above example. If we ignore the type

annotations, the definition consists of three parts: twice, x, and x + x. twice is the name of the function; x is

the parameter of the function; x + x is the body of the function. Therefore, we can define the syntax of a

function definition as follows:

3 ::= def G(G)=4

The metavariable 3 ranges over function definitions. Let FunDef denote the set of every function definition. A

function definition def G1(G2)=4 defines a function whose name is G1, parameter is G2, and body is 4. Both G1

and G2 are binding occurrences. The scope of G1 is the entire program; the scope of G2 is 4. In many real-world

languages, a function has zero or more parameters. However, our syntax restricts a function to have one and

only one parameter. We adopt this design to make the semantics simple. Once you understand a function

with a single parameter, you can easily extend the concept to a function with multiple parameters.

Using a function is to call the function. If we never call a function, the function is useless. We need to add a

new kind of expression to the language: the function call expression. The following is the syntax of F1VAE: 1

4 ::= · · · | G(4)

G(4) is the function call expression. It calls a function named G. 4 determines the value of the argument of the

call. Here, G is a bound occurrence. A function call always has only one argument since every function in

F1VAE has only one parameter.

1
We omit the common part to VAE.
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8.2 Semantics

Like that we have introduced environments to store the values of variables, we need a new semantic element

that associates functions with their names. Let us call it a function environment, which is a finite partial

function from identifiers to function definitions.

FEnv = Id
fin↦→ FunDef

Λ ∈ FEnv

The metavariable Λ ranges over function environments.

Evaluation of an expression requires not only an environment but also a function environment to handle

function calls properly. Therefore, the semantics is a relation over Env, FEnv, �, and ℤ.

⇒⊆ Env × FEnv × � ×ℤ

(�,Λ, 4 , =) ∈⇒ is true if and only if 4 evaluates to = under � and Λ. We write �,Λ ` 4 ⇒ = instead of

(�,Λ, 4 , =) ∈⇒.

The following rule describes the semantics of function calls:

Rule Call

If

G is in the domain of Λ,

Λ(G) is def G(G′)=4′,
4 evaluates to =′ under � and Λ, and

4′ evaluates to = under [G′ ↦→ =′] and Λ,
then

G(4) evaluates to = under � and Λ.

To evaluate G(4), we need to evaluate 4 first to decide the value of the argument. Then, we search for a function

from the function environment with a given function name, G. G must be in the domain of the function

environment. Otherwise, G is a free identifier, and a run-time error happens. When G is in the domain, we can

get the corresponding function definition. The function definition gives us the name of the parameter and

the body. Since every function is top-level, the body of each function does not belong to the scope of any local

variables. It can use no more than its own parameter. Thus, the body should be evaluated under [G′ ↦→ =′],
not �[G′ ↦→ =′]. At the same time, since function calls do not affect function environments, the same function

environment is used for the evaluation of the body. The result of the body is the result of the function call.

We can formulate the semantics as the following inference rule:

�,Λ ` 4 ⇒ =′ G ∈ Domain(Λ) Λ(G) = def G(G′)=4′ [G′ ↦→ =′],Λ ` 4′⇒ =

�,Λ ` G(4) ⇒ =
[Call]

The other rules should be revised to consider function environments. No expression modifies a function

environment.

Rule Num

= evaluates to = under � and Λ.

Rule Add

If 41 evaluates to =1 under � and Λ, and 42 evaluates to =2 under � and Λ,
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then 41 + 42 evaluates to =1 + =2 under � and Λ.

Rule Sub

If 41 evaluates to =1 under � and Λ, and 42 evaluates to =2 under � and Λ,

then 41 − 42 evaluates to =1 − =2 under � and Λ.

Rule Val

If 41 evaluates to =1 under � and Λ, and 42 evaluates to =2 under �[G ↦→ =1] and Λ,
then val G=41 in 42 evaluates to =2 under � and Λ.

Rule Id

If G is in the domain of �,
then G evaluates to �(G) under � and Λ.

We can fix the inference rules in a similar way.

�,Λ ` = ⇒ = [Num]

�,Λ ` 41 ⇒ =1 �,Λ ` 42 ⇒ =2

�,Λ ` 41 + 42 ⇒ =1 + =2

[Add]

�,Λ ` 41 ⇒ =1 �,Λ ` 42 ⇒ =2

�,Λ ` 41 − 42 ⇒ =1 − =2

[Sub]

�,Λ ` 41 ⇒ =1 �[G ↦→ =1],Λ ` 42 ⇒ =2

�,Λ ` val G=41 in 42 ⇒ =2

[Val]

G ∈ Domain(�)
�,Λ ` G ⇒ �(G)

[Id]

8.3 Interpreter

The following Scala code expresses the abstract syntax of F1VAE: 2

case class FunDef(f: String, x: String, b: Expr)

sealed trait Expr

...

case class Call(f: String, a: Expr) extends Expr

Just like environments, function environments can be expressed as maps. The type of a function environment

is Map[String, FunDef] as it maps an identifier to a function definition.

type FEnv = Map[String, FunDef]

The following function evaluates a given expression under a given environment and a given function

environment.

2
We omit the common part to VAE.
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def interp(e: Expr, env: Env, fEnv: FEnv): Int = e match {

case Num(n) => n

case Add(l, r) =>

interp(l, env, fEnv) + interp(r, env, fEnv)

case Sub(l, r) =>

interp(l, env, fEnv) - interp(r, env, fEnv)

case Val(x, i, b) =>

interp(b, env + (x -> interp(i, env, fEnv)), fEnv)

case Id(x) => env(x)

case Call(f, a) =>

val FunDef(_, x, e) = fEnv(f)

interp(e, Map(x -> interp(a, env, fEnv)), fEnv)

}

The implementation reflects the semantics exactly. You can easily check its correctness with the case-wise

comparison.

8.4 Scope

The current semantics is called static scope. Static scope allows the scope of a binding occurrence to be

determined statically, i.e. only by looking the code, without executing it. In other words, a function body can

use only variables that have been defined already when the function is defined. For example, consider the

following code:

def f(x)=x + y

Since every function is top-level, while variables are local in F1VAE, y does not belong to the scope of any

binding occurrence of y. No variable can be defined before the function. Therefore, y is a free variable,

and calling the function fmust incur a run-time error. It is true under the current semantics. The current

function call semantics evaluates the body of a function under the environment that has only the value of the

parameter. The environments at function call-sites never affect the environment used for the evaluation of the

body.

The opposite of static scope is dynamic scope, which makes every information in the environment at each

call-site available to the function body. The behavior of a function depends on not only its argument but

also its call-site. An identifier in the body of a function becomes associated with a different entity for each

function call. It implies that the scope of a binding identifier cannot be determined statically; it is determined

at run time, i.e. dynamically.

For example, the following expression evaluates to 3 when we assume the same definition of f as before:

(val y=1 in f(0)) + (val y=2 in f(0))

During the first function call, y in f is bound to the first y and denotes 1. However, during the second function

call, it is bound to the second one and denotes 2. The scope of the first y includes not only f(0), which is

normal, but also the body of f. It is the same for the second y. As you can see, under dynamic scope, the

scope of a binding identifier is not fixed; it becomes extended at run time due to function calls.

To adopt dynamic scope to F1VAE, we need to change the function call semantics as follows:

Rule Call-Dyn
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If

G is in the domain of Λ,

Λ(G) is def G(G′)=4′,
4 evaluates to =′ under � and Λ, and

4′ evaluates to = under �[G′ ↦→ =′] and Λ,
then

G(4) evaluates to = under � and Λ.

It is equivalent to the following inference rule:

�,Λ ` 4 ⇒ =′ G ∈ Domain(Λ) Λ(G) = def G(G′)=4′ �[G′ ↦→ =′],Λ ` 4′⇒ =

�,Λ ` G(4) ⇒ =
[Call-Dyn]

The interpreter can be fixed like below.

case Call(f, a) =>

val FunDef(_, x, e) = fEnv(f)

interp(e, env + (x -> interp(a, env, fEnv)), fEnv)

Dynamic scope prevents programs from being modular. The environment at each call-site affects the behavior

of a function. It hinders programmers from reasoning about the semantics of a function based on the

definition. They need to additionally consider every possible call-site. It implies that different parts of a

program unexpectedly interfere with each other. Therefore, dynamic scope makes programs error-prone.

Because of the harmfulness of dynamic scope, most modern languages adopt static scope.

8.5 Exercises

Exercise 8.1 With the following list of function definitions in F1VAE:

def twice(x)=x + x
def x(y)=y
def f(x)=x + 1

def g(g)=g
Show the results of evaluating the following expressions under the empty environment. When it is an

error, describe which error it is.

1. twice(twice)
2. val x=5 in x(x)
3. g(3)
4. g(f)
5. g(g)



First-Class Functions 9

First-class functions are functions that can be used as values. They are much more expressive than first-order

functions, which are the topic of the previous chapter. This chapter explains the semantics of first-class

functions. We need to introduce the notion of a closure to make first-class functions work properly. We will

see what closures are and why they are necessary.

This chapter defines FVAE by extending VAE with first-class functions. The only way to create a function in

FVAE is to make an anonymous function, which is a function without a name. However, we can add named

functions as syntactic sugar. In addition, we will see that even variable definitions can be considered as

syntactic sugar.

9.1 Syntax

Consider an anonymous function in Scala:

(x: Int) => x + x

If we ignore its type annotation, it consists of two parts: x and x + x. x is the parameter of the function; x

+ x is the body of the function. This observation lets us know that an anonymous function consists of its

parameter and body.

In F1VAE, the syntax of a function call is G(4). To call a function, the name of the function should be given.

However, it is not true in languages with first-class functions. Let us see some function calls in Scala.

def twice(x: Int): Int = x + x

twice(1)

twice(1) is a function call, and it designates a function by its name.

def makeAdder(x: Int): Int => Int =

(y: Int) => x + y

makeAdder(3)(5)

makeAdder is a function that returns a function. makeAdder(3) is a function call, and its result is a function.

Therefore, we can call the resulting function again. makeAdder(3)(5) is an expression that calls makeAdder(3).

It designates a function by an expression, rather than just a name. We can conclude that the syntax of a

function call in FVAE should be more general than F1VAE because of the presence of first-class functions.

In FVAE, a function call consists of two expressions: one determines the function to be called and the other

determines the value of the argument.

We have used the term function call so far. In the context of functional programming, we use the term function
application more frequently. When we see f(1), we say “f is applied to 1” instead of “f is called with the

argument 1.” Applications sound more natural than calls especially when we are talking about first-class

functions. For example, we usually say “makeAdder(3) is applied to 5” rather than “makeAdder(3) is called

with the argument 5.”

From the above observation on anonymous functions and function applications, we can define the syntax of

FVAE. The following is the syntax of FVAE: 1

1
We omit the common part to VAE.
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4 ::= · · · | �G.4 | 4 4

I �G.4
It is called an anonymous function or a lambda abstraction. It denotes a function whose parameter is G

and body is 4. G is a binding occurrence, and its scope is 4. A function has zero or more parameters in

many real-world languages, but we restrict a function in FVAE to have one and only one parameter for

simplicity as before.

I 41 42
It is a function application, or just an application in short. 41 denotes the function; 42 denotes the

argument.

This book follows the following conventions on the notation of lambda abstractions and function applica-

tions:

I The body of a lambda abstraction extends as far right as possible. For example, �x.x + x is �x.(x + x),
not (�x.x) + x.

I Function applications are left-associative. For example, f 1 2 is (f 1) 2, not f (1 2).

9.2 Semantics

Integers are the only values in VAE. It is not true in FVAE. Since first-class functions are values, a value of FVAE
is either an integer or a function. Thus, we define a new kind of semantic element, value. The metavariable E

ranges over values. Also, let + be the set of every value.

E ::= = | 〈�G.4 , �〉

A value is either an integer or a closure. A closure, which is a function as a value, has the form 〈�G.4 , �〉. It is a
pair of a lambda abstraction and an environment. A lambda abstraction in a closure may have free identifiers,

but the environment of the closure can store the values denoted by the free identifiers.

To discuss the necessity of closures, consider the following expression:

(�x.�y.x + y) 1 2

It is equivalent to ((x: Int) => (y: Int) => x + y)(1)(2) in Scala. The function �x.�y.x + y does not

have any free identifiers. The scope of x is �y.x + y; the scope of y is x + y. Therefore, both x and y in x + y
are bound occurrences. The whole expression must result in 3, which equals 1 + 2, without a run-time error.

You can check it by running the equivalent Scala program.

If we consider a function value as just a lambda abstraction, not a closure, evaluation of the above expression

becomes problematic. When the expression is evaluated, �x.�y.x + y is applied to 1 first. The result is a

function value, which is a lambda abstraction: �y.x + y. Next, �y.x + y is applied to 2. The result of the

application can be computed by evaluating x+y under the environment containing that y denotes 2. However,

there is no way to find the value of x. x has become free identifier although it was not in the beginning.

We adopt the notion of a closure to resolve the problem. When a lambda expression evaluates to a function

value, which is a closure, it captures the environment. Since �y.x + y is evaluated under the environment

containing that x denotes 1, its result is 〈�y.x + y, [x ↦→ 1]〉. The captured environment of the closure records

that x is not a free identifier and denotes 1. When the closure is applied to 2, its body x + y is evaluated under

[x ↦→ 1, y ↦→ 2], not [y ↦→ 2]. The addition successfully results in 3.

In summary, we need closures to retain the static scope semantics. A first-class function can be passed as a

value and thus applied to an argument at a different place from where it has been defined. However, the
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environments used for the evaluation of their bodies must be determined statically. In other words, the

denotation of identifiers in the bodies of functions must be determined when the functions are defined, not

used. Therefore, each closure captures the surrounding environment when it is created.

Now, let us define the semantics of FVAE. Most things are the same as the semantics of VAE, but we should be

aware of that values now include not only integers but also closures.

An environment is a finite partial function from identifiers to values.

Env = Id
fin↦→ +

The semantics of FVAE is a ternary relation over Env, �, and + .

⇒⊆ Env × � ×+

� ` 4 ⇒ E is true if and only if 4 evaluates to E under �.

A lambda abstraction creates a closure containing the current environment.

Rule Fun

�G.4 evaluates to 〈�G.4 , �〉 under �.

� ` �G.4 ⇒ 〈�G.4 , �〉 [Fun]

A function application evaluates its both subexpressions. Then, it evaluates the body of the closure under the

environment obtained by adding the value of the argument to the environment of the closure.

Rule App

If

41 evaluates to 〈�G.4 , �′〉 under �,
42 evaluates to E

′
under �, and

4 evaluates to E under �′[G ↦→ E′],
then

41 42 evaluates to E under �.

� ` 41 ⇒ 〈�G.4 , �′〉 � ` 42 ⇒ E′ �′[G ↦→ E′] ` 4 ⇒ E

� ` 41 42 ⇒ E
[App]

We can reuse Rule Num, Rule Add, Rule Sub, and Rule Id of VAE. However, it is important to note that FVAE
has more cases that evaluation can fail than VAE. For example, consider Rule Add.

Rule Add

If 41 evaluates to =1 under �, and 42 evaluates to =2 under �,
then 41 + 42 evaluates to =1 + =2 under �.

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

[Add]

The rule assumes the results of 41 and 42 to be integers. If the assumption is violated, a run-time error happens.

For example, (�x.x) + 1 incurs a run-time error because the left operand is a closure, not an integer.

We need to revise Rule Val of VAE a bit. Since every value is an integer in VAE, a variable of VAE can denote

only an integer. In FVAE, a variable should be able to denote a general value, not only an integer.



9 First-Class Functions 88

Rule Val

If 41 evaluates to E1 under �, and 42 evaluates to E2 under �[G ↦→ E1],
then val G=41 in 42 evaluates to E2 under �.

� ` 41 ⇒ E1 �[G ↦→ E1] ` 42 ⇒ E2

� ` val G=41 in 42 ⇒ E2

[Val]

Now, a variable can denote a value, not only an integer.

The following proof trees prove that (�x.�y.x+ y) 1 2 evaluates to 3 under the empty environment. The proof

splits into three trees for readability. Suppose that �1 = [x ↦→ 1] and �2 = [x ↦→ 1, y ↦→ 2].

∅ ` �x.�y.x + y⇒ 〈�x.�y.x + y, ∅〉 ∅ ` 1⇒ 1 �1 ` �y.x + y⇒ 〈�y.x + y, �1〉
∅ ` (�x.�y.x + y) 1⇒ 〈�y.x + y, �1〉

x ∈ Domain(�2)
�2 ` x⇒ 1

y ∈ Domain(�2)
�2 ` y⇒ 2

�2 ` x + y⇒ 3

∅ ` (�x.�y.x + y) 1⇒ 〈�y.x + y, �1〉 ∅ ` 2⇒ 2 �2 ` x + y⇒ 3

∅ ` (�x.�y.x + y) 1 2⇒ 3

9.3 Interpreter

The following Scala code implements the syntax of FVAE: 2

sealed trait Expr

...

case class Fun(x: String, b: Expr) extends Expr

case class App(f: Expr, a: Expr) extends Expr

Fun(G, 4) represents �G.4; App(41, 42) represents 41 42.

A value of FVAE is either an integer or a closure. Thus, we represent a value as an ADT.

sealed trait Value

case class NumV(n: Int) extends Value

case class CloV(p: String, b: Expr, e: Env) extends Value

NumV(=) represents =; CloV(G, 4, �) represents 〈�G.4 , �〉.

An environment is a finite partial function from identifiers to values. Therefore, the type of an environment is

Map[String, Value].

type Env = Map[String, Value]

The following function evaluates a given expression under a given environment:

def interp(e: Expr, env: Env): Value = e match {

2
We omit the common part to VAE.



9 First-Class Functions 89

case Num(n) => NumV(n)

case Add(l, r) =>

val NumV(n) = interp(l, env)

val NumV(m) = interp(r, env)

NumV(n + m)

case Sub(l, r) =>

val NumV(n) = interp(l, env)

val NumV(m) = interp(r, env)

NumV(n - m)

case Id(x) => env(x)

case Fun(x, b) => CloV(x, b, env)

case App(f, a) =>

val CloV(x, b, fEnv) = interp(f, env)

interp(b, fEnv + (x -> interp(a, env)))

}

In the Num case, the return value is NumV(n), not n, since the function must return a value of the type Value.

In the Add and Sub cases, we cannot assume that the operands are integers any longer. We use pattern

matching to discriminate integers from closures. If both operands are integers, addition or subtraction

succeeds. Otherwise, at least one of them is a closure, and the interpreter crashes due to a pattern matching

failure. Note that this code is equivalent to the following code:

case Add(l, r) =>

interp(l, env) match {

case NumV(n) => interp(r, env) match {

case NumV(m) => NumV(n + m)

case _ => error("not an integer")

}

case _ => error("not an integer")

}

Similarly, in the App case, we use pattern matching to discriminate closures from integers. The first expression

of Appmust yield a closure, not an integer, to make the execution succeed.

9.4 Syntactic Sugar

We can add named local functions to FVAE with the following change in the syntax:

4 ::= · · · | def G(G)=4 in 4

def G1(G2)=41 in 42 defines a function whose name is G1, parameter is G2, and body is 41. The scope of G1 is 42,

and thus the function does not allow recursion.

Instead of changing the semantics, FVAE can provide named local functions as syntactic sugar. Let B be

a string transformed into def G1(G2)=41 in 42 by the parser of FVAE with named local functions embedded

in the semantics. To treat named local functions as syntactic sugar, the parser should transform B into

val G1=�G2.41 in 42.

Variable definitions can be considered as syntactic sugar aswell. Let B be a string transformed into val G=41 in 42.
To make variable definitions syntactic sugar, the parser can transform B into (�G.42) 41. The evaluation of

(�G.42) 41 evaluates 41 first. Then, 42 is evaluated under the environment that G denotes the result of 41. This
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semantics is exactly the same as that of val G=41 in 42. Therefore, we can say that variable definitions are just

syntactic sugar in FVAE.

Hereafter, we remove variable definitions from FVAE and call the language FAE. However, we may still use

variable definitions in examples. It is completely fine because they are considered as syntactic sugar.

Furthermore, we can treat even integers, addition, and subtraction as syntactic sugar. The only things we

need are variables, lambda abstractions, and function applications. We can write any programs with these

three kinds of expressions. The lambda calculus is a language that provides only the three features. This book

does not discuss how integers, addition, and subtraction can be desugared into the lambda calculus.

9.5 Exercises

Exercise 9.1 Consider the following expression:

val x=5 in
val f=�y.y + x in
(�g.f (g 1)) (�x.x)
Write the arguments to interp each time it is called during the evaluation of the expression. Write them in

the order in which the calls to interp occur during evaluation. For Num, Id, and Fun expressions, show

their result values as well.

Exercise 9.2 This exercise examines differences between semantics by changing scope. Consider the

following code:

def interp(e: Expr, env: Env): Value = e match {

...

case App(f, a) =>

val CloV(x, b, fEnv) = interp(f, env)

interp(b, ??? + (x -> interp(a, env)))

}

Describe the semantics of the App case in prose when we use each of the following for ???.

1. env

2. Map()

3. fEnv

Exercise 9.3 Rewrite the following FVAE expression to an FAE expression by desugaring val:

val x=�y.8 + y in �y.x (10 − y)

Exercise 9.4 This exercise asks you to implement the desugar function, which takes an FVAE expression as

an argument and returns an FAE by desugaring val.

Complete the following implementation:

def desugar(e: Expr): Expr = e match {

case Num(n) => ???

case Id(x) => ???

case Val(x, e, b) => ???



9 First-Class Functions 91

case Fun(x, b) => ???

case App(f, a) => ???

}

Exercise 9.5 We can extend FVAE with pairs:

case class Pair(f: Expr, s: Expr) extends Expr

case class Fst(e: Expr) extends Expr

case class Snd(e: Expr) extends Expr

This exercise asks you to implement the desugar function, which takes an expression and returns an

expression that lacks Pair, Fst, and Snd but has the same behavior as the given expression. Precisely

speaking, desugar satisfies the following:

I If e evaluates to an integer, desugar(e) evaluates to the same integer.

I If e evaluates to a function, desugar(e) evaluates to a function.

I If e evaluates to a pair, desugar(e) evaluates to a function.

I If e does not terminate, desugar(e) does not terminate.

I If e incurs a run-time error, desugar(e) can have any behavior.

Complete the following implementation:

def desugar(e: Expr): Expr = e match {

case Num(n) => Num(n)

case Id(x) => Id(x)

case Fun(x, b) => Fun(x, desugar(b))

case App(f, a) => App(desugar(f), desugar(a))

case Fst(e) => App(desugar(e), Fun("x", Fun("y", Id("x"))))

case Snd(e) => App(desugar(e), Fun("x", Fun("y", Id("y"))))

case Pair(f, s) => ???

}

Exercise 9.6 Consider the following semantics without closures:

E ::= = | �G.4 � ` �G.4 ⇒ �G.4

� ` 41 ⇒ �G.4 � ` 42 ⇒ E2 [G ↦→ E2] ` 4 ⇒ E

� ` 41 42 ⇒ E

1. Explain why the above semantics, which lacks closures, is problematic.

2. Write an FVAE expression such that

I the evaluation in the original semantics with closures results in an integer, but

I the evaluation in the above semantics without closures incurs a run-time error.

Exercise 9.7 Suppose that we say that an expression 4 terminates properly if and only if ∅ ` 4 ⇒ E for

some E. Write an FVAE expression 4 such that only one of 4 and �x.4 x terminates properly.

Exercise 9.8 Write an FVAE expression that has a free identifier but evaluates to a value without incurring

any run-time errors.
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Exercise 9.9 This exercise extends FVAE with pairs. Consider the following language:

4 ::= · · · | (4 , 4) | 4.1 | 4.2
E ::= · · · | (E, E)

The semantics is as follows:

I The evaluation of (41 , 42) yields (E1 , E2), where 48 evaluates to E8 .

I The evaluation of 4.1 yields the first value of a pair E, where 4 evalutes to E.

I The evaluation of 4.2 yields the second value of a pair E, where 4 evalutes to E.

1. Write the operational semantics of the form � ` 4 ⇒ E .

2. Write the evaluation derivation of (8, (320, 42).1).2.

Exercise 9.10 This exercise extends FVAE with records. A record is a value that maps labels to values.

Consider the following language:

4 ::= · · · | {; : 4 , · · · , ; : 4} | 4.;
E ::= · · · | 〈; : E, · · · , ; : E〉

where ; ranges over labels.

The semantics is as follows:

I The evaluation of {;1 : 41 , · · · , ;= : 4=} yields 〈;1 : E1 , · · · , ;= : E=〉, where 48 evaluates to E8 .

I The evaluation of 4.; yields the value of a field ; in a record E, where 4 evaluates to E.

Write the operational semantics of the form � ` 4 ⇒ E .

Exercise 9.11 This exercise extends FVAEwith JavaScript-like sequencing.
a
Consider the following language:

4 ::= · · · | () | 4; · · · ; 4
E ::= · · · | ()

The semantics is as follows:

I The value of () is ().
I The value of 41; · · · ; 4= is () if every 48 evaluates to ().
I The value of 41; · · · ; 4= is the value of the last expression whose value is not () if there is such an

expression.

Write the operational semantics of the form � ` 4 ⇒ E .

a https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation

Exercise 9.12 This exercise modifies FVAE to check body expressions when evaluating function expressions.

Consider we extend the value of FVAE to include a special value ↑ to represent an error during function

body checking. Write the operational semantics of the form � ` 4 ⇒ E for a function expression �G.4,
when its semantics changes as follows:

I If every free identifier of 4 is in the domain of � or is G, then evaluation of �G.4 under � yields a

closure containing the function expression and the environment.

I Otherwise, evaluation of �G.4 under � yields ↑.

You may use the semantic function fv, which takes an expression and returns the set of every free identifier

in the expression. For example, fv(�x.y x) = {y}.

https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
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Exercise 9.13 This exercise extends FVAE to support multiple parameters. Consider the following language:

4 ::= · · · | �G · · · G.4 | 4(4 , · · · , 4)
E ::= · · · | 〈�G · · · G.4 , �〉

The semantics of some constructs are as follows:

I Evaluating �G1 · · · G= .4 under � yields a closure 〈�G1 · · · G= .4 , �〉.
I If

• evaluating 40 under � yields a closure 〈�G1 · · · G= .4 , �′〉,
• evaluating 48 under � yields E8 for each 1 ≤ 8 ≤ =, and
• evaluating 4 under �′[G1 ↦→ E1 , · · · , G= ↦→ E=] yields E,

then evaluating 40(41 , · · · , 4=) under � yields E.

1. Write the operational semantics of the form � ` 4 ⇒ E for the expressions.

2. Write the evaluation derivation of (�f m.f(m))(�x.x, 8).

Exercise 9.14 Consider the following language:

4 ::= = | G | �G · · · G.4 | 4(4 , · · · , 4) | get 4
E ::= = | undefined | 〈�G · · · G.4 , �〉

The semantics of some constructs are as follows:

I The value of a function expression �G1 · · · G= .4 at an environment � is a closure 〈�G1 · · · G= .4 , �〉.
I A function application 40(41 , · · · , 4=) is evaluated as follows:

• Evaluate the subexpressions in order. The value of 40 should be a closure 〈�G1 · · · G< .4 , �〉 that
has < parameters.

• Create an array  of size = and initialize the 8-th value of the array with the value of 48+1 where

0 ≤ 8 ≤ = − 1.

• Evaluate the closure body 4 under the environment � extended as follows:

∗ The value of the 8-th parameter is the value of 48 where 1 ≤ 8 ≤ min (<, =).
∗ The value of the 9-th parameter is the undefined value where = < 9 ≤ <.

and the array .

I The value of get 4 is the =-th value of the array  where = is the value of 4 and the array indices start

from 0.

For example, (�x y.y)(4) evaluates to undefined, and (�x.get 0)(5) evaluate to 5.

1. Write the operational semantics of the form �,  ` 4 ⇒ E .

2. Write the evaluation derivation of (�x y.get x)(2, 19, 141).

Exercise 9.15 This exercise replaces the environment-based semantics of FVAE with substitution-based

semantics. Consider the following implementation:

trait Expr

trait Value extends Expr

case class Num(n: Int) extends Expr with Value

case class Id(x: String) extends Expr

case class Fun(x: String, b: Expr) extends Expr with Value

case class App(f: Expr, a: Expr) extends Expr
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def subst(e: Expr, x: String, v: Expr): Expr = e match {

case Num(n) => e

case Id(name) =>

if (name == x) v else e

case Fun(y, b) =>

Fun(y, if (y == x) b else subst(b, x, v))

case App(f, a) =>

App(subst(f, x, v), subst(a, x, v))

}

def interp(e: Expr): Value = e match {

case Num(n) => Num(n)

case Id(x) => error("free identifier")

case Fun(x, b) => Fun(x, b)

case App(f, a) =>

val Fun(x, b) = interp(f)

interp(subst(b, x, interp(a)))

}

In this implementation, a value is either an integer or a lambda abstraction:

E ::= = | �G.4

1. Write the operational semantics of the above implementation of the form 4 ⇒ E where 4[G/E]
denotes subst(4, G, E).

2. Write the definition of the substitution 4[G/E] of the form 4[G/E] = 4 :

3. Consider the following expression:

(�f.�x.f 0) (�y.x) 0

a) What is the result of evaluating the expression under the empty environment in substitution-

based FVAE?
b) What is the result of evaluating the expression under the empty environment in environment-

based FVAE?
c) Why are the results different?

4. Fix the Fun case of the funtion subst in the implementation to make substitution-based FVAE
equivalent to environment-based FVAE. You may use the following helper functions without defining

them:

// returns the set of every binding identifier in e

def binding(e: Expr): Set[String]

// returns the set of every free identifier in e

def free(e: Expr): Set[String]

// returns a new identifier that does not belong to xs

def fresh(xs: Set[String]): String

Exercise 9.16 This exercise extends FVAE with JavaScript-like records, field accesses, and method calls:

4 ::= · · · | {; : 4 , · · · , ; : 4} | 4.; | 4.;(4) | E
E ::= · · · | 〈; : E, · · · , ; : E〉 | undefined
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; ranges over labels, which are the names of fields in records. Let Label be the set of every label. Note that

this ∈ Id and proto ∈ Label.

For ease of formalizing operational semantics, we treat a value E as one sort of an expression. For example,

for a value E and a label ;, both E and E.; are expressions. The operational semantics of E is as follows:

� ` E ⇒ E

1. The following sentences describe the operational semantics:

I {;1 : 41 , · · · , ;= : 4=}
Let E8 be the results of 48 . The result is 〈;1 : E1 , · · · , ;= : E=〉.

I 4.;

Let E be the result of 4. The value E must be a record value.

• If E contains a field named ;, the result is the value of the field.

• If E does not contain a field named ; but does contain a field named proto, the result is the

result of Eproto.;, where Eproto is the value of the field named proto.

• If E does not contain a field named either ; or proto, the result is undefined.
I 41.;(42)

Let E1 be the result of 41. The result of E1.; must be a closure. Let 〈�G.4 , �〉 be the result of E1.;.

Let E2 be the result of 42. Let �′ be the new environment made by adding a mapping from this

to E1 and a mapping from G to E2 to �. Let E be the result of 4 under �′. The result is E.

Write the operational semantics of {;1 : 41 , · · · , ;= : 4=}, 4.;, and 41.;(42) of the form � ` 4 ⇒ E .

2. Draw the evaluation derivation of {proto : {x : 1}}.x under the empty environment.

3. When {a : 0, b : 4}.b(1) evaluates to a value without a run-time error, does the function application

(4 1) always yield the same result? If so, explain why. Otherwise, write a counterexample, i.e. write 4

such that {a : 0, b : 4}.b(1) evaluates to a value E, while (4 1) does not evaluate to that E.

Exercise 9.17 This exercise extends FVAE with exceptions.

Expression 4 ::= · · · | throw | try 4 catch 4
Result A ::= E | exc

Due to the presence of exceptions, an expression can throw an exception instead of evaluating to a value.

� ` 4 ⇒ E denotes that 4 evaluates to E under �, and � ` 4 ⇒ exc denotes that 4 throws an exception

under �.

Note that errors are different from exceptions. Errors are unintended failures of evaluation, which cannot

be handled. For example, adding an interger to a closure causes an error and terminates the execution

immediately. However, exceptions are thrown by throw written by programmers and can be handled by

try-catch. Therefore, exceptions are thrown and handled according to the intention of programmers.

The semantics of the language is as follows:

I throw throws an exception.

I Any expressions except try-catch propagate exceptions, i.e. if a subexpression of 4 that is not try-
catch throws an exception, then 4 also throws an exception without evaluating the remaining

subexpressions. This language uses the left-to-right order for evaluating subexpressions.

I During the evaluation of each expression, dynamic type checking of the values of the subexpressions

happens only after evaluating all the subexpressions. For example, in 41 + 42, when 41 evaluates to

E1, it is checked whether E1 is an integer or not after the evaluation of 42.

I try 41 catch 42 handles an exception. If 41 throws an exception, try 41 catch 42 evaluates 42 and uses

the result of 42 as its result. If 41 does not throw an exception, the result of 41 is used as the result

without evaluating 42.

Below are some examples:
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I ∅ ` throw⇒ exc
I ∅ ` throw + 1⇒ exc
I ∅ ` (�x.x) + throw⇒ exc
I ∅ ` throw + ((�x.(x x)) (�x.(x x))) ⇒ exc
I ((�x.(x x)) (�x.(x x))) + throw does not terminate.

I ∅ ` try 1 catch 2⇒ 1

I ∅ ` try throw catch 2⇒ 2

1. Write the operational semantics of the form � ` 4 ⇒ A .

2. Draw the evaluation derivation of try (1 + throw) catch (throw + 2).
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Recursive functions are widely used in programming. We have discussed importance of recursion in Section

3.2. This chapter explains the semantics of recursive functions by defining RFAE, which extends FAE with

recursive functions. In addition, we will see that recursive functions also are just syntactic sugar: we can

express recursive functions with first-class functions.

Consider the following Scala program:

def sum(x: Int): Int =

if (x == 0)

0

else

x + sum(x - 1)

println(sum(10))

The function sum takes an integer n as an argument, and returns the sum of the integers between 0 to n

(including n). 1 Therefore, the program prints 55.

How can we implement an equivalent program in FAE? One naïve approach could be the following

expression:
2

val sum=�x.if0 x 0 (x + sum (x − 1)) in sum 10

However, it is wrong since the scope of sum includes sum 10 but excludes �x.if0 x 0 (x + sum (x − 1)). sum in

the body of the function is a free identifier. Evaluation of the expression termiantes with a run-time error. It

is nontrivial to define recursive functions in FAE.

10.1 Syntax

We define RFAE by extending FAE with recursive functions. To demonstrate the usefulness of recursion with

examples, we add conditional expressions as well.

The following is the abstract syntax of RFAE: 3

4 ::= · · · | if0 4 4 4 | def G(G)=4 in 4

I if0 41 42 43
It is a conditional expression. 41 is the condition; 42 is the true branch; 43 is the false branch. We consider

the condition to be true when it denotes 0. All the other values, i.e. nonzero integers and closures, are

considered as false.

I def G1(G2)=41 in 42
It defines a recursive function whose name is G1, parameter is G2, and body is 41. Both G1 and G2 are

binding occurrences. The scope of G1 is 41 and 42; the scope of G2 is 41. If G1 occurs in 41, it is a bound

occurrence, which implies that the function can be recursive.

In RFAE, we can implement a function computing the sum of consecutive integers like below.

1
We ignore the case when the input is negative.

2 FAE does not provide conditional expressions (if0), which is defined by RFAE, but we use it since we can easily add them to FAE.
3
We omit the common part to FAE.



10 Recursion 98

def sum(x)=if0 x 0 (x + sum (x − 1)) in sum 10

10.2 Semantics

The semantics of conditional expressions is quite easy. The semantics consists of two rules: one for when the

condition is true and the other for when the condition is false.

The following rule defines the semantics when the condition is true:

Rule If0-Z

If 41 evaluates to 0 under � and 42 evaluates to E under �,
then if0 41 42 43 evaluates to E under �.

� ` 41 ⇒ 0 � ` 42 ⇒ E

� ` if0 41 42 43 ⇒ E
[If0-Z]

When 41 evaluates to 0, the condition is considered as true, and the true branch, 42, is evaluated. The result of

42 is the result of the whole expression.

The following rule defines the semantics when the condition is false:

Rule If0-Nz

If 41 evaluates to E
′
under �, where E′ ≠ 0, and 43 evaluates to E under �,

then if0 41 42 43 evaluates to E under �.

� ` 41 ⇒ E′ E′ ≠ 0 � ` 43 ⇒ E

� ` if0 41 42 43 ⇒ E
[If0-Nz]

When 41 evaluates to a value other than 0, the condition is considered as false, and the false branch, 43, is

evaluated. The result of 43 is the result of the whole expression.

Now, let us discuss the semantics of recursive functions. Consider def G1(G2)=41 in 42. 42 is in the scope of G1,

and G1 denotes a function. Therefore, we can start by defining �′ = �[G1 ↦→ 〈�G2.41 , �〉] and evaluating 42
under �′. However, this approach is incorrect. When the body of the closure, 41, is evaluated, the environment

is �[G2 ↦→ E] for some E. The environment does not contain G1, and therefore using G1 in 41 will incur a free

identifier error, which is certainly wrong since G1 is a recursive function. The environment of the closure must

include G1 and its value, which is the closure itself. From this observation, we obtain the following rule:

Rule Rec

If 42 evaluates to E under �′, where �′ = �[G1 ↦→ 〈�G2.41 , �′〉],
then def G1(G2)=41 in 42 evaluates to E under �.

�′ = �[G1 ↦→ 〈�G2.41 , �
′〉] �′ ` 42 ⇒ E

� ` def G1(G2)=41 in 42 ⇒ E
[Rec]

The environment of the closure is �′, which has G1 and the closure. �′ is recursively defined at the meta-level.

It is not that surprising. We are defining a recursive function, so the defined function value itself should be

recursive. When the body of the closure, 41, is evaluated, the environment is �′[G2 ↦→ E] for some E, which

contains G1. The function G1 can be used in its body and thus recursive.

We can reuse the rules of FAE for the other expressions.
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The following proof trees prove that def f(x)=if0 x 0 (x + f (x − 1)) in f 1 evaluates to 1 under the empty

environment. The proof splits into three trees for readability. Suppose the following facts:

4f = if0 x 0 (x + f (x − 1))
Ef = 〈�x.4f , �1〉
�1 = [f ↦→ Ef]
�2 = �1[x ↦→ 1]
�3 = �1[x ↦→ 0]

f ∈ Domain(�2)
�2 ` f⇒ Ef

x ∈ Domain(�2)
�2 ` x⇒ 1

�2 ` 1⇒ 1

�2 ` x − 1⇒ 0

x ∈ Domain(�3)
�3 ` x⇒ 0

�3 ` 0⇒ 0

�3 ` 4f ⇒ 0

�2 ` f (x − 1) ⇒ 0

f ∈ Domain(�1)
�1 ` f⇒ E 5

�1 ` 1⇒ 1

x ∈ Domain(�2)
�2 ` x⇒ 1

1 ≠ 0

x ∈ Domain(�2)
�2 ` x⇒ 1

�2 ` f (x − 1) ⇒ 0

�2 ` x + f (x − 1) ⇒ 1

�2 ` 4f ⇒ 1

�1 ` f 1⇒ 1

�1 = [f ↦→ Ef] �1 ` f 1⇒ 1

∅ ` def f(x)=4f in f 1⇒ 1

10.3 Interpreter

The following Scala code implements the syntax of RFAE: 4

sealed trait Expr

...

case class If0(c: Expr, t: Expr, f: Expr) extends Expr

case class Rec(f: String, x: String, b: Expr, e: Expr) extends Expr

If0(41, 42, 43) represents if0 41 42 43; Rec(G1, G2, 41, 42) represents def G1(G2)=41 in 42.

sealed trait Value

case class NumV(n: Int) extends Value

case class CloV(p: String, b: Expr, var e: Env) extends Value

Values are defined in a similar way to FAE. The only difference is that the field e, which denotes the captured

environment, of CloV is now mutable. Using mutation is the easiest way to make recursive values in Scala,

though we can do it without mutation.

def interp(e: Expr, env: Env): Value = e match {

...

case If0(c, t, f) =>

interp(if (interp(c, env) == NumV(0)) t else f, env)

case Rec(f, x, b, e) =>

val cloV = CloV(x, b, env)

val nenv = env + (f -> cloV)

4
We omit the common part to FAE.



10 Recursion 100

cloV.e = nenv

interp(e, nenv)

}

In the If0 case, the condition is evaluated first. According to the condition, one of the branches is evaluated.

In the Rec case, we construct a closure first. However, the closure is not complete at this point. We next create

a new environment: the environment with the closure. The closure must capture the new environment. To

achieve this, we change the environment of the closure to the new environment. Now, both closure and

environment have recursive structures, and e can be evaluated under the environment.

10.4 Recursion as Syntactic Sugar

Even if a language does not support recursive functions, we can implement recursive functions with first-class

functions, i.e. we can implement recursive functions in FAE. The key to desugar recursive functions into FAE
is the following function:

/ = �f.(�x.f (�v.x x v)) (�x.f (�v.x x v))

/ is called a fixed point combinator. In mathematics, a fixed point of a function 5 is a solution of the equation

5 (G) = G. A fixed point combinator is a function that computes a fixed point of a given function. A recursive

function can be considered as a fixed point of a certain function. For example, consider the following

function:

�f.�v.if0 v 0 (v + f (v − 1))

Let us call the function 5 . Suppose that sum is given to the function as an argument, where sum is a function

that takes a natural number = as an argument and returns

∑=
8=0
8. Then, the return value of 5 is

�v.if0 v 0 (v + sum (v − 1))

It is a function again. When 0 is given to the function, the result is 0. When a positive integer = is given to the

function, the result is = + sum (= − 1), which equals sum =. Therefore, 5 sum equals sum, and we can say that

sum is a fixed point of 5 .

The fixed point combinator / takes a function as an argument and returns a fixed point of the function.

Therefore, / 5 equals sum. Let us see the reason. We use 4 5 as an abbreviation of if0 v 0 (v + f (v − 1)). Then,
/ 5 is the same as

/ (�f.�v.4 5 )

It evaluates to � � where � denotes

�x.(�f.�v.4 5 ) (�v.x x v)

By expanding only the first � in � �, we get

(�x.(�f.�v.4 5 ) (�v.x x v)) �

which evaluates to

(�f.�v.4 5 ) (�v.� � v)

By expanding 4 5 , we get

(�f.�v.if0 v 0 (v + f (v − 1))) (�v.� � v)
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which evaluates to

�v.if0 v 0 (v + (�v.� � v) (v − 1))

Let us call this function 6. Note that we now know that � � evaluates to 6. If we apply 6 to 0, the result is 0. If

we apply 6 to a positive integer =, the result is

= + (�v.� � v) (= − 1)

which evaluates to

= + � � (= − 1)

Since � � evaluates to 6, the above expression evaluates to

= + 6 (= − 1)

Then, the semantics of 6 is

6 = =

{
0 if = = 0

= + 6 (= − 1) otherwise

It implies that 6 equals sum. Actually, this evaluation has started from / 5 . Therefore, / 5 equals sum.

One may ask if we can use the following expression /′ instead of /:

/′ = �f.(�x.f (x x)) (�x.f (x x))

It is a natural question because x x does the same thing as �v.x x vwhen applied to an argument. However,

the answer is no. Eta-expanding x x to �v.x x v has the effect of delaying computation on x x. While x x

should be immediately evaluated, x x in �v.x x v can be evaluated only when the function is applied to an

argument. This delaying effect is necessary in /. Suppose that we use /′. Then, /′ 5 evaluates to �′ �′ where

�′ denotes
�x.(�f.�v.4 5 ) (x x)

By expanding only the first �′, we get

(�x.(�f.�v.4 5 ) (x x)) �′

which evaluates to

(�f.�v.4 5 ) (�′ �′)

To evaluate this expression, we need to evaluate the argument. However, the argument is �′ �′, which

implies that we need the value of �′ �′ to compute the value of �′ �′. Thus, at this point, the execution starts

to evaluate �′ �′ forever and never terminates. For this reason, we should use /, not /′, as a fixed point

combinator.

Finally, we can define the syntactic transformation rule to desugar recursive functions: def G1(G2)=41 in 42 is
transformed into val G1=/ (�G1.�G2.41) in 42. If G1 in def G1(G2)=41 in 42 denotes a function ℎ, ℎ is a fixed point

of �G1.�G2.41. Therefore, / (�G1.�G2.41) is equal to ℎ. Both def G1(G2)=41 in 42 and val G1=/ (�G1.�G2.41) in 42
evaluate 42 under the environment that G1 denotes ℎ. Therefore, they have the same semantics, and the

desugaring is correct.

10.5 Exercises

Exercise 10.1 Consider the following expression:
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val f=�x.if0 x 0 (f (x − 1)) in
def f(x)=if0 x 0 (f (x − 1)) in
f y

1. Draw arrows from each bound occurrence to its binding occurrence.

2. Circle each free identifier.

Exercise 10.2 Consider the following functions:

I bindings: returns the set of every identifier that has at least one binding occurrence in a given

expression

I frees: returns the set of every identifier that has at least one free occurrence in a given expression

Complete the following implementation of bindings and frees for RFAE:

def bindings(e: Expr): Set[String] = e match {

case Num(n) => ???

case Id(x) => ???

case Val(x, e, b) => ???

case App(f, a) => ???

case Fun(x, b) => ???

case Rec(f, x, b, e) => ???

}

def frees(e: Expr): Set[String] = e match {

case Num(n) => ???

case Id(x) => ???

case Val(x, e, b) => ???

case App(f, a) => ???

case Fun(x, b) => ???

case Rec(f, x, b, e) => ???

}

Exercise 10.3 What are the results of the following expression:

def f(x)=if0 x x (1 + (f (x − 1))) in
val f=�x.42 + (f x) in
f 7

in different scoping semantics when we evaluate it under the following environment?

Map("f" -> CloV("x", Add(Num(13), Id("x")), Map()))

1. Dynamic scope

2. Static scope

Exercise 10.4 Consider the new semantics of if0 as follows:

� ` 41 ⇒ 0 � ` 42 ⇒ E2 � ` 43 ⇒ E3

� ` if0 41 42 43 ⇒ E2

� ` 41 ⇒ E1 E1 ≠ 0 � ` 42 ⇒ E2 � ` 43 ⇒ E3

� ` if0 41 42 43 ⇒ E3



10 Recursion 103

1. Explain how the new semantics is different from the original semantics.

2. Write an RFAE expression such that

I the evaluation with the original semantics results in an integer, but

I the evaluation with the above semantics incurs a run-time error.

Exercise 10.5 Consider the following language:

4 ::= · · · | 1 | 4 ∧ 4 | ¬4 | if 4 4 4
E ::= · · · | 1

where 1 ranges over booleans.

The semantics is as follows:

I The value of 1 is 1.

I The value of 41 ∧ 42 is E1 ∧ E2, where 48 evaluates to E8 . Note that the language does not support the

short-circuiting semantics, i.e., 42 is always evaluated.

I The value of ¬4 is ¬E, where 4 evaluates to E.

I The value of if 41 42 43 is the value of 42 if 41 evaluates to true and 43 if 41 evaluates to false.

Write the operational semantics of the form � ` 4 ⇒ E .

Exercise 10.6 The following sentences are a simplified version of the Racket programming language

reference about conditionals.
a

I Booleans

True and false booleans are represented by the values true and false, respectively.
I if 41 42 43

Evaluates 41. If it produces any value other than false, then 42 is evaluated, and its result is the result

for the if expression. Otherwise, 43 is evaluated, and its result is the result for the if expression.
I and 41 42
41 is evaluated. If it produces false, the result of the and expression is false. Otherwise, the result is

the same as the result of 42.

I or 41 42
41 is evaluated. If it produces a value other than false, that result is the result of the or expression.
Otherwise, the result is the same as the result of 42.

Now, we extend RFAE with Racket-like booleans.

1. Write the operational semantics of the form � ` 4 ⇒ E .

2. Draw the evaluation derivation of if (or false 2) (and false 2) 1 under the empty environment.

a https://docs.racket-lang.org/reference/if.html

Exercise 10.7 Explain why the following expression does not terminate and describe how to fix it.

val z=(�f.
val x=(�y.

val g=y y in
f g

) in
x x

) in
val f=z (�f.�v.if0 v 0 (v + f (v − 1))) in
f 10

https://docs.racket-lang.org/reference/if.html


10 Recursion 104

Exercise 10.8 Explain what is wrong with the following expression and describe how to fix it.

val z=(�f.
val x=(�y.

val g=�x.y y x in
f g

) in
x x

) in
val f=z (�v.if0 v 0 (v + f (v − 1))) in
f 10

Exercise 10.9 Consider the following expression:

val f=(
val x=�y.(

val f=�v.y y v in
�v.if0 v 0 (v + f (v − 1))
) in
x x

) in
f 10

1. Draw arrows on the above expression from each bound variable to its binding occurrence.

2. Draw dotted arrows on the above expression from each shadowing variable to its shadowed variable.

3. Write the value of f in the last line.

Exercise 10.10 Consider the following definition of z and its use to define the recursive function f.

val z=(�f.
val x=(�y.

val g=�a.y y a in
f g

) in
x x

) in
val f=z (�f.�v.if0 v 0 (v + f (v − 1))) in
f 10

Describe conditions that an argument given to zmust satisfy so that z can make its recursive version.

Exercise 10.11 Mutually recursive functions are functions that call each other. For example, the following

Scala code defines two mutually recursive functions even and odd:

def even(n: Int): Boolean = if (n == 0) true else odd(n - 1)

def odd(n: Int): Boolean = if (n == 0) false else even(n - 1)

We can implement mutually recursive functions also in FAE. For this purpose, we add pairs to FAE: (41 , 42)
creates a new pair; 4.1 gives the first value of a pair; 4.2 gives the second value of a pair. Also, in order to

implement even and odd, we add booleans to FAE: true and false.

The following expression implements even and odd in FAE:
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val z=(�b.
val fx=(�fy.

val f=??? in
val g=??? in
???

) in
fx fx

) in
val f=z �f.??? in
val even=f.1 in
val odd=f.2 in
(even 10, odd 10)
Complete the expression.
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Mutation is a widely-used feature. It is an important concept in imperative languages. Even functional

languages support mutation. Few languages are purely functional, i.e. do not allow any mutation: e.g. Haskell

and Coq. Mutation is important since many programs can be implemented concisely and efficiently with

mutation. At the same time, mutation often makes programs difficult to be reasoned about and error-prone.

While binding of identifiers works modularly and allows local reasoning, mutation has a global effect on

execution and enables uncontrolled interference between distinct parts of a program. Mutation should be

used with extreme care of programmers.

This chapter introduces mutation by defining BFAE, which extends FAE with boxes. A box is a cell in memory

that contains a single value. The value contained in a box can be modified anytime after the creation of the

box. Boxes in BFAE are higher-order. Each box can contain any value, which can be a box or a closure, rather

than only an integer. A box itself is rarely found in real-world languages: it is almost the same as a reference

in OCaml (ref). However, it is a good abstraction of more general mutation mechanisms including mutable

objects and data structures. We can find such concepts in most languages, and boxes are useful to understand

those concepts.

We can consider mutable objects in Scala as generalization of boxes. By going the opposite direction, we can

say that boxes can be represented as objects. Consider the following class definition in Scala:

case class Box(var value: Any)

The class Box has one field: value. Like any other classes, we can construct instances of Box and read the

fields of the instances.

val b = Box(3)

println(b.value)

It prints 3. In addition, since the field value is declared as mutable, we can mutate its value.

b.value = 10

println(b.value)

It changes the value of the field to 10 and prints 10.

11.1 Syntax

The above Scala example shows three kinds of expressions regarding boxes: creating a new box, reading the

value of a box, and changing the value of a box. To create a box, we need an expression that determines the

initial value of the box. To read the value of a box, we need an expression that determines the box. To change

the value of a box, we need an expression that determines the box and an expression that determines the new

value of the box.

In addition, there is another kind of expression that has been implicitly used: the sequencing expression.

Usually, an expression mutating a box is useless per se. There should be other expressions that observe

the change and do other interesting things based on the change. To do so, we need to combine multiple

expressions to form a single expression. Such an expression is the sequencing expression.

We can define the syntax of BFAE based on the observations. The following is the syntax of BFAE: 1

1
We omit the common part to FAE.
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4 ::= · · · | box 4 | !4 | 4:=4 | 4; 4

I box 4
It creates a new box, cf. Box(3) in the example. 4 determines the initial value of the box.

I !4

It reads the value of a box, cf. b.value in the example. 4 determines the box to be read.

I 41:=42
It changes the value of a box, cf. b.value = 10 in the example. 41 determines the box to be updated; 42
determines the new value.

I 41; 42
It is a sequencing expression. 41 is the first expression to be evaluated; 42 is the second. Many real-world

languages allow sequencing of an arbitrary number of expressions. For brevity, BFAE allows only

sequencing of two expressions. Sequencing of multiple expressions can be easily expresssed by nested

sequencing. For example, 41; 42; 43 can be expresssed as (41; 42); 43.

11.2 Semantics

Defining mutable memory is crucial to define the semantics of BFAE. We call the memory of a program a

store. A store records the values of boxes. Each box is distinguished from another box by its address, i.e. every

box has its own address, which differs from the addresses of any other boxes. The metavariable 0 ranges over

addresses. Let Addr be the set of every possible address. We do not care about what Addr really is.

0 ∈ Addr

A store is a finite partial function from addresses to values. If the store maps an address 0 to a value E, the

value of the box whose address is 0 is E. The metavariable" ranges over stores. Let Sto be the set of every
store.

Sto = Addr
fin↦→ +

" ∈ Sto

The semantics does not require a concrete notion of a box. Since every box is uniquely identified by an

address, the semantics can consider each address as a box. Thus, we treat an address as a value of BFAE,
instead of introducing a new semantic element denoting boxes. For example, an expression creating a box

evaluates to an address. We need to revise the definition of a value to include addresses.
2

E ::= · · · | 0

Note that we keep using the concept of a box for explanation. Even though the semantics abstracts boxes

with addresses, boxes do exist from the programmers’ perspective. The term box and the term address will

be interchangeably used.

How are stores used in the semantics? First, consider an expression reading a box. Evaluating !4 needs not

only an environment but also a store. If 4 denotes a box, the store has the value of the box. The value becomes

the result of !4. Without a store, there is no way to find the value of a box and yield a result. It implies that

evaluation requires a store to be given.

Now, let us consider the other kinds of expressions related to boxes. box 4 creates a new box; 41:=42 changes

the content of a box. Both modify stores. Modifying a store differs from extending an environment with a

2
We omit the common part to FAE.
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new identifier.

A change in an environment is propagated to the subexpressions of an expression that has caused the change.

Consider val G=41 in 42. It extends the environment with G, but only 42 uses the extended environment because

the scope of G is 42 but nowhere else. A variable definition can affect only its subexpressions. For instance, in

(val G=41 in 42) + 43, 43 does not belong to the scope of G. The extended environment must be used for only 42,

but not 43. Therefore, we say that binding and environments are local and modular.

On the other hand, the modified store is unnecessary for the subexpressions of an expression that modifies

the store, while other parts of the program need the modified one. Consider (x:=2); !x as an example. Assume

that x denotes a box. !xmust be aware of that x:=2 has changed the value of the box to 2. Otherwise, !xwill

get the previous value of the box and produce a wrong result. Note that !x is not a subexpression of x:=2.

However, in x:=2, the evaluation of 2, which is a subexpression of x:=2, must not be affected by the change in

the value of the box since the change happens after the evaluation of 2. Therefore, how stores change due to

expressions is important. If an expression contains two subexpressions, the store obtained by evaluating the

first subexpression has to be passed to the evaluation of the second subexpression. Stores are completely

different from environments. Any change in a store affects the entire remaining computation. Stores are

global and not modular.

From the observation, we can conclude that evaluation of an expression needs to take a store in addition to

an environment as input and output a new store along with a result value. We can define the semantics as a

relation over Env, Sto, �, + , and Sto. The former store is input, and the latter store is output.

⇒⊆ Env × Sto × � ×+ × Sto

�, "1 ` 4 ⇒ E, "2 is true if and only if 4 evaluates to E and changes the store from"1 to"2 under �. We

call this way of defining semantics a store-passing style. The style allows defining BFAE, featuring mutability,

without any mutable concepts at the meta-level.

Now, let us define the semantics of each expression. We can easily reuse Rule Num, Rule Id, and Rule Fun of

BFAE by adding stores. They maintain the contents of given stores.

Rule Num

= evaluates to = and changes the store from" to" under �.

�, " ` = ⇒ =, " [Num]

Rule Id

If G is in the domain of �,
then G evaluates to �(G) and changes the store from" to" under �.

G ∈ Domain(�)
�, " ` G ⇒ �(G), "

[Id]

Rule Fun

�G.4 evaluates to 〈�G.4 , �〉 and changes the store from" to" under �.

�, " ` �G.4 ⇒ 〈�G.4 , �〉, " [Fun]

During the evaluation of a certain expression, the order of the evaluation among the subexpressions matters

as they can modify the store. Suppose that G denotes a box, and the box contains 1. If the left operand of

addition is evaluated before the right operand, in (x:=2)+!x, !x evaluates to 2 since it is affected by the previous

change. On the other hand, if the right operand is evaluated first, !x evaluates to 1 because its evaluation
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precedes the modification and can observe only the original value.

The order among the premises in a semantics rule does not specify the order of evaluation. So far, we have

not specified the order of evaluation in the semantics as the order does not matter if there are no side effects.
3

However, BFAE supports mutation, and we should specify the order in the semantics. This goal can be

naturally achieved by passing stores. If we define the semantic to use the store that comes out from the

evaluation of the left operand as input of the evaluation of the right operand, the order is determined to

evaluate the left first.

A sequencing expression per se cannot modify a given store, but its subexpressions can.

Rule Seq

If

41 evaluates to E1 and changes the store from" to"1 under �, and
42 evaluates to E2 and changes the store from"1 to"2 under �,

then

41; 42 evaluates to E2 and changes the store from" to"2 under �.

�, " ` 41 ⇒ E1 , "1 �, "1 ` 42 ⇒ E2 , "2

�, " ` 41; 42 ⇒ E2 , "2

[Seq]

41 is evaluated before 42. The evaluation of 42 must be aware of any modifications of the store made by 41. For

this purpose, the rule passes "1, obtained by evaluating 41, to the evaluation of 42. The result of 41 is just

discarded. The final result is the same as the result of 42.

Rule Add, Rule Sub, and Rule App are similar to Rule Seq. They cannot modify stores, but their subexpressions

can. The evaluation order is the same as the sequencing expression. BFAE chooses the left-to-right order for

every expression, but other languages may use a different order.

Rule Add

If

41 evaluates to =1 and changes the store from" to"1 under �, and
42 evaluates to =2 and changes the store from"1 to"2 under �,

then

41 + 42 evaluates to =1 + =2 and changes the store from" to"2 under �.

�, " ` 41 ⇒ =1 , "1 �, "1 ` 42 ⇒ =2 , "2

�, " ` 41 + 42 ⇒ =1 + =2 , "2

[Add]

Rule Sub

If

41 evaluates to =1 and changes the store from" to"1 under �, and
42 evaluates to =2 and changes the store from"1 to"2 under �,

then

41 − 42 evaluates to =1 − =2 and changes the store from" to"2 under �.

�, " ` 41 ⇒ =1 , "1 �, "1 ` 42 ⇒ =2 , "2

�, " ` 41 − 42 ⇒ =1 − =2 , "2

[Sub]

Rule App

3
Side effects are any observable behaviors of expressions except the results. Mutation and exceptions are side effects.
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If

41 evaluates to 〈�G.4 , �′〉 and changes the store from" to"1 under �,
42 evaluates to E

′
and changes the store from"1 to"2 under �, and

4 evaluates to E and changes the store from"2 to"3 under �′[G ↦→ E′],
then

41 42 evaluates to E and changes the store from" to"3 under �.

�, " ` 41 ⇒ 〈�G.4 , �′〉, "1 �, "1 ` 42 ⇒ E′, "2 �′[G ↦→ E′], "2 ` 4 ⇒ E, "3

�, " ` 41 42 ⇒ E, "3

[App]

Note that the evaluation of the body of a closure can modify the store as well.

Now, let us define the semantics of expressions treating boxes. box 4 is an expression creating a new box. The

result of 4 becomes the initial value of the box. The result of box 4 is the new box.

Rule NewBox

If

4 evaluates to E and changes the store from" to"1 under �, and
0 is not in the domain of"1,

then

box 4 evaluates to 0 and changes the store from" to"1[0 ↦→ E] under �.

�, " ` 4 ⇒ E, "1 0 ∉ Domain("1)
�, " ` box 4 ⇒ 0, "1[0 ↦→ E]

[NewBox]

To get the initial value, 4 is evaluated first. The address of the new box must not belong to "1, the store

attained by evaluating 4. There is no additional condition the address must satisfy, so we can freely choose

any address that is not in"1. Note that if we check the domain of", not"1, we result in multiple boxes

sharing the same address, which is certainly wrong, when 4 also creates boxes. The result is the address of

the box. Also, we add a mapping from the address of the box to the value of the box to the final store.

!4 is an expression reading the value of a box. 4 determines the box to be read. If 4 does not evaluate to a box,

a run-time error occurs. Otherwise, 4 is some box, and the final result is the value of the box.

Rule OpenBox

If

4 evaluates to 0 and changes the store from" to"1 under �, and
0 is in the domain of"1,

then

!4 evaluates to"1(0) and changes the store from" to"1 under �.

�, " ` 4 ⇒ 0, "1 0 ∈ Domain("1)
�, " `!4 ⇒ "1(0), "1

[OpenBox]

To get a box, 4 is evaluated. The result of 4 must be an address that belongs to"1. The rule uses"1 instead

of " to find the value of the box. The reason is that 4 can create a new box and give the box as a result.

Consider !(box 1). If the semantics is correct, this expression must evaluate to 1. The initial store is empty, but

evaluating box 1 makes the store contain the address of the box. It means that the address can be obtained

only by looking into"1, not". Therefore, the correct semantics uses"1 to find the value of the box.

41:=42 is an expression changing the value of a box. 41 determines the box to be updated, and 42 determines

the new value of the box. Just like when we open a box, 41 must evaluate to a box. Otherwise, a run-time

error will happen.

Rule SetBox
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If

41 evaluates to 0 and changes the store from" to"1 under �, and
42 evaluates to E and changes the store from"1 to"2 under �,

then

41:=42 evaluates to E and changes the store from" to"2[0 ↦→ E] under �.

�, " ` 41 ⇒ 0, "1 �, "1 ` 42 ⇒ E, "2

�, " ` 41:=42 ⇒ E, "2[0 ↦→ E]
[SetBox]

Like all the other expressions, an expression modifying a box uses the left-to-right order. If 41 evaluates to

an address 0, the value associated with 0 in the store changes into the value denoted by 42. Also, the value

is the result of the whole expression. This semantics follows the semantics of many real-world imperative

languages. For example, x = 1 in C changes the value of x to 1 and results in 1. On the other hand, functional

languages usually use unit as the results of expressions for mutation. We can easily adopt the semantics in

BFAE by adding unit to the language.

11.3 Interpreter

The following Scala code implements the syntax of BFAE: 4

sealed trait Expr

...

case class NewBox(e: Expr) extends Expr

case class OpenBox(b: Expr) extends Expr

case class SetBox(b: Expr, e: Expr) extends Expr

case class Seqn(l: Expr, r: Expr) extends Expr

NewBox(4) represents box 4; OpenBox(4) represents !4; SetBox(41, 42) represents 41:=42; Seqn(41, 42)

represents 41; 42.

Addresses should be defined. We treat addresses as integers in Scala.

type Addr = Int

In addition, we add a new variant of Value to represent boxes.
5

sealed trait Value

...

case class BoxV(a: Addr) extends Value

Box(0) represents 0.

We use a map to represent a store. The type of a store is Map[Addr, Value].

type Sto = Map[Addr, Value]

interp takes an expression, an environment, and a store as arguments and returns a pair of a value and a

store.

4
We omit the common part to FAE.

5
We omit the common part to FAE.
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def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) =

e match {

...

}

Let us see each case of the pattern matching.

case Num(n) => (NumV(n), sto)

case Id(x) => (env(x), sto)

case Fun(x, b) => (CloV(x, b, env), sto)

The Num, Id, and Fun cases use given stores as the results.

case Seqn(l, r) =>

val (_, ls) = interp(l, env, sto)

interp(r, env, ls)

case Add(l, r) =>

val (NumV(n), ls) = interp(l, env, sto)

val (NumV(m), rs) = interp(r, env, ls)

(NumV(n + m), rs)

case Sub(l, r) =>

val (NumV(n), ls) = interp(l, env, sto)

val (NumV(m), rs) = interp(r, env, ls)

(NumV(n - m), rs)

case App(f, a) =>

val (CloV(x, b, fEnv), ls) = interp(f, env, sto)

val (v, rs) = interp(a, env, ls)

interp(b, fEnv + (x -> v), rs)

The Seqn, Add, Sub, and App cases do not directly modify or read stores, but pass the stores returned from the

recursive calls to the next recursive calls or use them as results.

case NewBox(e) =>

val (v, s) = interp(e, env, sto)

val a = s.keys.maxOption.getOrElse(0) + 1

(BoxV(a), s + (a -> v))

The NewBox case computes the initial value of the box first. Then, it computes an address not used in the store.

We use the method maxOption. If a collection is empty, the method returns None. Otherwise, the result is

Some(n), where n is the greatest value in the collection. By .getOrElse(0), we can get n from Some(n) and 0

from None. Consequently, s.keys.maxOption.getOrElse(0) results in the maximum key in the store when

the store is nonempty and 0 otherwise. a is one greater than that value and thus does not belong to the store.

Therefore, we can use a as the address of the box. The result of the function consists of the address and the

extended store.

case OpenBox(e) =>

val (BoxV(a), s) = interp(e, env, sto)

(s(a), s)

The OpenBox case evaluates the subexpression to get an address. If the result is not a box, an exception is

thrown due to a pattern matching failure. The address is used to find the value of the box from the store. The

result of the function consists of the value of the box and the store from the evaluation of the subexpression.
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case SetBox(b, e) =>

val (BoxV(a), bs) = interp(b, env, sto)

val (v, es) = interp(e, env, bs)

(v, es + (a -> v))

The SetBox case evaluates both subexpressions and modifies the store.

11.4 Exercises

Exercise 11.1 Consider the following expression:

(�x.(�y.x:=8; !y) x) box 7

Write the arguments and result of interp each time it is called during the evaluation of the expression.

Write them in the order in which the calls to interp occur during evaluation.

Exercise 11.2 This exercise asks you to implement the desugar function, which takes a BFAE expression as

an argument and returns an expression of the same behavior without ; (sequencing).

def desugar(e: Expr): Expr = e match {

...

case Seqn(l, r) => ???

}

Fill ??? to complete the implementation. You may use the following helper functions without defining

them:

// returns the set of every free identifier in e

def free(e: Expr): Set[String]

// returns a new identifier that does not belong to xs

def fresh(xs: Set[String]): String

Exercise 11.3 We can implement a fixed point combinator with boxes. The key idea is to put a dummy

function in a box, create a recursive function with the box, and replace the dummy function with the

correct recursive function. This strategy is known as Landin’s knot [Lan64].

Complete the following implementation:

val z=�b.(
val a=box �x.y in
val f=(b ???) in
a:=???;

???

) in
val f=z (�f.�v.if0 v 0 (v + f (v − 1))) in
f 10
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BFAE of the previous chapter provides boxes. Boxes are good abstraction of mutable objects and data

structures but do not explain mutable variables well. Boxes, mutable objects, mutable data structures are

values, while mutable variables are names. Mutable variables allow the values associated with names to

change. We can find the notion of a mutable variable in many real-world languages except a few functional

languages including OCaml and Haskell.

The semantics of mutable variables seem trivial. We can change the values of mutable variables. However, if

we use mutable variables with closures, we can do many interesting things. Consider the following Scala

program:

def makeCounter(): () => Int = {

var x = 0

def counter(): Int = {

x += 1

x

}

counter

}

val counter1 = makeCounter()

val counter2 = makeCounter()

println(counter1())

println(counter2())

println(counter1())

println(counter2())

The program defines the function makeCounter. The function has a mutable variable x whose initial value is

0. Also, it defines and returns the function counter. counter increases the value of x by one every time it is

called. We make two counters by calling makeCounter twice. Then, we call each counter in turn and print

the return value. What does the program print? The first value will be 1 since counter1will increase x by

one from zero and return x. However, predicting the other ones is difficult. We need the exact semantics of

mutable variables to answer the question.

This chapter defines MFAE by extending FAE with mutable variables. We will see the semantics of mutable

variables. Addition of mutable variables gives us a chance to explore a different design of the function

application semantics. We will see what is the call-by-reference semantics and how it differs from the

call-by-value semantics.

12.1 Syntax

As variables are mutable in MFAE, we need to add expressions that change the values of variables. The

following is the abstract syntax of MFAE: 1

4 ::= · · · | G:=4

1
We omit the common part to FAE.
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G:=4 is an expression changing the value of a variable. G is the variable to be updated; 4 determines the new

value of the variable. Unlike 41:=42 in BFAE, the left-hand-side of an assignment is restricted to a variable.

The reason is that variables are not values. We cannot get a variable by evaluating an expression. The only

way to designate a variable is to write the name of the variable, and the syntax reflects this point.

Note that MFAE lacks sequencing expressions, which exist in BFAE. Actually, it is not problematic at all. We

can desugar sequencing expressions into lambda abstractions and function applications: transform 41; 42
into (�G.42) 41, where G is not free in 42. The semantics of 41; 42 is that evaluating 41 first and then 42. The

evaluation of (�G.42) 41 is the same. First, �G.42 evaluates to a closure, which means that 42 is not evaluated.

Then, the argument, 41, is evaluated. Finally, the body of the closure, 42, is evaluated. Therefore, 41 is evaluated

before 42. Also, since G is not a free identifier in 42, the result of 41 is never used even though it is passed to

the function as an argument. Thus, we can conclude that the desugaring is correct. We may use sequencing

expressions in examples as they can be easily desugared.

12.2 Semantics

Since MFAE provides mutation, its semantics uses store-passing just like BFAE. Therefore, a store is a finite
partial function from addresses to values.

Sto = Addr
fin↦→ +

" ∈ Sto

The semantics is a relation over Env, Sto, �, + , and Sto.

⇒⊆ Env × Sto × � ×+ × Sto

Like FAE, a value of MFAE is either an integer or a closure. It is different from BFAE, which allows addresses to

be values. BFAE treats addresses as values because expressions creating boxes evaluate to addresses. However,

there are mutable variables instead of boxes in MFAE. MFAE has addresses to support mutation, but they are

used only for tracking the value of each variable. Addresses are not exposed to programmers as values.

An environment of MFAE is a finite partial function from identifiers to addresses, but not values.

Env = Id
fin↦→ Addr

� ∈ Env

The semantics needs environments to find the value denoted by a variable. FAE, whose variables are

immutable, is satisfied with environments that take identifiers as input and return values. However, variables

of MFAE are mutable. Evaluation outputs a value and a store. Environments are not the output of evaluation.

Therefore, we cannot use environments to record changes in the values of variables. On the other hand, we

can use stores to record the changes as stores are output of evaluation. It implies that stores must contain the

values of variables to make variables mutable. Since the value of a certain variable is stored at a particular

address of a store, an environment must know the address of each variable.

One may ask if we can remove environments from the semantics and consider a store as a partial function

from identifiers to values. However, in fact, removing environments from the semantics prevents use of static

scope. Assume that the semantics lacks environments, and a store is a partial function from an identifier to a

value. Consider ((�x.x:=1) 0); x. To evaluate the function application, the value of the argument should be

recorded in the store. After evaluating the function body, the store will be passed to the evaluation of x. Then,

x evaluates to 1 without a run-time error since x is in the store. On the contrary, under static scope, the scope

of x includes only G := 1. The expression should result in a run-time error because x outside the function is a



12 Mutable Variables 116

free identifier. Environments are essential for resolving this problem. Environments enable static scope, and

stores make variables mutable. The semantics must have both.

Because of the change in the definition of an environment, the semantics of identifiers need to be revised. An

environment has the address of a given identifier, and a store has the value at a given address. Therefore, we

need two steps to find the value of a variable: find the address of a variable from the environment and find

the value at the address from the store.

Rule Id

If

x is in the domain of �, and
�(G) is in the domain of",

then

G evaluates to"(�(G)) and changes the store from" to" under �.

G ∈ Domain(�) �(G) ∈ Domain(")
�, " ` G ⇒ "(�(G)), "

[Id]

Like boxes in BFAE, each variable ofMFAE has its own address. New variables can be defined only by function

applications. Hence, function applications are the only expressions that create new addresses. Let us see the

semantics of function applications.

Rule App

If

41 evaluates to 〈�G.4 , �′〉 and changes the store from" to"1 under �,
42 evaluates to E

′
and changes the store from"1 to"2 under �,

0 is not in the domain of"2, and

4 evaluates to E and changes the store from"2[0 ↦→ E′] to"3 under �′[G ↦→ 0],
then

41 42 evaluates to E and changes the store from" to"3 under �.

�, " ` 41 ⇒ 〈�G.4 , �′〉, "1

�, "1 ` 42 ⇒ E′, "2 0 ∉ Domain("2) �′[G ↦→ 0], "2[0 ↦→ E′] ` 4 ⇒ E, "3

�, " ` 41 42 ⇒ E, "3

[App]

The evaluation of the subexpressions is the same as BFAE. However, the remaining procedure is different.

We cannot store the value of the argument in the environment. It should go into the store. To put the value

into the store, we need a fresh address. The name of the parameter becomes associated with the address in

the environment; the address becomes associated with the value of the argument in the store. Finally, the

function body is evaluated.

Changing the value of a variable is similar to changing the value of a box of BFAE. However, we have to

evaluate an expression to find the address of the box to be updated in BFAE. On the other hand, we can find

the address of the variable to be updated from the environment by using its name in MFAE.

Rule Set

If

G is in the domain of �, and
4 evaluates to E and changes the store from" to"1 under �,

then

G:=4 evaluates to E and changes the store from" to"1[�(G) ↦→ E] under �.

G ∈ Domain(�) �, " ` 4 ⇒ E, "1

�, " ` G:=4 ⇒ E, "1[�(G) ↦→ E]
[Set]
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We can reuse the rules of BFAE for the other expressions.

Now, we can answer the question in the beginning of the chapter. At each call to makeCounter, a new address

is allocated to store the value of x. Therefore, x of counter1 uses a different address from x of counter2. Both

of the first two lines of println print 1. Also, each address is permanent throughout the execution. When a

call to counter1 updates the value of x, the change remains until the next call to counter1. Thus, both of the

last two lines of println print 2.

12.3 Interpreter

The following Scala code implements the syntax of MFAE: 2

sealed trait Expr

...

case class Set(x: String, e: Expr) extends Expr

Set(G, 4) represents G:=4.

The types of an address and a store can be defined as in BFAE.

type Addr = Int

type Sto = Map[Addr, Value]

We need to change the type of an environment.

type Env = Map[String, Addr]

As in BFAE, interp takes an expression, an environment, and a store as arguments and returns a pair of a

value and a store.
3

def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) =

e match {

...

case Id(x) => (sto(env(x)), sto)

case App(f, a) =>

val (CloV(x, b, fEnv), ls) = interp(f, env, sto)

val (v, rs) = interp(a, env, ls)

val addr = rs.keys.maxOption.getOrElse(0) + 1

interp(b, fEnv + (x -> addr), rs + (addr -> v))

case Set(x, e) =>

val (v, s) = interp(e, env, sto)

(v, s + (env(x) -> v))

}

In the Id case, the function finds the address of the variable first and then the value at the address.

In the App case, we use the same strategy to the interpreter of BFAE to compute a new address. The body of

the function is evaluated under the extended environment and the extended store.

The Set case uses the environment to find the address of the variable. Then, it updates the store to change

the value of the variable.

2
We omit the common part to FAE.

3
We omit the common part to BFAE.
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12.4 Call-by-Reference

Novices in programming often implement a swap function incorrectly. For example, consider the following

C++ program:

void swap(int x, int y) {

int tmp = x;

x = y;

y = tmp;

}

int a = 1, b = 2;

swap(a, b);

std::cout << a << " " << b << std::endl;

They expect the program to print 2 1 as swap has been called. On the contrary, their expectation is wrong.

The result is 1 2. We can explain the reason based on the content of this chapter. When swap is called, two

new fresh addresses are allocated for x and y. The values of a and b are copied and stored in the addresses,

respectively. The function affects only the values in the addresses of x and y. It never touches the addresses of

a and b. As a consequence, while the values of x and y are swapped, the values of a and b are not.

This is the usual semantics of function applications. The values of arguments are copied and saved at fresh

addresses. This semantics is called call-by-value (CBV) as function calls pass the values of arguments.

People have explored another semantics for function applications to implement functions like swap easily. The

semantics is called call-by-reference (CBR). In this semantics, function calls pass the references, i.e. addresses,

when variables are used as arguments.

The following rule defines the semantics of a function application using CBR when its argument is a

variable:

Rule App-Cbr

If

4 evaluates to 〈�G′.4′, �′〉 and changes the store from" to"1 under �,
G is in the domain of �, and
4′ evaluates to E and changes the store from"1 to"2 under �′[G′ ↦→ �(G)],

then

4 G evaluates to E and changes the store from" to"2 under �.

�, " ` 4 ⇒ 〈�G′.4′, �′〉, "1 G ∈ Domain(�) �′[G′ ↦→ �(G)], "1 ` 4′⇒ E, "2

�, " ` 4 G ⇒ E, "2

[App-Cbr]

The rule does not evaluate the argument to get a value. It simply uses the address of the variable. Then, the

parameter of the function has the exactly same address to the argument. Any change in the parameter that

happens in the function body affects the variable outside the function. We say that the parameter is an alias of
the argument as they share the same address.

Even if we want to adopt the CBR semantics in MFAE, we cannot use it when the argument is not a variable.

We cannot get an address from an expression that is not a variable. In such cases, we fall back to the CBV

semantics. The following rule specifies such cases:

Rule App-Cbv
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If

41 evaluates to 〈�G.4 , �′〉 and changes the store from" to"1 under �,
42 is not an identifier,

42 evaluates to E
′
and changes the store from"1 to"2 under �,

0 is not in the domain of"2, and

4 evaluates to E and changes the store from"2[0 ↦→ E′] to"3 under �′[G ↦→ 0],
then

41 42 evaluates to E and changes the store from" to"3 under �.

�, " ` 41 ⇒ 〈�G.4 , �′〉, "1

42 ∉ Id �, "1 ` 42 ⇒ E′, "2 0 ∉ Domain("2) �′[G ↦→ 0], "2[0 ↦→ E′] ` 4 ⇒ E, "3

�, " ` 41 42 ⇒ E, "3

[App-Cbv]

It is the same as Rule App except that it has one more premise to ensure that the argument is not a variable.

The interpreter needs the following change:

case App(f, a) =>

val (CloV(x, b, fEnv), ls) = interp(f, env, sto)

a match {

case Id(y) =>

interp(b, fEnv + (x -> env(y)), ls)

case _ =>

val (v, rs) = interp(a, env, ls)

val addr = rs.keys.maxOption.getOrElse(0) + 1

interp(b, fEnv + (x -> addr), rs + (addr -> v))

}

It uses pattern matching on the argument expression of a function application. When it is an identifier, the

CBR semantics can be used. Otherwise, it falls back to the CBV semantics.

We can find a few languages that support CBR in real-world. One example is C++. In C++, if there is an

ampersand in front of the name of a parameter, the parameter uses the CBR semantics. We can fix the function

swapwith this feature.

void swap(int &x, int &y) {

int tmp = x;

x = y;

y = tmp;

}

int a = 1, b = 2;

swap(a, b);

std::cout << a << " " << b << std::endl;

It is enough to fix only the first line to make the parameters use CBR. When swap is applied to a and b, the

addresses of a and b are passed. The address of x is the same as that of a, and the address of y is the same as

that of b. Therefore, the function swaps not only the values of x and y but also the values of a and b. The

program prints 2 1 as intended.

12.5 Exercises
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Exercise 12.1 Consider the following MFAE expression:

(�x.x) ((�x.x) 1)

Write the arguments to interp each time it is called during the evaluation of the expression. Write them in

the order in which the calls to interp occur during evaluation.

Exercise 12.2 The following code is an excerpt from the implementation of the interpreter for MFAE:

def interp(e:Expr, env:Env, sto:Sto): (Value, Sto) =

e match {

...

case App(f, a) =>

val (CloV(x, b, fEnv), ls) = interp(f, env, sto)

a match {

case Id(y) =>

interp(b, fEnv + (x -> env(y)), ls)

case _ =>

val (v, rs) = interp(a, env, ls)

val addr = rs.keys.maxOption.getOrElse(0) + 1

interp(b, fEnv + (x -> addr), rs + (addr -> v))

}

}

1. What is this semantics? CBV or CBR?

Consider the following expression:

val n=42 in
val f=�g.g n in
f (�x.x + 8)

2. Show the environment and store just before evaluating addition in the CBV semantics.

3. Show the environment and store just before evaluating addition in the CBR semantics.

Exercise 12.3 This question extends MFAE with mutable records as follows:

4 ::= · · · | { 5 :4 , · · · , 5 :4} | 4. 5
E ::= · · · | { 5 :0, · · · , 5 :0}

�, "0 ` 41 ⇒ E1 , "
′
1
· · · �, "=−1 ` 4= ⇒ E= , "

′
=

01 ∉ Domain("′
1
) · · · 0= ∉ Domain("′=) "1 = "

′
1
[01 ↦→ E1] · · · "= = "

′
=[0= ↦→ E=]

�, "0 ` { 51:41 , · · · , 5= :4=} ⇒ { 51:01 , · · · , 5= :0=}, "=

�, " ` 4 ⇒ {· · · , 5 :0, · · · }, "1 0 ∈ Domain("1)
�, " ` 4. 5 ⇒ "1(0), "1

Consider the following interpreter implementation of the language:

case class Get(r: Expr, f: String) extends Expr

case class RecV(fs: Map[String, Addr]) extends Value
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def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) = e match {

...

case App(f, a) =>

val (fv, fs) = interp(f, env, sto)

fv match {

case CloV(x, b, fenv) =>

a match {

case Get(r, f) => ???

case _ =>

val (av, as) = interp(a, env, fs)

val addr = malloc(as)

interp(b, fenv + (x -> addr), as + (addr -> av))

}

case _ => error()

}

}

Note that Get(4, 5 ) is 4. 5 and RecV(Map( 51 -> 01, · · · , 5= -> 0=)) is { 51:01 , · · · , 5= :0=}.

1. Complete the implementation. The language uses CBR when a record field is an argument of a

function call.

Consider the following expression:

val x={z:1} in
val f=�y.y:=2 in
f x.z;

x.z

2. Write the result and the store at the end of the evaluation of the above expression.

3. Write the result and the store at the end of the evaluation of the above expression if the language

uses CBV when a record field is an argument of a function call.

Exercise 12.4 This exercise extends MFAE with pointers. Consider the following language:

4 ::= · · · | ∗ 4 | &G | ∗ 4:=4
E ::= · · · | 0

The semantics of some constructs are as follows:

I The value of ∗4 is the value in the store at the address denoted by the expression.

I The value of &G is the address denoted by the identifier in the environment.

I The evaluation of ∗41:=42 evaluates 42 first, which is the value of the whole expression. Then, it

evaluates 41, and it maps the address denoted 41 to the value of 42.

1. Write the operational semantics of the form �, " ` 4 ⇒ E, " for the expressions.

2. Complete the following interpreter implementation:

case class Deref(p: Expr) extends Expr

case class Ref(x: String) extends Expr

case class Assign(p: Expr, e: Expr) extends Expr

case class PtrV(a: Addr) extends Value

def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) = e match {
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...

case Deref(p) => ???

case Ref(x) => ???

case Assign(p, e) => ???

}

Exercise 12.5 Consider the following language:

4 ::= = | G | 4 + 4
2 ::= skip | G:=4 | if0 4 2 2 | while0 4 2 | 2; 2
E ::= =

where 2 ranges over commands.

Under a given environment, 4 evaluates to a value without modifying the environment:

� ` = ⇒ =
G ∈ Domain(�)
� ` G ⇒ �(G)

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

1. A command takes an environment as input and produces a new environment as output. We write

� ` 2 ⇒ �′ if 2 produces �′ when � is given. The following sentences describe the semantics of

commands:

I skip does not change a given environment.

I G:=4 evaluates 4 to get a value E and updates the value of G to E. G does not need to be in a given

environment.

I if0 4 21 22 evaluates 4 to get a value E. If E is 0, 21 is evaluated. Otherwise, 22 is evaluated.

I while0 4 2 evaluates 4 to get a value E. If E is not 0, the command terminates without changing a

given environment. Otherwise, it evaluates 2 and then checks the result of 4 again under the

new environment. This process repeats until the result of 4 becomes nonzero.

I 21; 22 evaluates 21 first to get a new environment. Then, it evaluates 22 under the new environ-

ment.

Write the operational semantics of commands of the form � ` 2 ⇒ � .

2. Draw the evaluation derivation of x:=0; if0 x skip x:=1 under the empty environment.
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Consider the following BFAE expression:

val f=�x.(
box x;

x

) in
f 0;

f 1;

· · ·
f 999

The function f creates a new box but does not use the box at all. Each time the function is called, it newly

creates one more box. The above expression calls f 1,000 times, so there are 1,000 boxes in the store at the end

of the execution.

Under the operational semantics we have defined, programs like the above expression are not problematic.

The size of a store is unlimited, so each program can create boxes as many as it wants.

However, the operational semantics does not fully reflect the execution of programs on real machines; our

semantics is merely a mathematical one. The memory of every machine has a physical limit. There is a

maximum number of boxes that can be created on a single machine. Programs cannot create boxes forever.

How can we handle a situation that programs need to create boxes exceeding the physical limit of the machine

on which they run? The most reasonable solution is to reuse memory locations carrying boxes not to be used

any longer. For example, every box created by the above expression has no use, so its memory address is

reusable for another box without changing the behavior of the program. Such reuse of the memory is called

memory management.

This section introduces the notion of memory management and explains garbage collection (GC), one of the

most popular forms of memory management.

13.1 Stack and Heap

To understand memory management, you first need to know how the memory is organized. Programs store

their data on the memory during execution. The memory is divided into two parts: stack and heap. The stack
is similar to an environment, and the heap is similar to a store. Keeping this intuition in your mind would

help you understand the stack and the heap. However, they are not completely identical.

13.1.1 Stack

The stack is a place to store the values of local variables of functions. Here, local variables include function

parameters. The stack follows the LIFO (last in, first out) manner, just like the stack data-structure. When a

function is called, a stack frame for the function is created and pushed onto the stack, so the stack grows.
1
The

function stores the values of its local variables in its stack frame. When the function returns, the stack frame

is popped off because there is no need for storing the values of the local variables of the returned function.

Therefore, the stack shrinks when each function returns.

Let us see how the stack changes during execution. Consider the following Scala code:

1
Sometimes, it is not true. For example, tail call optimization prevents the stack from growing when a function is called. However, we

ignore such cases.
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def f() = {

val x = 1

val y = 2

val z = g(x)

val w = y + z

}

def g(a: Int): Int = {

val b = a + 3

return b

}

Suppose that f is called. Since f has four local variables, the stack frame of f has four slots. In the beginning,

all the variables are uninitialized. The stack at this point is as follows:

x

y

z

w

After executing val x = 1, the value of x becomes 1.

x 1

y

z

w

After executing val y = 2, the value of y becomes 2.

x 1

y 2

z

w

When f calls g, the stack frame of g is created. g has two local variables. The value of the parameter a is 1,

given as an argument by f.

x 1

y 2

z

w

a 1

b

After executing val b = a + 3, the value of b becomes 4.

x 1

y 2

z

w

a 1

b 4
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When g returns, the stack frame of g is destroyed. The value of b is copied because it is the return value. Now,

the value of z is 4.

x 1

y 2

z 4

w

After executing val w = y + z, the value of w becomes 6.

x 1

y 2

z 4

w 6

13.1.2 Heap

Sometimes, the stack is not a good place to put data. There are multiple reasons. One such reason is the

existence of large objects. Consider the following Scala code:

case class C(x: Int, y: Int, z: Int, w: Int)

def f() = {

val x = g()

}

def g(): C = {

val a = C(1, 2, 3, 4)

return a

}

Each object of the class C consists of four integers. After executing val a = C(1, 2, 3, 4), the stack is as

follows:

x

a C(1,2,3,4)

When g returns, the object denoted by a is copied.

x C(1,2,3,4)

In the previous example, the return value is an integer, which occupies only four bytes. On the other hand, in

this example, the return value is an object, whose size is sixteen bytes.
2
Therefore, copying requires more

time. If the object has more fields, copying will take much more.

The problem is that the object lives even after g returns while the stack frame is destroyed when g returns. To

resolve the problem, we need alternative storage whose lifetime is irrelevant to the call-return of functions.

The heap is such storage. The heap is a large chunk of memory independent of the stack. When a value is

stored on the heap, it can stay forever, even after the function that has stored the value on the heap returns.

2
It can be more than sixteen bytes. For example, an object can have a type tag, which indicates the class it belongs to, and a method

table, which consists of pointers to its methods.
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We call a run-time system that manages the heap a memory manager. When a program requests the memory

manager to put a value on the heap, the memory manager finds free space and places the value there. Such

an act of putting a value on the heap is called allocation.

Suppose that the program stores the object on the heap. Initially, the heap is empty.

x
0x1000

0x1010

Stack Heap

After executing val a = C(1, 2, 3, 4), the object is allocated on the heap. The value of a becomes the

heap address where the object is stored. Addresses are just integers, but here we represent addresses in the

hexadecimal form to distinguish them from normal integers in the decimal form.

x

a 0x1000

0x1000 C(1,2,3,4)

0x1010

Stack Heap

When g returns, only the address of the object is copied. Since the size of each address is only eight bytes (on

a 64-bit machine) regardless of the size of the object, the execution is more efficient than before.

x 0x1000
0x1000 C(1,2,3,4)

0x1010

Stack Heap

Each language has its own mechanism to choose among the stack and the heap when putting values on the

memory. Low-level languages like C, C++, and Rust allow programmers to choose by themselves. Values go

to the stack by default, and programmers can choose the heap by using designated keywords (malloc3 in C,

new4 in C++, and Box::new5 in Rust).

On the other hand, high-level languages like Java and Scala have a predefined rule and do not give a choice

to programmers. They place all the primitive values (booleans, characters, and numbers) on the stack and all

the objects on the heap. Thus, the behavior described by the previous example, which stores the object on the

stack, actually never happens in Scala. Only the description of this example, which stores the object on the

heap, is possible. Following this rule, we hereafter assume that every on-heap value is an object.

13.2 Memory Management

Unfortunately, the use of the heap introduces a new problem. Consider the following code:

def f() = {

for (i <- 1 to 300) {

g(i)

...

}

}

def g(a: Int) = {

val b = C(1, 2, 3, a)

3 https://en.cppreference.com/w/c/memory/malloc
4 https://en.cppreference.com/w/cpp/language/new
5 https://doc.rust-lang.org/std/boxed/index.html

https://en.cppreference.com/w/c/memory/malloc
https://en.cppreference.com/w/cpp/language/new
https://doc.rust-lang.org/std/boxed/index.html
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... // do something with `b`
}

f calls g repeatedly, and g allocates a new object on the heap each time it is called. Suppose that the heap uses

addresses from 0x1000 to 0x1fff. It means that the heap is 4KiB-large. Since each object is 16B-large, the

heap becomes full after the 256th iteration.

i 256

0x1000 C(1,2,3,1)

0x1010 C(1,2,3,2)

· · ·
0x1ff0 C(1,2,3,256)

Stack Heap

In the 257th iteration, it is impossible to create a new object because the heap does not have any more free

space. Each language has its own way of signalling the lack of the heap space. Low-level languages like C

and C++ return a null pointer instead of a valid address to the newly allocated data. High-level languages

like Java and Scala throw an exception:

Exception in thread "main" java.lang.OutOfMemoryError:

Java heap space
Run-time error

However, it is unusual to face the situation that the heap is really lacking in free space. As mentioned at

the beginning of the chapter, most objects become useless after some periods from their allocations. Such

useless objects are called garbage. If the memory manager deallocates garbage, i.e., marks the space occupied

by garbage as free, the heap can recover some of its space and allows the program to allocate new objects.

Memorymanagement is to decidewhen todeallocate each object. There are two forms ofmemorymanagement:

manual memory management and automatic memory management.

13.2.1 Manual Memory Management

Manual memory management is memory management done by programmers. Programmers can make their

programs send deallocation requests to the memory manager by using designated keywords (free6 in C,

delete7 in C++, and drop8 in Rust).

While Scala does not support manual memory management, assume that Scala has free, just like C. Consider

the following code:

def f() = {

for (i <- 1 to 300) {

g(i)

...

}

}

def g(a: Int): Int = {

val b = C(1, 2, 3, a)

... // do something with `b`
free(b)

}

6 https://en.cppreference.com/w/c/memory/free
7 https://en.cppreference.com/w/cpp/language/delete
8 https://doc.rust-lang.org/std/mem/fn.drop.html

https://en.cppreference.com/w/c/memory/free
https://en.cppreference.com/w/cpp/language/delete
https://doc.rust-lang.org/std/mem/fn.drop.html
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It is similar to the previous code, but now g deallocates the object just before it returns. The memory at the

beginning of the first call to g is as follows:

i 1

a 1

b

0x1000

0x1010

Stack Heap

After executing val b = C(1, 2, 3, a), the heap has one object.

i 1

a 1

b 0x1000

0x1000 C(1,2,3,1)

0x1010

Stack Heap

After executing free(b), the heap becomes empty again.

i 1

a 1

b 0x1000

0x1000

0x1010

Stack Heap

In the next iteration, the same heap address can be reused.

i 2

a 2

b 0x1000

0x1000 C(1,2,3,2)

0x1010

Stack Heap

Since this process repeats, the heap never becomes full, and the program never faces the lack of the heap

space regardless of the number of iterations.

As this example shows, under manual memory management, programmers need to insert free after using

objects. If done correctly, this guarantees that the heap contains only objects in use, so the utilization of the

heap space is always efficient and optimal. However, programs are complex in practice, and programmers

often make mistakes while inserting free. If they deallocate objects too early or too late, they can introduce

bugs to their programs.

If deallocations happen too early, dangling pointers are created. Dangling pointers are heap-address values

that do not refer to valid objects. Dangling pointers are not harmful per se, but the use of dangling pointers

can cause bugs.

Consider the following code:

val a = C(1, 2, 3, 4)

...

free(a)

...

val b = C(5, 6, 7, 8)

...

a.x = 0

...

assert(b.x == 5)
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This code is problematic because it deallocates a too early. While a is used even after the creation of b, it

deallocates a before the creation of b. This mistake can corrupt the behavior of the program. Let us see the

behavior of the program in detail.

After the allocation of a, the memory is as follows:

a 0x1000

b

0x1000 C(1,2,3,4)

0x1010

Stack Heap

After the deallocation of a, the variable a still holds 0x1000, but the heap location 0x1000 is marked as free.

Now, the pointer denoted by a is dangling.

a 0x1000

b

0x1000

0x1010

Stack Heap

Then, the program may allocate b at the same address as a since the address is marked as free.

a 0x1000

b 0x1000

0x1000 C(5,6,7,8)

0x1010

Stack Heap

Now, executing a.x = 0 reads the value of a and accesses the heap address 0x1000 to modify the value of

the field x.

a 0x1000

b 0x1000

0x1000 C(0,6,7,8)

0x1010

Stack Heap

However, the object stored at 0x1000 is not the object denoted by a, but is the object denoted by b. Finally,

assert(b.x == 5) fails. Even though the program never changes the value of b.x to 0, its value is 0.

The problem of the program is using a dangling pointer. Such an incident is called use-after-free (UAF). When

UAF happens, a program may corrupt on-heap data by overwriting it.
9

UAF has caused a large number of critical problems in the real world. UAF is the source of many unpleasant

bugs and severe security vulnerabilities. One example is a vulnerability caused by UAF in Acrobat Reader

DC.
10
An attacker can make a special PDF file that triggers UAF of the PDF reader. By carefully crafting the

file, the attacker can lead the PDF reader to run arbitrary code he or she wants. A proof-of-concept video at

https://youtu.be/sGQYG_Qbjvg shows that the PDF reader opens a calculator application just by opening a

file created by the attacker. If it was a real attack, the PDF reader could have exhibited a much worse behavior,

e.g., deleting all the files.

On the other hand, if programmers insert free too late or do not insert at all,memory leaks happen. A memory

leak is a waste of the heap space by not deallocating garbage. Memory leaks are less critical than UAF in most

cases. Unless the heap becomes full, memory leaks do not yield an observable problem. However, memory

leaks may make the heap lack free space, which should not have happened if there is no memory leak.

9
In fact, UAF is considered as an undefined behavior in most languages. It means that programs with UAF can exhibit any behaviors.

Therefore, corrupting on-heap data is just one possible consequence of UAF. Other bad things can happen as well.

10 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9715

https://youtu.be/sGQYG_Qbjvg
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9715
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13.2.2 Automatic Memory Management

Automatic memory management is memory management that does not require programmers’ intervention.

The memory manager automatically finds and deallocates garbage.

GC is the most popular form of automatic memory management. GC decides whether a certain object is

garbage or not by using the notion of reachability. An object is reachable if a program can reach the object

from the stack by following pointers. Consider the following code:

case class C(x: Int)

var a = C(0)

a = C(1)

After executing var a = C(0), the memory is as follows:

a 0x1000
0x1000 C(0)

0x1004

Stack Heap

At this point, C(0) at 0x1000 is reachable because the stack has the address 0x1000.

After executing a = C(1), the memory is as follows:

a 0x1004
0x1000 C(0)

0x1004 C(1)

Stack Heap
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Now, C(1) at 0x1004 is reachable, but C(0) at 0x1000 is not reachable any longer.

Note that it is possible that an object is reached in more than one step. For example, consider the following

code:

case class C(x: C)

var a = C(null)

a = C(a)

After executing the program, the memory is as follows:

a 0x1004
0x1000 C(null)

0x1004 C(0x1000)

Stack Heap

Although the stack does not contain 0x1000, C(null) at 0x1000 is still reachable because the stack has 0x1004

and 0x1000 is stored at the address 0x1004.

The intuition of GC is that unreachable objects cannot be used by programs. The stack stores the values of

local variables. Therefore, programs can access any values on the stack by reading local variables. However,
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objects on the heap do not directly correspond to specific program constructs. To access them, programs

need to read their addresses from somewhere. It implies that programs can access objects only when they are

reachable from the stack
11
by following pointers.

Both of the above examples advocate this intuition. In the first example, after executing var a = C(0), C(0)

is reachable. The object is indeed accessible by reading the variable a. Then, after executing a = C(1), C(0)

becomes unreachable and inaccessible; reading a accesses C(1), not C(0). In the second example, C(null) is

reachable even after executing a = C(a), and the program can access C(null) by reading a.x.

Following this intuition, GC finds unreachable objects and deallocates them during the execution of programs.

In this way, GC never makes dangling pointers. It is guaranteed that all the deallocated objects are garbage.

In other words, GC completely prevents UAF.

However, GC cannot completely prevents memory leaks. It is because not every garbage is unreachable.

Consider the following code:

case class C(x: Int)

val a = C(0)

... // never use `a`

The program creates C(0) but never uses it. In this case, C(0) is garbage but reachable. Since C(0) is reachable,

GC never deallocates it although it is garbage in fact. Therefore, this causes a memory leak. Fortunately, code

like the above is rare in practice. For this reason, memory leaks caused by GC are usually negligible.

Note that not every automatic memory management uses GC; for example, the Rust compiler analyzes

programs and automatically inserts drop at compile time. It is different from GC, which operates at run time.

Although GC is not the only way of achieving automatic memory management, GC is still the most popular

one.

The remainder of the chapter introduces three widely-used techniques to implement GC.

13.3 Reference Counting

Under reference counting, each object is accompanied by a reference count. The reference count of an object

is an integer representing the number of pointers referring the object. When an object is created, its reference

count equals zero. Each time a pointer to the object is created, the reference count increases by one, and each

time a pointer to the object is destroyed, the reference count decreases by one. When the reference count

becomes zero after a decrement, the object is considered unreachable and immediately deallocated.

Consider the following code:

case class C(var x: Any)

var a = C(0)

val b = C(a)

a = C(1)

b.x = a

Let us see how reference counting collects garbage with the example.

After executing var a = C(0), the memory is as follows:

11
More precisely, objects reachable from the stack and registers are accessible. Registers are small memory storage inside the CPU. They

also are used to store the values of local variables. Sometimes, the stack and registers are collectively called the root in the context of

GC. For simplicity, this book ignores registers.
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The reference count of C(0) increases from 0 to 1 because a pointer to the object has been created and stored

in the variable a on the stack.

After executing val b = C(a), the memory is as follows:

The reference count of C(0) increases again from 1 to 2 because a pointer to the object has been created and

stored in C(a).

After executing a = C(1), the memory is as follows:
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The reference count of C(0) decreases from 2 to 1 because the pointer held by a has been destroyed. Now, a

has a pointer to C(1).

After executing b.x = a, the memory is as follows:

The reference count of C(0) decreases again from 1 to 0 because the pointer held by C(a) also has

been destroyed. Since the reference count equals zero, the object is considered unreachable and becomes

deallocated.
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13.3.1 Pros

Reference counting has the following strengths:

I It is easy to implement.

I Memory reclamation is immediate and takes a short time.

Ease of Implementation Reference counting requires only reference counts attached to objects and

modification of them at the creation and deletion of pointers. It is easy to implement; it can be implemented

even as a library, without any language-level support. For example, shared_ptr12 in C++ and Rc13 in Rust

are well-known library implementations of reference counting.

Immediate Reclamation The reference count of an object decreases to zero as soon as it becomes unreachable.

Then, the object is deallocated immediately. Therefore, memory reclamation is immediate if one uses reference

counting. There is little space wasted in the heap. In addition, checking whether a certain reference count is

zero or not is extremely fast, so the execution of a program never pauses for a long time due to GC.

13.3.2 Cons

Reference counting has the following weaknesses:

I It cannot handle cyclic structures.

I Maintaining reference counts takes cost.

I It requires free lists.

I It suffers from external fragmentation.

Cyclic Structure Unfortunately, reference counting suffers from memory leaks when objects form cycles.

Consider the following code:

def f() = {

val a = C(null)

val b = C(a)

12 https://en.cppreference.com/w/cpp/memory/shared_ptr
13 https://doc.rust-lang.org/std/rc/struct.Rc.html

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://doc.rust-lang.org/std/rc/struct.Rc.html
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a.x = b

}

Suppose that f is called. After executing val a = C(null), the memory is as follows:

After executing val b = C(a), the memory is as follows:

After executing a.x = b, the memory is as follows:
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Each object has a pointer to the other, so a cycle has been formed.

Finally, the function returns. Then, the memory is as follows:

Both of the local variables a and b have been popped off from the stack, so each of the objects loses one

pointer. Therefore, their reference counts decrease to 1. Since there is no way to reach them from the stack,

they are unreachable. However, their reference counts are not zero. They will not be deallocated forever. This

is definitely a memory leak, and the reason is the cyclic structure made by the objects.

While the other weaknesses of reference counting cause only performance degradation, memory leaks due to

the inability to handle cyclic structures are a critical drawback of reference counting. For this reason, reference

counting is often criticized. However, some languages use reference counting despite this crucial limitation.

For example, Python and Swift use reference counting. Each of them has its own solution to overcome the

limitation of reference counting. Python provides a secondary GC algorithm, which can properly handle

cycles, while having reference counting as the primary one.
14

Swift allows programmers to create weak
references, which are pointers that do not increase reference counts, in addition to usual pointers, i.e., strong
references.15 Programmers can use weak references when they want to create cycles without memory leaks.

14 https://docs.python.org/3/library/gc.html
15 https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html

https://docs.python.org/3/library/gc.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
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Maintaining Reference Counts Reference counts occupy some of the heap space. It decreases the total size

of objects that can be allocated on the heap.

In addition, creation and deletion of a pointer always modify reference counts, which takes some time. It

harms the performance of programs compared to other GC techniques, which modify the heap only when

allocating and deallocating objects, but not when creating and destroying pointers. Note that each object

is allocated and deallocated only once, but pointers to each object can be created and destroyed multiple

times.

Free List The free space of the heap is initially a single continuous block of memory.

At this moment, it is enough to know the starting address of the free space to decide the address of a new

allocation.

If there is no garbage and only allocations happen, this remains the same.

However, after deallocating some objects, the free space splits into multiple separated blocks.

Therefore, it is not enough to know only the starting address of the free space in general. The memory

manager should know the starting address and the size of each free block.

For this purpose, the memory manager maintains a data structure called a free list on the heap. A free list is

typically a linked list containing all the free blocks. Maintaining a free list takes some time and space. Also,

each time allocating an object, the memory manager needs to traverse its free list to find a free block of a

proper size.

External Fragmentation As mentioned above, the free space splits into multiple blocks. It is called external
fragmentation. Because of external fragmentation, an object may not be allocated on the heap although there is

enough free space. Consider the following program:

1. allocates four 1KiB-large objects

2. deallocates the first and the last objects
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3. allocates a 2KiB-large object

Suppose that the program runs with the heap of 4KiB. Ignoring the space for the reference counts and the

free list, the heap after the first four allocations is as follows:

After the deallocations, the heap is as follows:

Then, it is impossible to allocate the 2KiB-large object although the heap has free space of 2KiB.

External fragmentation also harms cache utilization. When allocating multiple objects to be used together, it

is desirable to place them close to each other in the memory. When it is achieved, we say that the locality is
good. Good locality is important because it makes objects go into a single cache block and, thus, reduces

cache misses. However, the locality is usually poor due to external fragmentation. Consider the following

heap:

If a program allocates two objects, they are placed far away from each other.

13.4 Mark-and-Sweep GC

Unlike reference counting, which possibly deallocates a new unreachable object each time a pointer is

destroyed, mark-and-sweep GC finds and deallocates all the unreachable objects at once only when GC is

triggered for some reason (e.g., the heap is full). Mark-and-sweep GC consists of two phases: the marking

phase and the sweeping phase. The memory manager “marks” all the reachable objects in the marking phase

and “sweeps,” i.e. deallocates, all the unmarked objects in the sweeping phase.

Let us see how mark-and-sweep GC works in detail. During the marking phase, each object is in one of the

following states:

I Unreached: This object has not been explored yet. It may be unreachable and is a candidate for

deallocation. However, the state may change.

I Unscanned: This object is reachable and will not be deallocated. It has a pointer to an Unreached object,

so a further “scan” is required.

I Scanned: This object is reachable and will not be deallocated. It does not have any pointers to Unreached
objects.

When the marking phase starts, all the objects are Unreached, which is represented by a white box.
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As the first step, objects pointed by on-stack pointers move from the Unreached state to the Unscanned state,

which is represented by a gray box.

The memory manager chooses one Unscanned object and “scans” the object by following all the pointers in

the object. All the Unreached objects pointed by the pointers move to the Unscanned state. After the scan, the

chosen object becomes Scanned, which is represented by a black box.
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This repeats until there is no Unscanned object.
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If there is no Unscanned object, the marking phase ends.

In the sweeping phase, each object is in either Unreached or Scanned state. Scanned objects are considered

marked, and Unreached objects are considered unmarked. Since unmarked objects are unreachable, all the

unmarked objects are deallocated.

13.4.1 Pros

Unlike reference counting, mark-and-sweep GC can handle cyclic structures.

13.4.2 Cons

Mark-and-sweep GC has the following weaknesses:

I It requires free lists.

I It suffers from external fragmentation.

I Execution pauses during GC.

Just like reference counting, mark-and-sweep GC also requires free lists and suffers from external fragmenta-

tion.



13 Garbage Collection 143

Execution Pause When GC is triggered, the memory manager scans the entire heap. It takes some time,

especially when the heap is large and has many objects. To correctly decide the reachability of each object,

the execution must stop during GC. Therefore, a program pauses for a while when GC is triggered. Since

programmers cannot control the exact timing of GC, pauses caused by GC are mostly unpredictable.

To alleviate this issue, modern GC implementations adopt various techniques such as parallel GC, incremental

GC, and concurrent GC, which are beyond the scope of this book.

13.5 Copying GC

Copying GC is similar to mark-and-sweep GC; it finds and deallocates all the unreachable objects when GC is

triggered. However, it copies all the reachable objects and reorganizes them in a compact layout. For this

purpose, it divides the heap into two parts: the from-space and the to-space.

Every allocation happens in the from-space. Therefore, when GC is triggered, all the objects are in the

from-space, and the to-space is empty.

The operation of copying GC is quite similar to the marking phase of mark-and-sweep GC. It starts from the

stack and marks objects reached by following pointers. The difference is that an object is copied from the

from-space to to-space when it becomes Unscanned from Unreached. First, all the objects reachable from the

stack in one step are copied to the to-space.
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When copying an object, existing pointers to the object are updated so that they correctly point to the object

in the to-space. In addition, a forwarding pointer (an arrow with a dashed line) to the object in the to-space

is stored in the object in the from-space. The forwarding pointer allows the memory manager to correctly

update pointers to be discovered in the future.

The memory manager chooses one Unscanned object and makes all the pointed Unreached objects Unscanned.
The chosen object becomes Scanned.

This repeats until there is no Unscanned object.

When an object pointed by a pointer has been copied to the to-space already, the memory manager does not

copy the object again and simply updates the pointer by checking the forwarding pointer.
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If there is no Unscanned object, GC ends. The from-space and the to-space are swapped. Now, all the

allocations happen in the new from-space, and the new to-space is considered empty.

Cheney’s Algorithm Cheney’s algorithm is an efficient implementation of copying GC. It maintains two

pointers to the to-space during GC:
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I free: a pointer to the beginning of the free space of the to-space

I scan: a pointer to the first Unscanned object in the to-space

We use the same example as before to illustrate how Cheney’s algorithm works.

Note that C, D, and E are classes defined as below.

case class C(x: AnyRef, y: AnyRef)

case class D(x: AnyRef)

case class E(x: Int)

AnyRef is the type of any objects.

Suppose that each object in the memory has a type tag, which is the name of the class to which the object

belongs. This allows the memory manager to distinguish pointers from integers by checking the types of

fields. For example, E(42) is represented as E 42 , and the memory manager knows that 42 is an integer,

not a pointer, because the type of the field x is Int.

Now, assume that the heap is 32B-large, and each type tag, integer, and address occupies only one byte. Then,

the memory before GC is as follows:

Stack

0x02

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 C 0x050x0d D 0x0b D 0x00 D 0x0b E 42 D 0x0b

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

scan
free

The first row of each space shows the address of each slot, and the second row shows the content of the space.

The last row shows the locations of scan and free. In the beginning, both scan and free point to the beginning

of the to-space because the to-space is empty.

As the first step, the only object directly pointed by the stack is copied.
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Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d D 0x0b D 0x00 D 0x0b E 42 D 0x0b

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x050x0d

scan
free

F is the type tag of an object that has been copied already. An object with the type tag F has a forwarding

pointer. The to-space now has an object, so the free pointer advances by the size of the object. On the other

hand, the object has not been scanned yet, so the scan pointer stays still. It shows that the objects between

scan and free are Unscanned objects.

As the next step, the object pointed by scan is scanned. All the objects pointed by the object being scanned

are copied.

Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d F 0x13 D 0x00 D 0x0b E 42 F 0x15

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x130x15 D 0x0b D 0x0b

scan
free

The free pointer advances again by the sum of the sizes of all the copied objects. In addition, the scan

pointer also advances to the next object in the to-space because the object previously pointed by scan has

been scanned. Note that when the scan pointer advances, the old addresses 0x05 and 0x0d are updated to

new addresses 0x13 and 0x15, respectively. This shows that the objects before scan are Scanned objects.

This repeats until scan catches up with free, i.e., there is no Unscanned object.

Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d F 0x13 D 0x00 D 0x0b F 0x17 F 0x15

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x130x15 D 0x17 D 0x0b E 42

scan
free

Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d F 0x13 D 0x00 D 0x0b F 0x17 F 0x15

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x130x15 D 0x17 D 0x17 E 42

scan
free
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Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d F 0x13 D 0x00 D 0x0b F 0x17 F 0x15

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x130x15 D 0x17 D 0x17 E 42

scan
free

13.5.1 Pros

The copying GC has the following strengths:

I It can handle cyclic structures.

I Allocations are extremely fast.

I It does not suffer from external fragmentation.

Like mark-and-sweep GC, copying GC can handle cyclic structures.

Fast Allocation Copying GC does not require free lists. The free pointer used by Cheney’s algorithm is

enough. Objects are contiguously allocated at the beginning of the from-space, and GC copies reachable

objects to the beginning of the to-space instead of selectively deallocating unreachable objects. For this

reason, the free space of the heap is always a single continuous block of memory, and every new object can

be allocated at the address to which free points. It allows constant-time allocation. It is much faster than

reference counting and mark-and-sweep GC, which need to traverse free lists.

No External Fragmentation Since the free space is always a single memory block, there is no external

fragmentation. It allows efficient use of the heap; if there is enough space, objects can be always allocated.

In addition, it guarantees good locality; consecutive allocations always result in contiguous objects on the

heap.

13.5.2 Cons

The copying GC has the following weaknesses:

I Execution stops during GC.

I Only a half of the heap can store objects.

I Copying is expensive.

Like mark-and-sweep GC, programs pause for a while when GC is triggered.

Small Free Space Since copying GC divides the heap into two pieces, only a half of the heap is available for

allocating objects. It leads to more frequent GC, which pauses execution.

Cost of Copying Unlike reference counting and mark-and-sweep GC, copying GC copies reachable objects

every time GC is triggered. If the heap has a large amount of reachable objects, copying will take a long time

and increase the duration of the pause.
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13.6 Exercises

Exercise 13.1 Suppose a program uses the following four kinds of an object:

I Type tag 1: an object containing one integer

I Type tag 2: an object containing one integer and one pointer

I Type tag 3: an object containing one pointer and one integer

I Type tag 4: an object containing two pointers

The heap is of size 26B. The memory manager uses copying GC, so each space is of size 13B. The following

is the memory just before GC, where all the memory has been allocated:

I Stack: 10

I From space:
1 2 2 3 7 1 4 4 5 10 3 7 5
0 1 2 3 4 5 6 7 8 9 10 11 12

I To space:
0 0 0 0 0 0 0 0 0 0 0 0 0
13 14 15 16 17 18 19 20 21 22 23 24 25

What are the values in the stack, the from-space, and the to-space after GC? Suppose that 10 in the stack is

a pointer and copied objects have 99 as type tags.
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This chapter is about lazy evaluation. Lazy evaluationmeans delaying the evaluation of an expression until the

result is required. The opposite of lazy evaluation is eager evaluation, which evaluates an expression even if in

the case that it is unknown whether the result of the expression is necessary for future computation. There are

multiple features that lazy evaluation can be applied to in programming languages. For example, arguments

for function applications can be evaluated lazily; each argument of a function application is evaluated when

the argument is used in the function body, not before the evaluation of the function body starts. Another

example is a variable definition. The initialization of variable happens when the variable is used for the first

time, not when it is defined. Actually, as you have seen already, local variables can be considered as syntactic

sugar of function parameters, it is enough to focus on laziness in function applications. Therefore, this book

considers lazy evaluation only on arguments of function applications.

All the previously defined languages in the book are eager languages. They use the CBV semantics for

function applications. CBV can be considered equivalent to eager evaluation. CBVmeans that every argument

is passed as a value. The value of an argument can be acquired only by evaluating the argument expression.

It implies that every argument is evaluated before the evaluation of the function body regardless of whether

the argument is used during the body evaluation. Thus, the CBV semantics is equal to the eager evaluation

semantics.
1

This chapter mainly discusses call-by-name (CBN) semantics, which is one form of lazy evaluation. In the CBN

semantics, each argument is passed as its name, i.e. the expression itself, rather than the value denoted by the

expression. Since it is passed as an expression, there is no need to evaluate the expression to obtain its value.

The expression will be evaluated when the value is required by the function body. As you can see, CBN delays

the computation of arguments by passing them as expressions and can be considered as lazy evaluation. We

will define LFAE, which is a lazy version of FAE, in this chapter. LFAE adopts the CBN semantics. In addition,

we will introduce call-by-need,
2
which is another form of lazy evaluation, as an optimized version of CBN.

Before we discuss the CBN semantics and LFAE, let us see why lazy evaluation is valuable in practice. We can

find lazy evaluation in a few real-world languages. Haskell is well-known as treating every computation

lazily by default.
3
On the other hand, Scala is an eager language but allows programmers to selectively apply

lazy evaluation to their programs. We will see code examples in Scala as it is the language used in this book,

though Haskell is the most famous lazy language. Consider the following Scala code:

def square(x: Int): Int = {

Thread.sleep(5000) // models some expensive computation

x * x

}

def foo(x: Int, b: Boolean): Int =

if (b) x else 0

val file = new java.io.File("a.txt")

foo(square(10), file.exists)

1
One may wonder whether CBR is eager or not. The best answer is that CBR is irrelevant to distinction between eagerness and laziness.

As shown in the previous chapter, CBR is possible only when an argument is a variable, whose address is known. In that case, there is

nothing to evaluate. We have to make a choice between passing the address (CBR) and passing the value at the address (CBV). On

the other hand, choosing one of eagerness and laziness is about a choice between evaluating the argument and not evaluating the

argument. CBR can be used in both eager and lazy languages.

2
Some people use the term lazy evaluation to denote call-by-need only. In that sense, CBN is not considered as lazy evaluation. However,

this book views lazy evaluation as a term that can be used broadly to mean any form of delayed computation. In this sense, both CBN

and call-by-need belong to lazy evaluation.

3
Programmers can force evaluation if they really want.
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The function square takes an integer as an argument and returns its square. It always takes five seconds to

return due to Thread.sleep(5000), which makes the thread sleep for five seconds. Of course, no one will

write such code in practice, but it is an analogy of highly expensive computation that takes a long time.

The function foo takes one integer and one boolean. It returns the integer when the boolean is true and zero

otherwise. Therefore, the integer value is required only when the boolean is true.

The last line of the program applies foo to square(10) and file.exists. The second argument is true if

and only if there exists a file named a.txt. If the file does not exist, foo returns zero, and thus the value of

square(10) is unnecessary. However, as Scala uses eager evaluation by default, square(10) is evaluated

and spends five seconds regardless of the existence of the file. If we modify the program not to evaluate

square(10)when the file is absent, we can save time in many cases without changing the behavior of the

program.

Lazy evaluation gives us an easy solution to this issue. If the first argument for foo is evaluated lazily, the

program will evaluate square(10) only when the file exists. In Scala, we can make a certain parameter use

the CBN semantics by adding => in front of the type of the parameter. Thus, the following fix completely

resolves the problem:

def foo(x: => Int, b: Boolean): Int =

if (b) x else 0

We call x a by-name parameter in Scala. Since x is a by-name parameter, the first argument for foo is evaluated

only when the value of x is needed during the evaluation of the body.

14.1 Semantics

We do not explain the syntax of LFAE as it is the same as FAE. We can move on to the semantics immediately.

The definition of an environment is the same as FAE. Also, as in FAE, � ` 4 ⇒ E is true if and only if 4

evaluates to E under �. We can use Rule Num of LFAE since evaluation of integers are not affected by lazy

evaluation. Similarly, Rule Fun can be reused as well. Rule Id also remains the same. The value of an identifier

can be found in an environment.

One that certainly requires a change is the semantics of function applications. It is the most distinctive feature

of lazy languages compared to eager languages. In the CBV semantics, we store the values of arguments in

environments and use the environments to evaluate function bodies. We still need to store arguments in

environments in the CBN semantics. However, arguments are passed as expressions, and expressions are not

values. We need a way to put expressions in environments. The simplest solution is to define a new kind of

values as follows:
4

E ::= · · · | (4 , �)

(4 , �) is an expression as a value; we call it an expression-value. It denotes that the computation of 4 under

� has been delayed. We must keep the environment together with the expression since the expression can

have free identifiers whose values are available in the environment. The reason is the same as why we need

the notion of a closure, which is a function with an environment. The structure of (4 , �) is quite similar to

the structure of a closure, 〈�G.4 , �〉, except that an expression-value lacks the name of a parameter. The

similarity is not just a coincidence. Both kinds of values denote delay of computation. The evaluation of 4 in

(4 , �) is postponed until the value of the argument becomes required, and the evaluation of 4 in 〈�G.4 , �〉 is
postponed until the closure is applied to a value.

Because of the addition of expression-values, we need to define another form of evaluation. We call it strict

evaluation. The purpose of strict evaluation is to force an expression-value to be a “normal” value, which

4
We omit the common part to FAE.
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is an integer or a closure. Strict evaluation is required because the ability of an expression-value is limited.

It can be passed as an argument or stored in an environment like normal values but cannot be used as an

operand of an arithmetic expression or applied to a value as a function. There must be a way to convert an

expression-value to a normal value, and strict evaluation takes this role.

Strict evaluation is defined as a binary relation over + and + . We use ⇓ to denote strict evaluation.

⇓⊆ + ×+

E1 ⇓ E2 is true if and only if E1 strictly evaluates to E2. Here, E1 can be any value. However, E2 cannot be

an expression-value; it must be a normal value. The reason obviously comes from the purpose of strict

evaluation: converting an expression-value to a normal value.

The following rules define strict evaluation of normal values:

Rule Strict-Num

= strictly evaluates to =

= ⇓ = [Strict-Num]

Rule Strict-Clo

〈�G.4 , �〉 strictly evaluates to 〈�G.4 , �〉

〈�G.4 , �〉 ⇓ 〈�G.4 , �〉 [Strict-Clo]

A normal value strictly evaluates to itself since it is already a normal value.

The following rule defines strict evaluation of expression-values:

Rule Strict-Expr

If 4 evaluates to E1 under �, and E1 strictly evaluates to E2, then (4 , �) strictly evaluates to E2.

� ` 4 ⇒ E1 E1 ⇓ E2

(4 , �) ⇓ E2

[Strict-Expr]

An expression-value (4 , �) is strictly evaluated by evaluating 4 under �. The result of 4 can be an expression-

value again, and thus we need repeated strict evaluation until reaching a normal value.

Now, we can define the semantics of function applications by using the notions of expression-values and

strict evaluation.

Rule App

If

41 evaluates to E1 under �,
E1 strictly evaluates to 〈�G.4 , �′〉, and
4 evaluates to E under �′[G ↦→ (42 , �)],

then

41 42 evaluates to E under �.

� ` 41 ⇒ E1 E1 ⇓ 〈�G.4 , �′〉 �′[G ↦→ (42 , �)] ` 4 ⇒ E

� ` 41 42 ⇒ E
[App]

41 evaluates to E1 first. E1 may be an expression-value, while we need a closure. Therefore, we strictly evaluate
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E1 to get a closure. On the other hand, in the CBN semantics, the argument must not be evaluated before the

evaluation of the function body. Instead of evaluating 42, we make an expression-value with 42 and � and

then put the value into the environment.

Let us see the semantics of addition and subtraction.

Rule Add

If

41 evaluates to E1 under �,
E1 strictly evaluates to =1,

42 evaluates to E2 under �, and
E2 strictly evaluates to =2,

then

41 + 42 evaluates to =1 + =2 under �.

� ` 41 ⇒ E1 E1 ⇓ =1 � ` 42 ⇒ E2 E2 ⇓ =2

� ` 41 + 42 ⇒ =1 + =2

[Add]

Rule Sub

If

41 evaluates to E1 under �,
E1 strictly evaluates to =1,

42 evaluates to E2 under �, and
E2 strictly evaluates to =2,

then

41 − 42 evaluates to =1 − =2 under �.

� ` 41 ⇒ E1 E1 ⇓ =1 � ` 42 ⇒ E2 E2 ⇓ =2

� ` 41 − 42 ⇒ =1 − =2

[Sub]

There is nothing difficult. They are similar to the rules of FAE but additionally require strict evaluation since

addition and subtraction are possible only by using integers, not expression-values.

The semantics is a correct instance of CBN but has a flaw from a practical perspective. Consider (�x.x) (1+ 1).
It results in (1 + 1, ∅), not 2. Most programmers are likely to prefer 2 as a result. We need to apply one last

strict evaluation at the end of the evaluation to resolve the problem. It is to say that “the result of a program 4

is E when ∅ ` 4 ⇒ E′ and E′ ⇓ E.” Note that it is different from applying strict evaluation to the evaluation of

every expression in the program. Strict evaluation is applied to only the result of the whole expression, which

is the program. In this way, we can make the result of the above expression 2 and eliminate the flaw.
5

If evaluating an expression in the CBV semantics results in a value, then the CBN semantics yields the same

value. It is known as a corollary of the standardization theorem of lambda calculus [Rey09]. Note that it is

true only in languages without side effects. The result of an expression with side effects varies in the order of

the evaluation. For example, if an argument is an expression changing the value of a box, and the body of the

function reads the value of the box without using the argument, the program can behave differently in CBV

and CBN. In CBV, the read value will be the value after the update. On the other hand, in CBN, the update

never happens, and the read value will be the original value of the box.

While the CBN semantics preserves the results of the CBV semantics, the converse is false even without

mutation, i.e. there are expressions that yield results only in CBN. For instance, consider a function application

whose argument is a nonterminating expression. If the function returns zero without using the argument,

evaluation with CBN results in zero, while evaluation with CBV does not terminate.

5
It is not a flaw in real-world programming languages like Haskell. A program shows its result by output operations (e.g. to files) rather

than the value of a single expression. Each output operation applies strict evaluation to its argument (like Rule Add, Rule Sub, and Rule

App in LFAE), and the value of each expression does not need to be a normal value.
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14.2 Interpreter

We need to add a new variant to Value to represent expression-values.
6

sealed trait Value

...

case class ExprV(e: Expr, env: Env) extends Value

ExprV(4, �) represents (4 , �).

The following function implements strict evaluation:

def strict(v: Value): Value = v match {

case ExprV(e, env) => strict(interp(e, env))

case _ => v

}

We can implement interp as follows:
7

def interp(e: Expr, env: Env): Value = e match {

...

case Add(l, r) =>

val NumV(n) = strict(interp(l, env))

val NumV(m) = strict(interp(r, env))

NumV(n + m)

case Sub(l, r) =>

val NumV(n) = strict(interp(l, env))

val NumV(m) = strict(interp(r, env))

NumV(n - m)

case App(f, a) =>

val CloV(x, b, fEnv) = strict(interp(f, env))

interp(b, fEnv + (x -> ExprV(a, env)))

}

Each case matches the corresponding rule, so there is nothing difficult.

14.3 Call-by-Need

The current implementation is efficient when a parameter appears once or less in the function body. However,

using a parameter twice or more leads to redundant calculation. Consider the following Scala program:

def square(x: Int): Int = {

Thread.sleep(5000) // models some expensive computation

x * x

}

def bar(x: => Int, b: Boolean): Int =

if (b) x + x else 0

6
We omit the common part to FAE.

7
We omit the common part to FAE.
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val file = new java.io.File("a.txt")

bar(square(10), file.exists)

x appears twice in the body of bar. If a.txt exists, square(10) is evaluated twice. Actually, we do not need

to evaluate square(10) twice since its result is always the same. Since square is an expensive function, it is

desirable to reduce the number of function calls as much as possible. If we use CBV instead of CBN, it is

possible to evaluate square(10) only once when the file exists. However, going back to CBV is not a good

choice. It will make the program evaluate square(10) even when the file does not exist.

The way to solve this problem is to store the value of an argument and use the value again. This strategy

is as optimal as CBV when a parameter appears multiple times; it is as optimal as CBN when a parameter

is not used at all. For programmers, it is tedious to implement such logic in their programs by themselves.

Instead, programming languages can provide the optimization. This optimization is called call-by-need as
each argument is evaluated based on need for its value. It is evaluated once if needed and is not otherwise.

Call-by-need is not different semantics from CBN in purely functional languages. The behaviors of a program

in call-by-need and CBN are completely equal. Call-by-need is just an optimization strategy of interpreters

and compilers. On the other hand, call-by-need is different semantics from CBN in languages with side effects.

In such languages, the number of computation of a certain expression can affect the result. For example,

consider an argument that is an expression that increases the value of the box by one. Suppose that its value

is used twice in the function body. Then, the value of the box increases by two in CBN, while it increases by

one in call-by-need.

Since LFAE lacks side effects, we can adopt call-by-need to the language as optimization of the interpreter.

There is no need to newly define the call-by-need version of the semantics.

To store the strict value of an expression-value, we add a new field to the class ExprV.

case class ExprV(

e: Expr, env: Env, var v: Option[Value]

) extends Value

The field is declared as mutable. Initially, the value of the expression is unknown, and v equals None. When

the value is calculated for the first time, the value is stored in v. The fact that v equals Some(a) for some a

implies that the value of the expression is a. In the next time we need the value again, a can be used without

any redundant computation.

The function strict requires the following change:

def strict(v: Value): Value = v match {

case ExprV(_, _, Some(cache)) => cache

case ev @ ExprV(e, env, None) =>

val cache = strict(interp(e, env))

ev.v = Some(cache)

cache

case _ => v

}

It checks whether there exists a cached value. If it is the case, the function simply returns the cached value.

Otherwise, e is evaluated under env like before. In addition, the function stores the value in v.

The function interp needs only one fix. When a new ExprV instance is created in the App case, one additional

argument is required to initialize the field v.

case App(f, a) =>

val CloV(x, b, fEnv) = strict(interp(f, env))

interp(b, fEnv + (x -> ExprV(a, env, None)))
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Since we do not know the value of a, the initial value of v is None.

Purely functional languages with lazy evaluation usually adopt call-by-need because it is just optimization

but not a change in their semantics. On the other hand, impure languages cannot consider call-by-need as

optimization and often allow programmers to choose one of them at each place. For example, Scala uses

CBN for by-name parameters and call-by-need for lazy variables. We can define lazy variables with the lazy

modifier.

lazy val x = {

println(1)

1

}

val y = x + x

The program prints 1 only once. By using both by-name parameter and lazy variable, we can simulate the

call-by-need semantics in Scala.

def bar(_x: => Int, b: Boolean): Int = {

lazy val x = _x

if (b) x + x else 0

}

If b is true, the first argument is evaluated only once. Otherwise, it is not evaluated at all.

14.4 Exercises

Exercise 14.1 Consider the following LFAE expression:

(�x.x + x) (1 + 2)

Write the arguments to interp each time it is called during the evaluation of the expression. Write them in

the order in which the calls to interp occur during evaluation.

Exercise 14.2 Write the results of each expression under CBV and CBN.

1. (�y.y 3) (�x.1 2)
2. (�y.y �x.10) (�x.x (1 2))
3. (�y.y �x.10) (�x.1 2)
4. (�y.y) (1 + �x.x)
5. (�y.1 + 2) (1 + �x.x)
6. (�x.8) + 10

7. (�x.8) (1 2)
8. �x.((�y.42) (9 2))
9. 1 + ((�x.x + 13) (1 + �y.7))
10. 1 + ((�x.1 + 13) (1 + �y.7))

Exercise 14.3 Consider the following expression:

val f=�x.y + 7 in
val y=5 in
f (42 + �y.3)
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Explain the result of evaluating it under the following semantics:

1. CBN with static scoping

2. CBN with dynamic scoping

3. CBV with static scoping

4. CBV with dynamic scoping

Exercise 14.4 There is a recursive call in strict:

def strict(v: Value): Value = v match {

case ev @ ExprV(e, env, None) =>

val cache = strict(interp(e, env))

ev.v = Some(cache)

cache

case ExprV(_, _, Some(cache)) => cache

case _ => v

}

Write an example LFAE expression showing the need for the recursive strict call.

Exercise 14.5 This exercise extends LFAE with val and if0. Complete the following interpreter implementa-

tion:

sealed trait Expr

...

case class Val(x: String, e: Expr, b: Expr) extends Expr

case class If0(c: Expr, t: Expr, f: Expr) extends Expr

def interp(e: Expr, env: Env): Value = e match {

...

case Val(x, e, b) => ???

case If0(c, t, f) => ???

}

Like in FAE, the semantics of val G=41 in 42 must be the same as (�G.42) 41. Like in RFAE, if0 41 42 43 evaluates
42 when 41 evaluates to 0 and evaluates 43 when 41 evaluates to a nonzero integer or a closure.

Exercise 14.6 This exercise extends LFAE with pairs. Complete the following interpreter implementation:

sealed trait Expr

...

case class Pair(f: Expr, s: Expr) extends Expr

case class Fst(e: Expr) extends Expr

case class Snd(e: Expr) extends Expr

sealed trait Value

...

case class PairV(???) extends Value

def interp(e: Expr, env: Env): Value = e match {
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...

case Pair(f, s) => ???

case Fst(e) => ???

case Snd(e) => ???

}

The semantics of pairs is as follows:

I Pair(41, 42) corresponds to (41 , 42), which is an expression that creates a new pair.

I Fst(4) corresponds to 4.1, which is an expression that gives the first value of a given pair.

I Snd(4) corresponds to 4.2, which is an expression that gives the second value of a given pair.

Pairs in this language are lazy, which means that 41 and 42 in (41 , 42) are not evaluated when the pair is

created. Each of them is evaluated only when its value is needed. For example,

I (3, (�x.x) + 4) does not incur a run-time error.

I (3, (�x.x) + 4).1 + 5 does not incur a run-time error.

I (3, (�x.x) + 4).2 + 5 incurs a run-time error.

Exercise 14.7 This exercise extends LFAE with lists. Complete the following interpreter implementation:

sealed trait Expr

...

case object Nil extends Expr

case class Cons(h: Expr, t: Expr) extends Expr

case class Head(e: Expr) extends Expr

case class Tail(e: Expr) extends Expr

sealed trait Value

...

case object NilV extends Value

case class ConsV(???) extends Value

def interp(e: Expr, env: Env): Value = e match {

...

case Nil => ???

case Cons(h, t) => ???

case Head(e) => ???

case Tail(e) => ???

}

The semantics of lists is as follows:

I Nil creates the empty list.

I Cons(41, 42) corresponds to 41 :: 42, which is an expression that creates a nonempty list. Since lists

are lazy, 41 and 42 in 41 :: 42 are not evaluated when the list is created. Each of them is evaluated only

when its value is needed.

I Head(4) corresponds to 4.head, which is an expression that gives the head of a list.

I Tail(4) corresponds to 4.tail, which is an expression that gives the tail of a list. The tail must be a list.

For example,

I ((0 + Nil) :: (2 :: Nil)).tail.head does not incur a run-time error.

I ((0 + Nil) :: (2 :: Nil)).head incurs a run-time error.
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I (0 :: 1).head does not incur a run-time error.

I (0 :: 1).tail incurs a run-time error.

You may use the helper function def isList(v: Value): Boolean, which returns true if a given value

is ConsV or NilV and false otherwise, without defining it.

Exercise 14.8 This exercise asks you to extend FAE with promises, which originate from the Racket

programming language. A promise is a value that encapsulates an expression to be evaluated on demand

via force. Due to the introduction of promises, values are now defined as follows:

E ::= = | 〈�G.4 , �〉 | delay(4 , �) | lazy(4 , �)

While = and 〈�G.4 , �〉 are usual number and closure values, delay(4 , �) and lazy(4 , �) are two different

kinds of a promise value. They are similar in that both encapsulate expressions, but their behaviors are

slightly different when being forced.

When a value is forced, a value comes out as the result. The semantics of force is as follows:

I =

When forced, it produces = as the result.

I 〈�G.4 , �〉
When forced, it produces 〈�G.4 , �〉 as the result.

I delay(4 , �)
When forced, it evaluates 4 under � and produces 4’s result as the result.

I lazy(4 , �)
When forced, it evaluates 4 under �. Then, 4’s result is also forced to obtain a value E. E is the result

of forcing lazy(4 , �).

There are three kinds of an expression treating a promise:

4 ::= · · · | delay 4 | lazy 4 | force 4

I delay 4
Creates a delay promise with 4 and the current environment.

I lazy 4
Creates a lazy promise with 4 and the current environment.

I force 4
Evaluates 4 and forces 4’s result to obtain the result.

1. Define the semantics of force of the form E ⇓ E . E1 ⇓ E2 means forcing E1 results in E2.

2. Define the operational semantics of the form � ` 4 ⇒ E for delay 4, lazy 4, and force 4.
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Many real-world languages support control diverters, which alter control flows of programs. For example,

programmers can use return in Scala code. Consider the following Scala program:

def foo(x: Int): Int = {

val y = return x

x + x

}

foo(3)

Its result is 3, not 6. When return x is evaluated, the value denoted by x is immediately returned by the

function. x + x is never evaluated. It shows how return is different from many other expressions, including

addition and function application. Most expressions produce values as results. However, return changes the

control flow by making the function immediately return. We can find various control diverters other than

return in real-world languages: break, continue, goto, throw (or raise), and so on.

Control diverters are useful for writing programs with complex control flows. For instance, consider a

function numOfWordsInFile that takes the name of a file and a string as arguments and returns how many

times the string occurs in the file.

def numOfWordsInFile(name: String, word: String): Int = ...

If such a file does not exist, the function returns -1. When the file is read for the first time, its content is

cached, so the function must check the cache first to reuse the cached result if available.

Assume that we have the following helper functions:

// checks whether a cached result exists

def cached(name: String): Boolean

// gets the cached result

def getCache(name: String): String

// checks whether a given file exists

def exists(name: String): Boolean

// reads the content of the file and caches it

def read(name: String): String

// counts the number of occurrences of `word` in `content`
def numOfWords(content: String, word: String): Int

Then, we can implement numOfWordsInFilewith the helper functions and return.

def numOfWordsInFile(name: String, word: String): Int = {

val content =

if (cached(name))

getCache(name)

else if (exists(name))
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read(name)

else

return -1

numOfWords(content, word)

}

First, the function checks whether there is a cached result by calling cached. If so, the cached result is acquired

with getCache and stored in the variable content. Otherwise, the function checks whether the file exists

with exists. The file is read with read if the file exists, and its content is stored in content. When the file

is missing, the function immediately returns -1 with return -1. Finally, the function counts the number

of word in contentwith numOfWords to compute the result. Note that when both cached result and file are

absent, numOfWords is never called because return -1 terminates the function beforehand.

Without return, we need to call numOfWords in multiple places.

def numOfWordsInFile(name: String, word: String): Int = {

if (cached(name))

numOfWords(getCache(name), word)

else if (exists(name))

numOfWords(read(name), word)

else

-1

}

The code looks fine, but we cannot directly express the idea that the function needs to call numOfWords except

one erroneous case, where both cache and file are not found. It is not a big flaw in the current implementation

of numOfWordsInFile. However, if we write a function with a large number of conditions, we would prefer

using return like below:

def numOfWordsInFile(name: String, word: String): Int = {

val content =

if (A)

a

else if (B)

b

...

else if (F)

f

else

return -1

numOfWords(content, word)

}

The implementation without returnwould be like below:

def numOfWordsInFile(name: String, word: String): Int = {

if (A)

numOfWords(a, word)

else if (B)

numOfWords(b, word)
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...

else if (F)

numOfWords(f, word)

else

-1

}

Like mutation, control diverters make languages impure. In pure languages, the order of evaluation does not

matter. Each expression only produces a result; there is no other side effect. On the other hand, in impure

languages, the order of evaluation matters. Expressions can perform side effects, including mutation and

control flow changes. Evaluating a certain expression can change the result of other expressions or make

other expressions not evaluated. Therefore, programs written in impure languages require global reasoning,

while programs written in pure languages require local, modular reasoning. Mutation and control diverters

make the reasoning of programs difficult despite their usefulness. Control diverters must be used with extra

care of programmers.

This chapter and the following two chapters introduce continuations, which are the most general explanation

of control flow. This chapter focuses on what continuations are and how we can write programs and define

semantics while exposing continuations explicitly. Then, the next chapter explains how we can add control

diverters to languages based on the notion of a continuation.

15.1 Redexes and Continuations

Evaluating an expression requires one or more steps of computation. Consider (1+ 2) + (3+ 4). Evaluation of

this expression consists of the following seven steps of computation:
1

1. Evaluate the expression 1 to get the integer value 1.

2. Evaluate the expression 2 to get the integer value 2.

3. Add the integer value 1 to the integer value 2 to get the integer value 3.

4. Evaluate the expression 3 to get the integer value 3.

5. Evaluate the expression 4 to get the integer value 4.

6. Add the integer value 3 to the integer value 4 to get the integer value 7.

7. Add the integer value 3 to the integer value 7 to get the integer value 10.

We can split # steps of computation into two parts: the former = steps and the remaining # − = steps. We

call the expression evaluated by the former = steps a redex2 and the remaining computation described by the

latter # − = steps the continuation of the redex.

For example, if we split the above steps into step 1 and steps 2-7, then the redex is the expression 1, and the

continuation consists of the remaining steps. The important point is that the continuation requires the result

of the redex to complete the evaluation. Without 1, the result of step 1, the continuation cannot proceed

beyond step 3. Step 3 can be accomplished only when the result of the redex is provided. Therefore, we

can consider the continuation as an expression with a hole that must be filled with the result of a redex.

Intuitively, the continuation of 1 can be written as (� + 2) + (3 + 4), where � denotes the place in which the

result of the redex is used. Since the continuation takes the result of a redex as input and completes the

remaining computation, the continuation can be interpreted as a function. Following this interpretation, we

can express the continuation of 1 as �x.(x + 2) + (3 + 4).

There are multiple ways to split the steps. The following table shows three different ways of splitting the

evaluation of (1 + 2) + (3 + 4) to find a redex and the continuation.

1
Assume that we use the left-to-right order for subexpression evaluation in this chapter.

2
The term redex stands for a reducible expression. However, we introduce the notion of a redex without explaining what “reduction” or

“reducible” is. The notion can be understood without knowing what reduction is, so we do not care about the origin of the term.
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Redex Continuation

Steps Expression Steps Hole Function

1 1 2-7 (� + 2) + (3 + 4) �x.(x + 2) + (3 + 4)
1-3 1 + 2 4-7 � + (3 + 4) �x.x + (3 + 4)
1-7 (1 + 2) + (3 + 4) · � �x.x

Note that 2, 3, 4, and 3 + 4 are not redexes, while 1, 1 + 2, and (1 + 2) + (3 + 4) are redexes. A redex is an

expression that can be evaluated first. Since 2 cannot be evaluated until 1 is evaluated, 2 is not a redex.

Similarly, 3, 4, and 3 + 4 cannot be evaluated until 1 + 2 is evaluated, so they are not redexes. On the other

hand, 1 + 2 is a redex because there is nothing need to be done before the evaluation of 1 + 2.

Since a continuation also consists of multiple steps of computation, it can split again into a redex and the

continuation of the redex. For example, consider the continuation of 1, which consists of steps 2-7. If we split

it into step 2 and steps 3-7, the redex is the expression 2, and the continuation is (1 + �) + (3 + 4). Here, the

line below 1 expresses that 1 is an integer value, not an expression.

Therefore, evaluation of an expression repeats evaluation of a redex and application of a continuation. A

given expression splits into a redex and a continuation. The redex evaluates to a value, and the continuation

is applied to the value. Then, the continuation splits again into a redex and a continuation, and the redex is

evaluated. This process repeats until there is no more remaining computation, i.e. the continuation becomes

the identity function.

15.2 Continuation-Passing Style

Continuation-passing style (CPS) is a style of programming that passes remaining computations to function

calls. In CPS, programs never use return values; they pass continuations as arguments instead. Therefore, by

writing programs in CPS, continuations become explicit in the source code of the programs.

Before moving on to the detail of CPS, recalling store-passing style, used in Chapter 11 and Chapter 12,

would help you understand CPS. Those chapters choose to use store passing in order to show how we

can implement mutation without mutation. The following code is part of the implementation of a BFAE
interpreter in Chapter 11.

def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) =

e match {

...

case Add(l, r) =>

val (NumV(n), ls) = interp(l, env, sto)

val (NumV(m), rs) = interp(r, env, ls)

(NumV(n + m), rs)

case NewBox(e) =>

val (v, s) = interp(e, env, sto)

val a = s.keys.maxOption.getOrElse(0) + 1

(BoxV(a), s + (a -> v))

}

A store-passing interpreter passes the current store to each function call, and each function call returns its

resulting store.

If we use mutable maps, we can implement interpreters of BFAE and MFAE without store-passing style. The

following code is part of the implementation of a BFAE interpreter using a mutable map.

type Sto = scala.collection.mutable.Map[Addr, Value]

val sto: Sto = scala.collection.mutable.Map()
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def interp(e: Expr, env: Env): Value =

e match {

...

case Add(l, r) =>

val NumV(n) = interp(l, env)

val NumV(m) = interp(r, env)

NumV(n + m)

case NewBox(e) =>

val v = interp(e, env)

val a = sto.keys.maxOption.getOrElse(0) + 1

sto += (a -> v)

BoxV(a)

}

The variable sto denotes a mutable map. The function interp depends on sto, instead of passing stores

as an argument and a return value. The Add case does not pass the resulting store from the evaluation of

l to the evaluation of r. The NewBox case simply mutates sto to create a new box. Note that sto += (a ->

v)mutates the map by adding a mapping from a to v. Store passing is unnecessary since there is a global,

mutable map, which records every update.

Two code snippets clearly compare interpreters with and without store passing. In the former, with store

passing, the current store at each point of execution is explicit. When we see the Add case, it is clear that

sto is used for the evaluation of l, which may change the store, and the resulting store of l is used for the

evaluation of r. However, in the latter, without store passing, the current store at each point is implicit. The

code does not reveal the fact that interp(l, env) can change the store and, therefore, affect the result of

interp(r, env). Implementation with store-passing style explicitly shows the use and flow of stores by

passing stores from functions to functions, while implementation without store-passing style hides the use

and flow of stores and makes the code shorter.

CPS is similar to store-passing style. The difference is that CPS passes continuations, while store-passing

style passes stores. Like that store-passing style exposes the store used by each function application, CPS

exposes the continuation of each function application.

This section illustrates how we can write programs in CPS by giving factorial as an example. Consider a

function calculating the factorial of a given integer. The following function does not use CPS:

def factorial(n: Int): Int =

if (n <= 1)

1

else

n * factorial(n - 1)

Since factorial does not use CPS, the continuation is implicit. For example, in factorial(5) + 1, the

continuation of factorial(5) is to add 1 to the result, i.e. x => x + 1. Although the continuation of

factorial(5) does exist and is executed during the evaluation of factorial(5) + 1, we cannot find x =>

x + 1 in the code per se. The reason is that factorial does not use CPS.

Let us transform this function to use CPS. Since each function in CPS takes a continuation as an argument,

the first thing to do is to add a parameter to a function. The continuation of a function application uses the

return value of certain computation. Therefore, a continuation can be interpreted as a function that takes the

return value as input. In the case of factorial, the continuation takes an integer as input. On the other hand,

there is no restriction on what the continuation computes; it can do whatever it wants. In factorial(5) + 1,

the continuation of factorial(5) results in an integer. At the same time, factorial(5) + 1 results in an

integer, too. In 120 == factorial(5), the continuation of factorial(5), which is x => 120 == x, results
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in a boolean. The whole expression 120 == factorial(5) also results in a boolean. Therefore, the output of

a continuation can have any type, but the type must be the same as the type of the whole expression.

Based on these observations, we can define the type of the continuation of factorial. It is a function type

whose parameter type is Int. The return type can be any type, but for brevity, we fix the return type to Int.

type Cont = Int => Int

Now, we can add a parameter that denotes the continuation of a function call to factorial. We call this new

function factorialCps.

def factorialCps(n: Int, k: Cont): Int = ...

k is the continuation of the function. Thus, factorialCps(n, k)means evaluating factorial(n) where its

continuation isk.According to thedefinitionof a continuation,k(factorial(n))must equalfactorialCps(n,

k). The return type of factorialCpsmust be the same as the return type of k. Since the return type of k is

fixed to Int, the return type of factorialCps also is Int.

The most naïve implementation of factorialCps is as follows:

def factorialCps(n: Int, k: Cont): Int =

k(factorial(n))

Obviously, it is not the correct implementation of factorialCps because it still depends on factorial;

we want factorialCps to be independent of factorial. The current version is just a specification, not an

implementation, of factorialCps. However, it is a good starting point. We can replace factorial(n)with

the body of factorial to obtain the following code:

def factorialCps(n: Int, k: Cont): Int =

k(

if (n <= 1)

1

else

n * factorial(n - 1)

)

Note that f(if (e1) e2 else e3) is the same as if (e1) f(e2) else f(e3). Therefore, the above code is

equivalent to the following code:

def factorialCps(n: Int, k: Cont): Int =

if (n <= 1)

k(1)

else

k(n * factorial(n - 1))

It looks better than before but still depends on factorial, which is not a function written in CPS. The use

of factorial must disappear. Now, the goal is eliminating factorial in k(n * factorial(n - 1)). It is

possible by using factorialCps instead of factorial. The key intuition to achieve the goal is to recall that

k(factorial(n)) equals factorialCps(n, k). Based on the equality, we can conclude that the following

equation is true:

k(n * factorial(n - 1))

= (x => k(n * x))(factorial(n - 1))

= factorialCps(n - 1, x => k(n * x))
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(x => k(n * x))(factorial(n - 1)) applies x => k(n * x) to the result of factorial(n - 1) and,

thus, equals k(n * factorial(n - 1)). Since k(factorial(n)) equals factorialCps(n, k), (x => k(n

* x))(factorial(n - 1)) equals factorialCps(n - 1, x => k(n * x)). By utilizing the equality, we

attain the following code:

def factorialCps(n: Int, k: Cont): Int =

if (n <= 1)

k(1)

else

factorialCps(n - 1, x => k(n * x))

The function uses CPS because its recursive call explicitly passes the continuation as an argument. When n

is greater than one, factorialCps(n, k) computes (n − 1)!, multiplies the result by n, and applies k to the

result of the multiplication. The first step, computing (n − 1)!, is done by calling factorialCps itself. The

subsequent two steps are the continuation of the recursive call. In the implementation, the continuation is x

=> k(n * x). It exactly coincides with the aforementioned steps: multiplying the result by n and applying

k.

Now, we can compute 5! with factorialCps by writing factorialCps(5, x => x). The continuation is

x => x because there is nothing more to do with 5!, which is the desired result. In factorial(5), the

continuation is implicit since x => x is not written in the code. On the other hand, x => x is explicitly written

in factorialCps(5, x => x), which clearly illustrates the main characteristic of CPS. Similarly, to compute

5! + 1, we can write factorialCps(5, x => x + 1) instead of factorial(5) + 1. To obtain 5! + 1 from 5!,

the only thing to do is adding 1. Therefore, the continuation is x => x + 1. Just like before, the code with

factorialCps directly shows the continuation, while the code with factorial does not.

Since the output type of a continuation is T, any codeusing factorial can be rewrittenwith factorialCps. For

example, factorial(5) % 2 == 0 checks whether 5! is an even integer. It is equivalent to factorialCps(5,

x => x % 2 == 0), which explicitly shows the continuation. Similarly, println(factorial(5)) prints 120,

which is 5!. It is the same as factorialCps(5, println), which also reveals the continuation.

The code written in CPS has the following characteristics:

I Each function takes a continuation as an argument, and each function application passes a continuation

as an argument.

I A continuation is used—called or passed to another function— once and at most once in a function

body.

I The return value of every function application is never used.

I Every function call is a tail call.

I Every function ends with a function call.

These are not individual ones; they are connected and express the same idea. Since a continuation is given as

an argument, the only way to finish a computation is calling the continuation. Therefore, a continuation is

used once and at most once in a function body. Also, there is no need to do additional computation with the

return value of a function application. The continuation does every additional computation with the return

value, so return values are not used at all. Since we do not use return values, every call is a tail call. Once a

function calls another function, the result of the callee is the result of caller. Moreover, there is no way of

returning from a function without calling any function. If the function is the last step of a computation, it

must call its continuation. Otherwise, it needs to call another function to proceed the computation. Therefore,

every function ends with a function call.

While CPS may seem to be needlessly complex, it is useful in various cases. If we compare factorial and

factorialCps, the former looks more concise. It is difficult to implement programs correctly in CPS. One

benefit of CPS is that it makes every function call be a tail call. If implementation languages support tail-call

optimization, CPS can be used to avoid stack overflow. However, this book uses Scala, which optimizes

only tail-recursive calls. Scala programs written in CPS can suffer from stack overflow despite the use of
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CPS. Then, why does this section introduce CPS? The first reason is to help readers understand the notion

of a continuation. The other reason is that the characteristic of CPS, passing a continuation explicitly as

a value, is sometimes useful. The next chapter shows such an example: an interpreter of a language with

first-class continuations. We will see how CPS can contribute to the implementation of an interpreter in the

next chapter.

15.3 Interpreter in CPS

Let us implement an interpreter of FAE in CPS. As explained already, there is no reason to implement an

interperter of FAE in CPS. However, CPS is an appropriate implementation strategy for the interpreter of the

next chapter, and this section is preparation for the next chapter.

First, recall the previous implementation:

def interp(e: Expr, env: Env): Value = e match {

case Num(n) => NumV(n)

case Add(l, r) =>

val v1 = interp(l, env)

val v2 = interp(r, env)

val NumV(n) = v1

val NumV(m) = v2

NumV(n + m)

case Sub(l, r) =>

val v1 = interp(l, env)

val v2 = interp(r, env)

val NumV(n) = v1

val NumV(m) = v2

NumV(n - m)

case Id(x) => env(x)

case Fun(x, b) => CloV(x, b, env)

case App(f, a) =>

val fv = interp(f, env)

val av = interp(a, env)

val CloV(x, b, fEnv) = fv

interp(b, fEnv + (x -> av))

}

To re-implement the interpreter in CPS, we should add the type of a continuation.

type Cont = Value => Value

A continuation takes a value of Value as input because interp returns a value of Value. The return type of a

continuation can be any type, but like before, we choose Value just for brevity.

The following function, interpCps, is the CPS version of interp:

def interpCps(e: Expr, env: Env, k: Cont): Value = e match {

...

}

For any e, env, and k, interpCps(e, env, k)must equal k(interp(e, env)).
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Now, we need to implement each case of the pattern matching. First, consider the Num case. interp(Num(n),

env) equals NumV(n). Hence, k(interp(Num(n), env)) equals k(NumV(n)). Since interpCps(Num(n), env,

k)must also equal k(NumV(n)), the Num case can be implemented as follows:

case Num(n) => k(NumV(n))

It is similar to k(1) of factorialCpswhen n is less than or equal to one. Since there is no need of a recursive

call, the function simply passes NumV(n) to the continuation.

The Id and Fun cases are similar to the Num case.

case Id(x) => k(env(x))

case Fun(x, b) => k(CloV(x, b, env))

The remaining cases are Add, Sub, and App. They are similar in the sense that each sort of expression consists

of two subexpressions, so if you understand one of them, the others are straightforward. Let us consider the

Add case first. The previous implementation is as follows:

val v1 = interp(l, env)

val v2 = interp(r, env)

add(v1, v2)

where add(v1, v2) denotes val NumV(n) = v1; val NumV(m) = v2; NumV(n + m). Since interpCps(e,

env, k) equals k(interp(e, env)), we can start from the following code:

val v1 = interp(l, env)

val v2 = interp(r, env)

k(add(v1, v2))

By desugaring variable definitions into an anonymous function and a function application, we can find the

continuation of interp(l, env). Recall that val x = e1; e2 is equivalent to (x => e2)(e1) as shown in

Chapter 9. Desugaring yields the following code:

(v1 => {

val v2 = interp(r, env)

k(add(v1, v2))

})(interp(l, env))

The function applied to interp(l, env) is the continuation of interp(l, env). Then, interp can be

replaced with interpCps because k(interp(e, env)) is the same as interpCps(e, env, k).

interpCps(l, env, v1 => {

val v2 = interp(r, env)

k(add(v1, v2))

})

Now, let us focus on the body of the continuation.

val v2 = interp(r, env)

k(add(v1, v2))

In a similary way, desugaring reveals the continuation of interp(r, env).
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(v2 =>

k(add(v1, v2))

)(interp(r, env))

Just like before, interp can be replaced with interpCps.

interpCps(r, env, v2 =>

k(add(v1, v2))

)

Then, we can use this new expression as the body of the continuation.

interpCps(l, env, v1 =>

interpCps(r, env, v2 =>

k(add(v1, v2))

)

)

Finally, we obtain the complete implementation of the Add case by replacing addwith its definition.

case Add(l, r) =>

interpCps(l, env, v1 =>

interpCps(r, env, v2 => {

val NumV(n) = v1

val NumV(m) = v2

k(NumV(n + m))

})

)

The code explicitly shows the continuation of each function application. The first function application

evaluates l under env. Its continuation is v1 => interpCps(r, env, v2 => k(add(v1, v2))). Therefore,

we can say that r is evaluated after the evaluation of l. In k(add(v1, v2)), v1 denotes the result of l. The

second function application evaluates r. Its continuation is v2 => k(add(v1, v2)). In k(add(v1, v2)), v2

denotes the result of r. k(add(v1, v2))makes NumV(n + m) from v1 and v2 and passes NumV(n + m) to k,

the continuation of evaluating Add(l, r).

The Sub case is similar to the Add case.

case Sub(l, r) =>

interpCps(l, env, v1 =>

interpCps(r, env, v2 => {

val NumV(n) = v1

val NumV(m) = v2

k(NumV(n - m))

})

)

The App case is also similar but needs extra care. The previous implementation is as follows:

val fv = interp(f, env)

val av = interp(a, env)

val CloV(x, b, fEnv) = fv

k(interp(b, fEnv + (x -> av)))
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By applying the same strategy, we attain the following code:

interpCps(f, env, fv =>

interpCps(a, env, av => {

val CloV(x, b, fEnv) = fv

k(interp(b, fEnv + (x -> av)))

})

)

Unlike Add and Sub, an interp function call still exists. It is not CPS because the result of the function call is

used by being passed to k. Replacing interpwith interpCps resolves the problem.

case App(f, a) =>

interpCps(f, env, fv =>

interpCps(a, env, av => {

val CloV(x, b, fEnv) = fv

interpCps(b, fEnv + (x -> av), k)

})

)

The code does not directly call k. Instead of calling k, it passes k as an argument. Look at interpCps(b, fEnv

+ (x -> av), k). k is passed to interpCps and, therefore, eventually called.

15.4 Small-Step Operational Semantics

This section defines semantics that explicitly shows continuations for FAE. Previous chapters define semantics

in a big-step style. Big-step semantics is intuitive, and its inference rules give nice clues to interpreter

implementers. A single rule usually corresponds to a single case of pattern matching in an interpreter, so it is

straightforward to implement an interpreter based on the big-step semantics and write semantics rules based

on the implementation of an interpreter.

However, it is difficult to formalize continuations in big-step semantics. The problem is that an inference rule

of big-step semantics describes the result of an expression instead of one step of computation. For instance,

consider the following rule:

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

The rule implies that the value of 41 + 42 is =1 + =2. It does not explain how 41 evaluates to =1 and 42 evaluates

to =2. Therefore, the rule does not describe steps that evaluate 41 to =1 and 42 to =2. The only step the rule

describes is the last step: adding =1 and =2.

Another problem is that rules of big-step semantics do not specify the order of computation. Consider the

above rule again. The rule does not decide the order between 41 and 42. The only two things the rule requires

are that 41 evaluates to =1 and that 42 evaluates to =2. The evaluation of 41 may precede that of 42, and vice

versa.

These two characteristics of big-step semantics hamper us from formalizing continuations. Continuations

highly rely on precise steps of computation whose order is fixed. Big-step semantics neither shows all the

steps nor specifies the order. Therefore, we do not use big-step semantics in this section.

Small-step operational semantics is anotherway of defining the semantics of a language.While big-step semantics

defines a relation over expressions and values, small-step semantics defines a relation between states and
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states. If one step of computation transfers a program from state � to state �, � and � are related by the

relation. Such one step of computation is called reduction. If reduction from � to � is possible, we say that

� is reducible and reduced to �. On the other hand, if a state cannot be reduced to any state, the state is

irreducible. In small-step semantics, the definition of a state varies. One possible definition of a state is an

expression. For example, 1+ 2 and 3 are states, and 1+ 2 is reduced to 3 by one step of computation. However,

this section’s small-step semantics does not use an expression as a state. We will introduce the definition of a

state soon. The execution of a program is defined as repeated reduction. The execution starts from an initial

state, and the state becomes reduced if possible. When no further reduction is possible, the execution stops,

and the final state is the result.

Small-step semantics fits formalizing continuations. Since execution is a sequence of multiple reduction steps,

every step of computation can be identified. The order between the steps naturally arises. By splitting the

steps into two parts, we can formally describe a redex and a continuation.

Now, let us define states of FAE. A state of FAE is a pair of a computation stack and a value stack. The

following defines computation and value stacks:

: ::= � | � ` 4 :: : | (+) :: : | (−) :: : | (@) :: :

B ::= � | E :: B

where the metavariable : ranges over computation stacks and the metavariable B ranges over value stacks. Let

(Comp be the set of every computation stack and (Val be the set of every value stack. We write : | | B to denote

a state that consists of a computation stack : and a value stack B. : includes remaining steps of computation,

and B includes values used by those steps.

A computation stack is a stack containing remaining steps of computation. The white square, �, denotes the
empty computation stack, which implies that there is nothing more to do.

3
If the computation stack of a state

is �, no further reduction is possible, and the evaluation ends. There are four kinds of computation: � ` 4,
(+), (−), and (@). Their detailed descriptions and formal definitions will be provided soon. The computation

at the top of the stack is the first step of computation. After finishing the step, the corresponding computation

in the stack is popped. For example, ∅ ` 1 :: � has one step of compuation: ∅ ` 1. After finishing the step, the

stack becomes �, and the evaluation finishes.

A value stack is a stack containing values. The black square, �, denotes the empty value stack. Therefore,

1 :: 2 :: � is a stack that contains 1 and 2. 1 is at the top of the stack. Since a value stack is a stack, the only

possible operations are push and pop. If we push 0 onto 1 :: 2 :: �, we obtain 0 :: 1 :: 2 :: �. If we pop the top

element from 1 :: 2 :: �, we obtain 2 :: �.

Before moving on to the formal defintion of reduction, let us see the high-level idea of reduction first. Each

reduction step pops the element at the top of the computation stack and manipulates the computation and

value stacks depending on the popped computation. � ` 4 is the only kind that pushes a value onto the value

stack. It evaluates 4 under � and pushes the result of 4 onto the value stack. Therefore, if the current state is

� ` 4 :: : | | B, then the redex is 4, and the continuation is : | | B. Applying the continuation to a value is done

by pushing the value onto the value stack. Therefore, if 4 evaluates to E, the continuation is applied to E, so

the state becomes : | | E :: B. For example, ∅ ` 1 :: : | | B is reduced to : | | 1 :: B. On the other hand, the other

kinds of computation consume values in the value stack. (+) pops two values from the value stack and then

pushes the sum of the values onto the value stack. For instance, (+) :: : | | 2 :: 1 :: B is reduced to : | | 3 :: B. (−)
and (@) are similar to (+). (−) performs subtraction and (@) performs function application.

It becomes clear that each kind of a computation step coincides with our intuitive notion of a computation

step when we see an example. Consider the evaluation of 1+ 2 under the empty environment. The evaluation

consists of three steps:

1. Evaluate the expression 1 to get the integer value 1.

3
Note that � has no relation to � used to represent continuations intuitively. In the continuation � + 1, �means a hole, which should be

filled by the result of a redex. On the other hand, in the small-step semantics, � is the empty computation stack. The overlapped use of

� is just coincidence.
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2. Evaluate the expression 2 to get the integer value 2.

3. Add the integer value 1 to the integer value 2 to get the integer value 3.

Steps 1 and 2 can be represented by ∅ ` 1 and ∅ ` 2, respectively. ∅ ` 1 evaluates 1 to get 1 and pushes 1 onto

the value stack for the continuation. Similarly, ∅ ` 2 evaluates 2 to get 2 and pushes 2 onto the value stack for

the continuation. Finally, step 3, which can be represented by (+), pops both values and computes the sum.

The sum, 3, is pushed onto the value stack and becomes the result of the execution. Therefore, the evaluation

of 1 + 2 can be decomposed into three steps in the computation stack: ∅ ` 1 :: ∅ ` 2 :: (+) :: �.

Now, we formally define reduction. Reduction is a relation over (Comp, (Val, (Comp, and (Val.

→⊆ (Comp × (Val × (Comp × (Val

Wewrite :1 | | B1 → :2 | | B2 if :1 | | B1 is reduced to :2 | | B2. For example, we write ∅ ` 1 :: � | | �→ � | | 1 :: �

As mentioned already, execution of a program is to repeat reduction until no more reduction is possible.

When the state cannot be reduced any longer, the execution terminates, and the state represents the result. To

formalize the notion of execution, we define the repeated reduction as the reflexive, transitive closure of the

reduction relation.

Reflexive relations

Let � be a set and ' be a binary relation over � and �.

If (0, 0) ∈ ' for every 0 ∈ �, ' is reflexive.

Transitive relations

Let � be a set and ' be a binary relation over � and �.

If (0, 1), (1, 2) ∈ ' implies (0, 2) ∈ ' for every 0, 1, 2 ∈ �, ' is transitive.

Reflexive, transitive closures

Let � be a set and ' be a binary relation over � and �.

The reflexive, transitive closure of ' is the smallest set ( such that ' ⊆ ( ⊆ � × � and ( is reflexive and

transitive.

→∗ denotes repeated reduction. :1 | | B1 →∗ := | | B= implies :1 | | B1 → :2 | | B2, :2 | | B2 → :3 | | B3, . . . , and

:=−1 | | B=−1 → := | | B= . The following rules formalize the relation:

: | | B →∗ : | | B

:1 | | B1 →∗ :2 | | B2 :2 | | B2 → :3 | | B3

:1 | | B1 →∗ :3 | | B3

By definition,→∗ is indeed the reflexive, transitive closure of→. Intuitively, :1 | | B1 →∗ :2 | | B2 implies that

:2 | | B2 can be reached from :1 | | B1 by zero or more steps of reduction.

Note that→∗ does not require the resulting state to be irreducible. It just denotes zero or more steps of

reduction. When :1 | | B1 → :2 | | B2 and :2 | | B2 → :3 | | B3, all of :1 | | B1 →∗ :1 | | B1, :1 | | B1 →∗ :2 | | B2, and

:1 | | B1 →∗ :3 | | B3 are true. Therefore, we cannot say a program that starts with :1 | | B1 terminates with

:2 | | B2 even if we know :1 | | B1 →∗ :2 | | B2. :2 | | B2 might not be the final state. To say that the program
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terminates with :2 | | B2, we need an additional condition: :2 | | B2 is irreducible.

In small-step semantics, there are two kinds of termination. One kind is normal termination, which produces

a value as a result. The execution terminates normally when the computation stack is empty. Since each

reduction step pops a computation step, reduction is impossible when the stack is empty. The empty stack

implies that there is no remaining computation, so this kind of termination is intended. The other kind is

abnormal termination, i.e. termination due to a run-time error. It happens when the value stack contains

values that cannot be used by the current computation step. For example, if a popped value is not an integer,

both addition or subtraction are impossible, so reduction cannot happen when the popped computation is (+)
or (−). It prevents further reduction even when there is remaining computation. Therefore, such termination

is considered erroneous and harmful.

When evaluation according to the small-step semantics succesfully produces a value, we can reach the same

conclusion using the big-step semantics. Recall that � ` 4 ⇒ E implies that 4 evaluates to E under �. In
small-step semantics, evaluation of 4 under � starts with � ` 4 :: � | | �. The redex and the continuation of the

state are 4 and the identity function, respectively, so the state does evaluate 4. If the evaluation results in E,

the final state is � | | E :: �. The computation stack is empty, and the value stack contains only E, which is the

result. Thus, the following proposition is true.

∀�.∀4.∀E.(� ` 4 ⇒ E) ↔ (� ` 4 :: � | | �→∗ � | | E :: �)

More generally, the following statement is true:

∀�.∀4.∀E.∀:.∀B.(� ` 4 ⇒ E) ↔ (� ` 4 :: : | | B →∗ : | | E :: B)

Now, we define the rules for reduction based on the interpreter implementation of the previous section.

Consider the Num case first.

case Num(n) => k(NumV(n))

When = is the redex and k is the continuation, the evaluation proceeds by applying k to =. This state is

represented by � ` = :: : | | B, where the continuation k is represented by : | | B. Applying : | | B to = is to

evaluate : | | = :: B. Therefore, we define the following reduction rule:

� ` = :: : | | B → : | | = :: B [Red-Num]

The rule also matches our high-level intuition on reduction. � ` = evaluates = and gets =. After the reduction,

the computation step is removed from the computation stack, and the result is pushed onto the value stack.

In a similar manner, we can define the rules for the Id and Fun cases.

case Id(x) => k(env(x))

case Fun(x, b) => k(CloV(x, b, env))

� ` G :: : | | B → : | | �(G) :: B [Red-Id]

� ` �G.4 :: : | | B → : | | 〈�G.4 , �〉 :: B [Red-Fun]

Now, let us consider the Add case.

case Add(l, r) =>

interpCps(l, env, v1 =>

interpCps(r, env, v2 =>

k(add(v1, v2))
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)

)

When 41 + 42 is the redex, the evaluation splits into three parts:

1. Evaluate 41 to get E1. (interpCps(l, env, v1 =>)

2. Evaluate 42 to get E2. (interpCps(r, env, v2 =>)

3. If both E1 and E2 are integers, add E1 and E2 to get E1 + E2, and apply the continuation to E1 + E2.

(k(add(v1, v2)))

Steps 1 and 2 can be represented by � ` 41 and � ` 42, respectively. First, � ` 41 pushes the result of 41 onto
the value stack, and then � ` 42 pushes the result of 42 onto the value stack. Step 3 can be represented by (+)
since it pops two values from the value stack and adds them. From this observation, we define the following

rules:

� ` 41 + 42 :: : | | B → � ` 41 :: � ` 42 :: (+) :: : | | B [Red-Add1]

(+) :: : | | =2 :: =1 :: B → : | | =1 + =2 :: B [Red-Add2]

Rule Red-Add1 splits the evaluation of 41+ 42 into aforementioned three parts. Then, the subsequent reduction

steps evaluate 41 and 42 and push their results onto the value stack. After the evaluation of 42, (+) is at the top
of the computation stack. One more reduction step, which is defined by Rule Red-Add2, pops the values from

the value stack and pushes their sum to the value stack. The following figure summarizes this process:

� ` 41 + 42 :: : | | B

→ � ` 41 :: � ` 42 :: (+) :: : | | B

→∗ � ` 42 :: (+) :: : | | =1 :: B

→∗ (+) :: : | | =2 :: =1 :: B

→ : | | =1 + =2 :: B

We can define the rules for the Sub case in a similar way:

� ` 41 − 42 :: : | | B → � ` 41 :: � ` 42 :: (−) :: : | | B [Red-Sub1]

(−) :: : | | =2 :: =1 :: B → : | | =1 − =2 :: B [Red-Sub2]

The only remaining case is App.

case App(f, a) =>

interpCps(f, env, fv =>

interpCps(a, env, av => {

val CloV(x, b, fEnv) = fv

interpCps(b, fEnv + (x -> av), k)

})

)

When 41 42 is the redex, the evaluation splits into three parts:

1. Evaluate 41 to get E1. (interpCps(f, env, fv =>)

2. Evaluate 42 to get E2. (interpCps(a, env, av =>)

3. If E1 is 〈�G.4 , �′〉, evaluate 4 under �′[G ↦→ E2] with the given continuation. (interpCps(b, fEnv +

(x -> av), k))
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The first two steps are the same as those of Add and Sub. Therefore, we define the following rule:

� ` 41 42 :: : | | B → � ` 41 :: � ` 42 :: (@) :: : | | B [Red-App1]

However, the last step is a bit different. In Add and Sub, the last step applies the continuation to a certain

value, which is obtained by addition or subtraction. In App, the body of the function must be evaluated.

Thus, we define the rule to evaluate the body with the same continuation instead of directly applying the

continuation to a particular value.

(@) :: : | | E :: 〈�G.4 , �〉 :: B → �[G ↦→ E] ` 4 :: : | | B [Red-App2]

The following figure summarizes the evaluation of App:

� ` 41 42 :: : | | B

→ � ` 41 :: � ` 42 :: (@) :: : | | B

→∗ � ` 42 :: (@) :: : | | 〈�G.4 , �′〉 :: B

→∗ (@) :: : | | E2 :: 〈�G.4 , �′〉 :: B

→ �′[G ↦→ E2] ` 4 :: : | | B

→∗ : | | E :: B

The following shows the reduction steps of (1 + 2) − (3 + 4) as an example:

∅ ` (1 + 2) − (3 + 4) :: � | | �
→ ∅ ` 1 + 2 :: ∅ ` 3 + 4 :: (−) :: � | | �
→ ∅ ` 1 :: ∅ ` 2 :: (+) :: ∅ ` 3 + 4 :: (−) :: � | | �
→ ∅ ` 2 :: (+) :: ∅ ` 3 + 4 :: (−) :: � | | 1 :: �
→ (+) :: ∅ ` 3 + 4 :: (−) :: � | | 2 :: 1 :: �
→ ∅ ` 3 + 4 :: (−) :: � | | 3 :: �
→ ∅ ` 3 :: ∅ ` 4 :: (+) :: (−) :: � | | 3 :: �
→ ∅ ` 4 :: (+) :: (−) :: � | | 3 :: 3 :: �
→ (+) :: (−) :: � | | 4 :: 3 :: 3 :: �
→ (−) :: � | | 7 :: 3 :: �
→ � | | −4 :: �

The following shows the reduction steps of (�x.�y.x + y) 1 2 as an example:

∅ ` 4 1 2 :: � | | �
→ ∅ ` 4 1 :: ∅ ` 2 :: (@) :: � | | �
→ ∅ ` 4 :: ∅ ` 1 :: (@) :: ∅ ` 2 :: (@) :: � | | �
→ ∅ ` 1 :: (@) :: ∅ ` 2 :: (@) :: � | | 〈4 , ∅〉 :: �
→ (@) :: ∅ ` 2 :: (@) :: � | | 1 :: 〈4 , ∅〉 :: �
→ �1 ` �y.x + y :: ∅ ` 2 :: (@) :: � | | �
→ ∅ ` 2 :: (@) :: � | | 〈�y.x + y, �1〉 :: �
→ (@) :: � | | 2 :: 〈�y.x + y, �1〉 :: �
→ �2 ` x + y :: � | | �
→ �2 ` x :: �2 ` y :: (+) :: � | | �
→ �2 ` y :: (+) :: � | | 1 :: �
→ (+) :: � | | 2 :: 1 :: �
→ � | | 3 :: �

where
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4 = �x.�y.x + y
�1 = [x ↦→ 1]
�2 = [x ↦→ 1, y ↦→ 2]

15.5 Exercises

Exercise 15.1 Complete the following LFAE interpreter in CPS:

def strict(v: Value, k: Cont): Value = v match {

case ExprV(e, env) => ???

case _ => k(v)

}

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => k(NumV(n))

case Id(x) => k(env(x))

case Fun(x, b) => k(CloV(x, b, env))

case Add(l, r) => ???

case App(f, a) => ???

}

If � ` 4 ⇒ E, then interp(4, �, 5 )must evaluate to 5 (E).
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The previous chapter defines the small-step semantics of FAE and implements the interpreter of FAE in CPS.

Conceptually, continuations exist during the evaluation of FAE programs. However, they are not exposed to

programmers. Programmers cannot utilize continuations directly while writing programs in FAE.

A first-class entity of a language is an entity treated as a value. Since it is a value, it can be the value denoted

by a variable, an argument for a function call, and the return value of a function. For example, first-class

functions are functions used as values.

First-class continuations are continuations used as values. If a language supports first-class continuations,

continuations can be the value of a variable, an argument for a function call, and the return value of a function.

A continuation can be considered as a function since it takes a value and performs computation. Programmers

can call continuations like calling functions. However, continuations are different from functions. A function

call returns a value, and the execution continues with the return value. On the other hand, a continuation call

does not come back to its call site. The continuation at some point of execution is the remaining computation.

Once a continuation is called and evaluated, the execution finishes. Calling a continuation changes the current

continuation to the called one. It changes the control flow of the execution. First-class continuations allow

programmers to express computations with complex control flows concisely.

This chapter defines KFAE by extending FAE with first-class continuations. It defines the small-step semantics

of KFAE and implements an interpreter of KFAE in CPS. While implementing the interpreter, you will see why

CPS is required. In addition, this chapter shows utilization of first-class continuations in programming.

16.1 Syntax

The syntax of KFAE is as follows:
1

4 ::= · · · | vcc G in 4

An expression vcc G in 4 evaluates 4 while G denotes the continuation of vcc G in 4. The term “cc” of vcc
stands for the current continuation. The scope of G equals 4. When a continuation is called, the continuation

replaces the continuation of that point.

16.2 Semantics

Before going deep into the semantics of first-class continuations, it would be better to understand the

high-level idea with some examples. Consider 1 + (vcc x in (x 2) + 3). The continuation of (vcc x in (x 2) + 3)
is to add the result to 1. Intuitively, we can use 1 + � to represent the continuation.

2
The continuation is

the value of x. After binding x, x 2 is evaluated. The continuation of x 2 is 1 + (� + 3). Therefore, if x is a

normal function, the result of function application fills the hole, and the evaluation continues. However, x is

a continuation, not a function. The evaluation of x 2 completely ignores the original continuation 1 + (� + 3).
It replaces the continuation with the continuation denoted by x and fills the hole with the argument, 2. Thus,

x 2 results in evaluating 1 + 2. Since the original continuation is ignored, there is nothing more to do after the

evaluation of 1 + 2. The result of the whole expression is 3.

To compare first-class continuations and functions, consider the following expression:

1
We omit the common part to FAE.

2
Like before, the line below 1 denotes that 1 is an integer value, not an expression.
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1 + (val x=�y.1 + y in (x 2) + 3)

In the previous expression, x denotes a continuation, but in this expression, x denotes a function. The

continuation and the function are almost the same. Both take an argument and add 1 to the argument.

However, continuations change the control flow, while functions do not. Therefore, in this case, x 2 preserves

its continuation, 1+(�+3). The return value of the function application is 3, and it fills the hole in the original

continuation. After the function returns, 1 + (3 + 3) is evaluated, and the whole expression results in 7.

Let us consider another example:

vcc x in (vcc y in x (1 + (vcc z in y z))) 3

What is the result of this expression? The first thing happens during the evaluation is binding of x. xdenotes the

continuation of thewhole expression, which is the identity function, i.e.�. Then, (vcc y in x (1+(vcc z in y z))) 3
is evaluated. Any function application evaluates the expression at the function position first. Thus, the

redex is vcc y in x (1 + (vcc z in y z)), and the continuation is � 3. The redex defines y, which denotes the

continuation, � 3. Under the environment containing x and y, x (1 + (vcc z in y z)) is evaluated. x directly

evaluates to a continuation, and the argument expression becomes the redex. At this point, the continuation

is (x �) 3. The argument expression is 1 + (vcc z in y z), and 1 evaluates to 1. Then, vcc z in y z becomes the

redex, and the continuation is (x (1 + �)) 3. Therefore, z denotes (x (1 + �)) 3. When y is applied to z, the

original continuation is ignored, and z fills the hole in the continuation denoted by y. Now, the remaining

computation is z 3, which is obtained by filling the hole of � 3 with z. Applying z to 3 ignores the continuation

again, and (x (1 + 3)) 3 is obtained by filling the hole of (x (1 + �)) 3 with 3. Since 1 + 3 evaluates to 4, x is

applied to 4. Then, 4 fills the hole of � and becomes the final result.

Now, we define the semantics of KFAE. First, since continuations are values, values must be extended.

E ::= · · · | 〈:, B〉

A continuation as a value is a pair of a computation stack and a value stack. 〈:, B〉 denotes a continuation
whose computation stack is : and value stack is B. It corresponds to the state : | | B. The previous chapter
shows that applying a continuation : | | B to a value E changes the state to : | | E :: B. Therefore, applying 〈:, B〉
to E reduces the state to : | | E :: B.

Since KFAE has a new sort of an expression, vcc G in 4, we need to define the reduction rule for vcc G in 4.

� ` vcc G in 4 :: : | | B → �[G ↦→ 〈:, B〉] ` 4 :: : | | B [Red-Vcc]

Expression vcc G in 4 evaluates 4 where G denotes the continuation of vcc G in 4. If the current state is

� ` vcc G in 4 :: : | | B and the redex is vcc G in 4, the continuation is : | | B. This continuation can be represented

by a value 〈:, B〉. Therefore, reduction changes the top of the computation stack to �[G ↦→ 〈:, B〉] ` 4.

Adding Rule Red-Vcc is not enough to define the semantics of KFAE. Due to the existence of first-class

continuations, function application expressions must be able to handle not only closures but also first-class

continuations. To define the reduction rule, recall the reduction rule that handles function application.

(@) :: : | | E :: 〈�G.4 , �〉 :: B → �[G ↦→ E] ` 4 :: : | | B [Red-App2]

If a continuation is applied instead of a function, the state should be (@) :: : | | E :: 〈:′, B′〉 :: B. The current

continuation is : | | B. Since a continuation is applied to a value, the original continuation is ignored. The

new continuation that replaces the original one is :′ | | B′, which comes from 〈:′, B′〉 in the value stack. The

argument is E, which is at the top of the value stack. Thus, reduction results in the state :′ | | E :: B′.

(@) :: : | | E :: 〈:′, B′〉 :: B → :′ | | E :: B′ [Red-App2-Cont]
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The following shows that 1 + (vcc x in ((x 2) + 3)) evaluates to 3 by applying reduction according to the

semantics:

∅ ` 1 + (vcc x in ((x 2) + 3)) :: � | | �
→ ∅ ` 1 :: ∅ ` vcc x in ((x 2) + 3) :: (+) :: � | | �
→ ∅ ` vcc x in ((x 2) + 3) :: (+) :: � | | 1 :: �
→ � ` (x 2) + 3 :: (+) :: � | | 1 :: �
→ � ` x 2 :: � ` 3 :: (+) :: (+) :: � | | 1 :: �
→ � ` x :: � ` 2 :: (@) :: � ` 3 :: (+) :: (+) :: � | | 1 :: �
→ � ` 2 :: (@) :: � ` 3 :: (+) :: (+) :: � | | E :: 1 :: �
→ (@) :: � ` 3 :: (+) :: (+) :: � | | 2 :: E :: 1 :: �
→ (+) :: � | | 2 :: 1 :: �
→ � | | 3 :: �

where � is [x ↦→ 〈(+) :: �, 1 :: �〉] and E is 〈(+) :: �, 1 :: �〉.

The following shows that vcc x in (vcc y in x (1 + (vcc z in y z))) 3 evaluates to 4:

∅ ` vcc x in (vcc y in x (1 + (vcc z in y z))) 3 :: � | | �
→ �1 ` (vcc y in x (1 + (vcc z in y z))) 3 :: � | | �
→ �1 ` vcc y in x (1 + (vcc z in y z)) :: �1 ` 3 :: (@) :: � | | �
→ �2 ` x (1 + (vcc z in y z)) :: �1 ` 3 :: (@) :: � | | �
→ �2 ` x :: �2 ` 1 + (vcc z in y I) :: (@) :: �1 ` 3 :: (@) :: � | | �
→ �2 ` 1 + (vcc z in y z) :: (@) :: �1 ` 3 :: (@) :: � | | E1 :: �
→ �2 ` 1 :: �2 ` vcc z in y z :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | E1 :: �
→ �2 ` vcc z in y z :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | 1 :: E1 :: �
→ �3 ` y z :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | 1 :: E1 :: �
→ �3 ` y :: �3 ` z :: (@) :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | 1 :: E1 :: �
→ �3 ` z :: (@) :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | E2 :: 1 :: E1 :: �
→ (@) :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | E3 :: E2 :: 1 :: E1 :: �
→ �1 ` 3 :: (@) :: � | | E3 :: �
→ (@) :: � | | 3 :: E3 :: �
→ (+) :: (@) :: �1 ` 3 :: (@) :: � | | 3 :: 1 :: E1 :: �
→ (@) :: �1 ` 3 :: (@) :: � | | 4 :: E1 :: �
→ � | | 4 :: �

where

E1 = 〈�,�〉
E2 = 〈�1 ` 3 :: (@) :: �,�〉
E3 = 〈(+) :: (@) :: �1 ` 3 :: (@) :: �, 1 :: E1 :: �〉
�1 = [x ↦→ E1]
�2 = �1[y ↦→ E2]
�3 = �2[z ↦→ E3]

16.3 Interpreter

The following Scala code implements the syntax of KFAE: 3

sealed trait Expr

...

case class Vcc(x: String, b: Expr) extends Expr

Vcc(G, 4) represents vcc G in 4.

In addition, we add a new variant of Value to represent first-class continuations.
4

3
We omit the common part to FAE.

4
We omit the common part to FAE.
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sealed trait Value

...

case class ContV(k: Cont) extends Value

Since the interpreter treats a continuation as a Scala function, a ContV instance has a single field whose type

is Cont. ContV(k) represents a continuation k as a value.

We need to add the Vcc case to interp and revise the App case to handle continuation application properly.

Consider the Vcc case first.

case Vcc(x, b) =>

interp(b, env + (x -> ContV(k)), k)

The environment is extended with the continuation as a value, ContV(k). Then, the body is evaluated under

the extended environment.

The above code clearly shows why the interpreter needs to use CPS. Without CPS, the continuation cannot

be accessed in the source code of the interpreter. There is no way to construct ContV(k). By using CPS, the

interp function always receives the continuation as an argument and becomes able to use the continuation

to construct ContV(k). CPS takes the key role in implementing an interpreter of a language that provides

first-class continuations.

Now, let us fix the App case. The interp function must handle continuation applications in the App case.

case App(f, a) =>

interp(f, env, fv =>

interp(a, env, av => fv match {

case CloV(x, e, fenv) =>

interp(e, fenv + (x -> av), k)

case ContV(nk) => nk(av)

})

)

When fv is a CloV instance, the interpreter behaves just like before. If fv is a ContV instance, the expression

applies the continuation to the argument. The applied continuation is the field of fv, and the argument is av.

Since the interpreter expresses a continuation with a Scala function, applying the Scala function, the field of

fv, to av is enough. There is no interp call. It coincides with that Rule Red-App2-Cont never adds � ` 4 to
the computation stack.

16.4 Use of First-Class Continuations

Imperative languages provide control diverters, such as return, break, and continue, to allow programmers

to change control flows. However, KFAE supports only first-class continuations.

In fact, first-class continuations are the most general form of control flow manipulation. Continuations

represent control flows of programs because the continuation at some point of execution is the remaining

computation. Changing the current continuation is equivalent to changing the control flow by making the

program compute different things. In KFAE, programmers can change the current continuation freely by

calling continuations. Therefore, first-class continuations allow arbitrary changes of control flows. Expressions

like return change control flows in a fixed way according to their semantics. On the other hand, programmers

using KFAE can make first-class continuations with vcc and call them at any points. The expressivity of

first-class continuations surpasses that of other control diverters.
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Although first-class continuations are much more powerful than other control diverters, it is difficult to

utilize first-class continuations to correctly implement desired control flow changes. To resolve the difficulty,

language designers can provide other control diverters as syntactic sugar. By doing so, the designers can

make their language convenient for programmers while preventing the language from being complicated.

16.4.1 Return

A return expressionmakes a function immediately return. Instead of adding return to KFAE, we can desugar

return to vcc and a continuation application.

If a programmer writes return 4 in the body of a function, return 4 can be desugared to r 4, where r is just

an identifier.
5
Then, r 4 is just an application expression.

Since r is a free identifier yet, it must be bound somewhere. The correct way to bind r is to use vcc because
applying r changes the control flow, which is possible only by a first-class continuation. Then, where should

we put vcc? When there is no return, the only way to return from a function is to finish the evaluation of the

function body. After the body is evaluated, its result is used for the remaining compuation, which is the

continuation of the function body. Thus, applying the continuation of the function body to the return value

is the same as returning from the function. After adding return, applying r to a value makes the function

immediately return with the given value. It implies that r has to denote the continuation of the function body.

Therefore, every function that contains return in the body needs to be desugared. An expression �G.4 is
desugared to �G.vcc r in 4.

The following example uses return:

((�x.(return 1) + x) 2) + 3

By desugaring, the above expression becomes the following expression:

((�x.vcc r in (r 1) + x) 2) + 3

While evaluating (�x.vcc r in (r 1) + x) 2, r denotes � + 3. When r is applied to 1, the original continuation

disappears, and the only remaining computation is 1 + 3. Therefore, the final result is 4. The result matches

the expected semantics of return.

16.4.2 Break and Continue

Many imperative languages provide break and continue. Programmers use them inside loops to change

control flows. A break expression immediately terminates the loop, and a continue expression makes the

loop skip the current iteration and directly move on to the beginning of the next iteration.

Since KFAE lacks loops, we need to add loops first. Suppose that while0 41 42 evaluates 42 repeatedly while

41 evaluates to 0. When the evaluation terminates, we define the result to be 0, which is just an arbitrarily

chosen value.

Now, we can add break and continue to KFAE as syntactic sugar. They can occur only inside loops.

When a loop terminates, the continuation of the loop is applied to 0, which is the result of the loop. Since

break terminates the loop, it applies the continuation of the loop to 0. Thus, when b denotes the continuation

of the loop, break can be desugared to b 0.
6
To make b the continuation of a loop, vcc that binds b should

enclose the loop. Therefore, every loop containing breakmust be desugared. An expression while0 41 42 is
desugared to vcc b in while0 41 42.

For example, consider the following expression:

while0 0 break

5
Assume that the rest of the expression does not use r at all.

6
Assume that the rest of the expression does not use b at all.
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This expression is desugared to the following expression:

vcc b in while0 0 (b 0)

Then, b is the continuation finishing the evaluation. Inside the loop, b is applied to 0, so the program

terminates and produces 0 as a result. It coincides with the expected behavior of break. Even though the

condition of the loop never changes from 0, the loop terminates due to the use of break.

While break terminates the loop, continue just skips the current iteration. It makes the program jump to the

condition expression of the loop. Evaluating the condition expression is the continuation of the body of the

loop because the condition is evaluated after the evaluation of the body. Therefore, an expression while0 41 42
is desugared to while0 41 (vcc c in 42)when 42 contains continue, and continue is desugared to c 0.

7

For example, consider the following expression:

while0 0 (continue; (1 + �x.x))

This expression is desugared to the following expression:

while0 0 (vcc c in ((c 0); (1 + �x.x)))

At each iteration, when c 0 is evaluated, the result of whole vcc c in ((c 0); (1 + �x.x)) becomes 0 without

evaluating 1 + �x.x. Then, the loop proceeds to the next iteration without incurring a run-time error. Thus,

the expression never terminates. It is what we expect from continue. Without continue, the expression

causes a run-time error because it is impossible to add a number to a function. However, continue prevents

the addition from being evaluated, so the expression never terminates.

Note that the selection of 0 in c 0 is completely arbitrary since the result of the loop body is never used. We

may desugar continue to c 42 instead. It is different from the case of break, which must apply b to 0 to make

the result of the loop 0.

16.5 Exercises

Exercise 16.1 What is the result of each of the following expressions?

1. vcc x in ((x 3) + 4)
2. (vcc x in (2 + (x (�y.(y + y))))) 3
3. (vcc x in x) 5
4. (vcc x in x) (�y.y) 5
5. (vcc x in x) (�y.(y y)) 5

Exercise 16.2 The following is an interp for KFAE that prints a given expression each time it is called:

def interp(e: Expr, env: Env, k: Cont): Value = {

println(e)

e match { ... }

}

Let 4 be an expression (vcc x in x) �y.y, which is App(Vcc("x", Id("x")), Fun("y", Id("y"))). What

does interp(4, Map(), x => x) print?

Exercise 16.3 Write the reduction steps of (vcc x in 42 + (x 2)) + 8.

7
Assume that the rest of the expression does not use c at all.
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Exercise 16.4 This exercise extends KFAE with mutable variables. Complete the following interpreter

implementation:

type Env = Map[String, Addr]

type Sto = Map[Addr, Value]

type Cont = (Value, Sto) => (Value, Sto)

def interp(e: Expr, env: Env, sto: Sto, k: Cont): (Value, Sto) = e match {

case Num(n) => ???

case Id(x) => ???

case Fun(x, b) => ???

case App(f, a) => ???

case Set(x, e) => ???

case Vcc(x, b) => ???

}
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The previous chapter implements an interpreter of KFAE with first-class functions in Scala. The interpreter

treats continuations as Scala functions. Since the interpreter uses CPS, continuations are passed from

functions to functions. In addition, continuations sometimes need to be stored in ContV because KFAE
supports first-class continuations. ContV instances are stored inside environments or returned from interp.

Therefore, the interpreter relies on the fact that Scala provides first-class functions. Since functions are values

in Scala, the interpreter can represent continuations with functions and uses them as values.

The use of first-class functions is problematic for some cases. First, low-level languages, such as C, lack

first-class functions.
1
There must be another way to implement an interpreter of KFAE for those who use

low-level languages. Second, functions do not give useful information. The only ability of functions is being

applied to arguments. However, in particular programs like debuggers, it is necessary to figure out what a

given first-class continuation does. The current implementation disallows such analysis on continuations.

On the other hand, a CloV instance, which represents a closure, can give the exact information about the

parameter, body, and environment of the closure. Alas, ContV instances do not have such capabilities.

This chapter shows how we can represent continuations without first-class functions. By avoiding first-class

functions, an interpreter of a language with first-class continuations can be written in low-level languages. In

addition, if continuations are not functions and have specific structures instead, debuggers can analyze what

a given continuation denotes.

17.1 First-Order Representation of Continuations

The following code shows the KFAE interpreter implemented in the previous chapter:
2

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => k(NumV(n))

case Id(x) => k(lookup(x, env))

case Fun(x, b) => k(CloV(x, b, env))

case Add(e1, e2) =>

interp(e1, env, v1 =>

interp(e2, env, v2 =>

k(add(v1, v2))

)

)

case App(e1, e2) =>

interp(e1, env, v1 =>

interp(e2, env, v2 => v1 match {

case CloV(x, e, fenv) =>

interp(e, fenv + (x -> v2), k)

case ContV(nk) => nk(v2)

})

)

case Vcc(x, b) =>

interp(b, env + (x -> ContV(k)), k)

}

We can change the implementation a bit by replacing k(v)with continue(k, v).

1
C provides function pointers but not closures. Closures are necessary to represent continuations.

2
Since the Sub case is similar to the Add case, this chapter omits the Sub case.
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def continue(k: Cont, v: Value): Value = k(v)

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => continue(k, NumV(n))

case Id(x) => continue(k, lookup(x, env))

case Fun(x, b) => continue(k, CloV(x, b, env))

case Add(e1, e2) =>

interp(e1, env, v1 =>

interp(e2, env, v2 =>

continue(k, add(v1, v2))

)

)

case App(e1, e2) =>

interp(e1, env, v1 =>

interp(e2, env, v2 => v1 match {

case CloV(x, e, fenv) =>

interp(e, fenv + (x -> v2), k)

case ContV(nk) => continue(nk, v2)

})

)

case Vcc(x, b) =>

interp(b, env + (x -> ContV(k)), k)

}

Since evaluating k(v) is everything continue(k, v) does, the new implementation behaves the same as the

previous implementation. For now, the change seems needless, but it will become useful soon.

We need to know which continuations are used in the original interpreter to define values representing

continuations. There are four sorts of continuations in the interpreter:

I v1 => interp(e2, env, v2 => continue(k, add(v1, v2)))

I v2 => continue(k, add(v1, v2))

I v1 => interp(e2, env, v2 => v1 match ...)

I v2 => v1 match ...

The first continuation, v1 => interp(e2, env, v2 => continue(k, add(v1, v2))), is used after the

evaluation of the left operand of addition. It evaluates the right operand, calculates the sum, and passes

the sum to the continuation of the entire addition. The parameter v1 denotes the value of the left operand.

The function body contains three free variables: e2, env, and k. e2 is the right operand; env is the current

environment; k is the continuation of the addition. If the values of the free variables are determined, the

behavior of the continuation is also determined. Therefore, (e2, env, k), which is a triple of an expression,

an environment, and a continuation, can represent the continuation.

Currently, continue continues the evaluation with a given function, which represents the continuation. Since

the continuation is a Scala function, it can be directly applied to a given value. However, if we use a triple

to represent the continuation instead of a function, it cannot be applied to a value. We need a new way to

continue evaluation when a continuation and a value are given. The clue already exists—look at the body of

the function representing a continuation. When the function is applied to v1, the result is interp(e2, env,

v2 => continue(k, add(v1, v2))). Now, (e2, env, k) and v1 are provided instead of the function and

v1. It is enough to evaluate interp(e2, env, v2 => continue(k, add(v1, v2))) with v1, e2, env, and k.

It evaluates the same thing as the original function application.

Below compare the previous and current strategies:

I Previous: v1 => interp(e2, env, v2 => continue(k ,add(v1, v2))) and v1 are given. Then, eval-

uate interp(e2, env, v2 => continue(k, add(v1, v2))) by applying v1 => interp(e2, env,
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v2 => continue(k ,add(v1, v2))) to v1.

I Current: (e2, env, k) and v1 are given. Then, evaluate interp(e2, env, v2 => continue(k,

add(v1, v2)))with e2, env, k, and v1.

Both strategies evaluate interp(e2, env, v2 => continue(k, add(v1, v2))) in the end. While the pre-

vious strategy represents continuations with functions, the current strategy represents continuations with

triples.

Once you understand the first sort of continuations, the remaining ones are straightforward. The second

continuation, v2 => continue(k, add(v1, v2)), is used after the evaluation of the right operand of

addition. It calculates the sum of the operands and passes the sum to the continuation of the addition. The

parameter v2 denotes the value of the right operand. The function body contains two free variables: k and v1.

k is the continuation of the addition; v1 is the value of the left operand. In a similar fashion, v1 and k are

enough to determine what the continuation does. Therefore, (v1, k), a pair of a value and a continuation,

can represent the continuation. To continue the evaluation when (v1, k) and v2 are given, continue(k,

add(v1, v2)) needs to be evaluated.

I Previous: v2 => continue(k, add(v1, v2)) and v2 are given. Then, evaluate continue(k, add(v1,

v2)) by applying v2 => continue(k, add(v1, v2)) to v2.

I Current: (v1, k) and v2 are given. Then, evaluate continue(k, add(v1, v2))with v1, k, and v2.

The third continuation, v1 => interp(e2, env, v2 => v1 match ...), is used after the evaluation of the

expression at the function position of a function application. It evaluates an argument and applies a function

(or a continuation) to the argument. v1 denotes the value of the expression at the function position. The

body of the function representing the continuation contains three free variables: e2, env, and k.3 e2 is the

expression at the argument position; env is the current environment; k is the continuation of the application.

Therefore, e2, env, and k determine what the continuation does, and (e2, env, k), a triple of an expression,

an environment, and a continuation, can represent the continuation. Continuing the evaluation is evaluating

interp(e2, env, v2 => v1 match ...), which can be done with (e2, env, k) and v1.

I Previous:v1 => interp(e2, env, v2 => v1 match ...) andv1 are given. Then, evaluateinterp(e2,

env, v2 => v1 match ...) by applying v1 => interp(e2, env, v2 => v1 match ...) to v1.

I Current: (e2, env, k) and v1 are given. Then, evaluate interp(e2, env, v2 => v1 match ...)

with e2, env, k, and v1.

The fourth continuation, v2 => v1 match ..., is used after the evaluation of the argument of a function

application. It applies a function (or a continuation) to the argument. v2 denotes the value of the argument.

The body of the function representing the continuation contains two free variables: v1 and k.4 v1 is the value

of the expression at the function position; k is the continuation of the application. Therefore, (v1, k), a pair

of a value and a continuation, can represent the continuation. Continuing the evaluation is evaluating v1

match ...with (v1, k) and v2.

I Previous: v2 => v1 match ... and v2 are given. Then, evaluate v1 match ... by applying v2 => v1

match ... to v2.

I Current: (v1, k) and v2 are given. Then, evaluate v1 match ...with v1, k, and v2.

In fact, there is one more continuation, which does not appear in the implementation of interp. It is the one

that is represented as the identity function and is passed to interp in the beginning. The identity function

returns a given argument without any changes. No additional information is necessary to determine the

behavior of the continuation. Therefore, (), the zero-length tuple (the Unit value in Scala) can represent the

continuation. To continue the evaluation with the continuation and a value v, it is enough to give v as the

result.

I Previous: An identity function and v are given. Then, evaluate v by applying the identity function to v.

I Current: () and v are given. Then, evaluate vwith v.

3 k is in ....
4 k is in ....
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In summary, the KFAE interpreter uses continuations of the following five sorts:

I (e2: Expr, env: Env, k: Cont)

I (v1: Value, k: Cont)

I (e2: Expr, env: Env, k: Cont)

I (v1: Value, k: Cont)

I ()

Note that the first and the third are different even though they look the same. The first continuation computes

interp(e2, env, v2 => continue(k, add(v1, v2)))with its data, while the third continuation computes

interp(e2, env, v2 => v1 match ...) with its data. Similarly, the second and the fourth are diffent as

well. The second computes continue(k, add(v1, v2)), while the fourth computes v1 match ....

As explained in Chapter 5, an ADT is the best way to implement a type that consists of values of various

shapes. Thus, Cont can be newly defined with a sealed trait and case classes as follows:

sealed trait Cont

case class AddSecondK(e2: Expr, env: Env, k: Cont) extends Cont

case class DoAddK(v1: Value, k: Cont) extends Cont

case class AppArgK(e2: Expr, env: Env, k: Cont) extends Cont

case class DoAppK(v1: Value, k: Cont) extends Cont

case object MtK extends Cont

The names of the classes do not matter, though they are named carefully so that the names can reflect what

they are for. The important things are data carried by each continuation. Following the Scala convention, the

last sort, which can be represented by the empty tuple, is now represented by a singleton object. One may use

case class MtK() extends Cont instead without changing the semantics, but the singleton object is more

efficient than the case class from the implementation perspective. Now, the implementation of continuations

does not require first-class functions.

Now, we need to revise the continue function. The previous implementation is def continue(k: Cont, v:

Value): Value = k(v). It works because Cont is a function type before our change. However, Cont is not a

function now, and continue needs a fix. In fact, we already know everything to make a correct fix. Previously,

continue applies k to v when k and v are given. Now, it should check k and do the correct computation

according to the data in k. Below is the repetition of the previous explanations, but with the names of the

case classes and object.

I AddSecondK(e2, env, k) and v1 are given. Then, evaluate interp(e2, env, v2 => continue(k,

add(v1, v2)))with e2, env, k, and v1.

I DoAddK(v1, k) and v2 are given. Then, evaluate continue(k, add(v1, v2))with v1, k, and v2.

I AppArgK(e2, env, k) and v1 are given. Then, evaluate interp(e2, env, v2 => v1 match ...)

with e2, env, k, and v1.

I DoAppK(v1, k) and v2 are given. Then, evaluate v1 match ...with v1, k, and v2.

I MtK and v are given. Then, evaluate vwith v.

The first and third explanations still pass functions to interp even though continuations are not functions

anymore. They need small changes. Now, DoAddK(v1, k) represents v2 => continue(k, add(v1, v2)),

and DoAppK(v1, k) represents v2 => v1 match ....

I AddSecondK(e2, env, k) and v1 are given. Then, evaluate interp(e2, env, DoAddK(v1, k)) with

e2, env, k, and v1.

I AppArgK(e2, env, k) and v1 are given. Then, evaluate interp(e2, env, DoAppK(v1, k))with e2,

env, k, and v1.

The new implementation of continue is as follows:

def continue(k: Cont, v: Value): Value = k match {
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case AddSecondK(e2, env, k) => interp(e2, env, DoAddK(v, k))

case DoAddK(v1, k) => continue(k, add(v1, v))

case AppArgK(e2, env, k) => interp(e2, env, DoAppK(v, k))

case DoAppK(v1, k) => v1 match {

case CloV(x, e, fenv) =>

interp(e, fenv + (x -> v), k)

case ContV(nk) => continue(nk, v)

}

case MtK => v

}

The code is straightforward since it is exactly the same as the explanation.

The interp function also needs a fix to follow the new definition of Cont:

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => continue(k, NumV(n))

case Id(x) => continue(k, lookup(x, env))

case Fun(x, b) => continue(k, CloV(x, b, env))

case Add(e1, e2) => interp(e1, env, AddSecondK(e2, env, k))

case App(e1, e2) => interp(e1, env, AppArgK(e2, env, k))

case Vcc(x, b) => interp(b, env + (x -> ContV(k)), k)

}

Only the Add and App cases are different from before. The Add case uses AddSecondK(e2, env, k) to represent

v1 => interp(e2, env, v2 => continue(k, add(v1, v2))); the App case uses AppArgK(e2, env, k) to

represent v1 => interp(e2, env, v2 => v1 match ...).

Note that MtK does not appear in interp. MtK is used to call interp in the beginning. One should write

interp(4, Map(), MtK) to evaluate 4.

17.2 Big-Step Semantics of KFAE

Representing continuations without first-class functions additionally gives us a clue to define the big-

step semantics of KFAE. This section defines the big-step semantics of KFAE from the new interpreter

implementation.

First, we can define continuations inductively. It is straightforward from the implementation.

sealed trait Cont

case class AddSecondK(e2: Expr, env: Env, k: Cont) extends Cont

case class DoAddK(v1: Value, k: Cont) extends Cont

case class AppArgK(e2: Expr, env: Env, k: Cont) extends Cont

case class DoAppK(v1: Value, k: Cont) extends Cont

case object MtK extends Cont

The above ADT can be formalized as below:

� ::= [� + (4 , �)] :: � | [E + �] :: � | [� (4 , �)] :: � | [E �] :: � | [�]

where the metavariable � ranges over continuations. Note that � in the definition is different from � used

by the small-step semantics. While � denotes the empty computation stack in the small-step semantics, �
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in the above definition is just a part of the notation. It does not have any formal meaning but conceptually

represents a hole in an intuitive way.

Previous chapters define only one sort of a proposition for the big-step semantics because their interpreters

have only interp. On the other hand, the interpreter of this chapter has both interp and continue, and each

of them has a different role from the other. Therefore, we formalize each function with a different sort of a

proposition. The first sort is �, � ` 4 ⇒ E, which denotes that the result of interp(4, �, �) is E. The other

is E1 ↦→ � ⇓ E2, which denotes that the result of continue(�, E1) is E2.

Let us define inference rules related to interp first.

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => continue(k, NumV(n))

case Id(x) => continue(k, lookup(x, env))

case Fun(x, b) => continue(k, CloV(x, b, env))

case Add(e1, e2) => interp(e1, env, AddSecondK(e2, env, k))

case App(e1, e2) => interp(e1, env, AppArgK(e2, env, k))

case Vcc(x, b) => interp(b, env + (x -> ContV(k)), k)

}

Each case of the interp function produces a single inference rule.

= ↦→ � ⇓ E
�, � ` = ⇒ E

[Interp-Num]

The conclusion, �, � ` = ⇒ E, denotes that the result of interp(=, �, �) is E. The result of interp(=,

�, �) is the same as that of continue(�, NumV(=)). = ↦→ � ⇓ E denotes that the result of continue(�,
NumV(=)) is E.

G ∈ Domain(�) �(G) ↦→ � ⇓ E
�, � ` G ⇒ E

[Interp-Id]

〈�G.4 , �〉 ↦→ � ⇓ E
�, � ` �G.4 ⇒ E

[Interp-Fun]

The rules for variables and functions are similar to the rule for integers.

�, [� + (42 , �)] :: � ` 41 ⇒ E

�, � ` 41 + 42 ⇒ E
[Interp-Add]

The conclusion, �, � ` 41 + 42 ⇒ E, denotes that the result of interp(Add(41,42), �, �) is E. The result

of interp(Add(41,42), �, �) is the same as that of interp(41, �, AddSecondK(42, �, �)). Note that

[� + (42 , �)] :: � denotes AddSecondK(42, �, �). �, �′ ` 41 ⇒ E denotes that the result of interp(41, �,
�′) is E, where �′ is [� + (42 , �)] :: �.

�, [� (42 , �)] :: � ` 41 ⇒ E

�, � ` 41 42 ⇒ E
[Interp-App]

The rule for function application is similar to the rule for addition.

�[G ↦→ �], � ` 4 ⇒ E

�, � ` vcc G; 4 ⇒ E
[Interp-Vcc]
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The conclusion, �, � ` vcc G; 4 ⇒ E, denotes that the result of interp(Vcc(G, 4), �, �) is E. The result of

interp(Vcc(G, 4), �, �) is the same as that of interp(4, �[G ↦→ �], �). �[G ↦→ �], � ` 4 ⇒ E denotes

that the result of interp(4, �[G ↦→ �], �) is E.

Now, we define inference rules related to continue.

def continue(k: Cont, v: Value): Value = k match {

case AddSecondK(e2, env, k) => interp(e2, env, DoAddK(v, k))

case DoAddK(v1, k) => continue(k, add(v1, v))

case AppArgK(e2, env, k) => interp(e2, env, DoAppK(v, k))

case DoAppK(v1, k) => v1 match {

case CloV(xv1, ev1, sigmav1) =>

interp(ev1, sigmav1 + (xv1 -> v), k)

case ContV(k) => continue(k, v)

}

case MtK => v

}

Each case of the continue function also produces a single inference rule. The only exception is the DoAppK

case because it requires two rules: one for the CloV case and the other for the ContV case.

�, [E1 + �] :: � ` 42 ⇒ E2

E1 ↦→ [� + (42 , �)] :: � ⇓ E2

[Continue-AddSecondK]

The conclusion, E1 ↦→ [� + (42 , �)] :: � ⇓ E2, denotes that the result of continue(AddSecondK(42, �,
�), E1) is E2. The result of continue(AddSecondK(42, �, �), E1) is the same as that of interp(42, �,
DoAddK(E1, �)). Note that [E1 + �] :: � denotes DoAddK(E1, �). �, �′ ` 42 ⇒ E2 denotes that the result of

interp(42, �, �′) is E2 where �′ is [E1 + �] :: �.

=1 + =2 ↦→ � ⇓ E
=2 ↦→ [=1 + �] :: � ⇓ E

[Continue-DoAddK]

The conclusion, =2 ↦→ [=1 + �] :: � ⇓ E, denotes that the result of continue(DoAddK(NumV(=1), �),
NumV(=2)) is E. The result ofcontinue(DoAddK(NumV(=1), �), NumV(=2)) is the sameas that ofcontinue(�,
add(NumV(=1), NumV(=2))). Note that add(NumV(=1), NumV(=2)) equals NumV(=1 + =2).

=1 + =2 ↦→ � ⇓ E denotes that the result of continue(�, NumV(=1 + =2)) is E.

�, [E1 �] :: � ` 4 ⇒ E2

E1 ↦→ [� (4 , �)] :: � ⇓ E2

[Continue-AppArgK]

This rule is similar to the rule when the continuation is [� + (42 , �)] :: �.

�[G ↦→ E2], � ` 4 ⇒ E

E2 ↦→ [〈�G.4 , �〉 �] :: � ⇓ E
[Continue-DoAppK-CloV]

The conclusion, E2 ↦→ [〈�G.4 , �〉 �] :: � ⇓ E, denotes that the result of continue(DoAppK(CloV(G, 4, �),
�), E2) is E. The result of continue(DoAppK(CloV(G, 4, �), �), E2) is the same as that of interp(4,

�[G ↦→ E2], �). �[G ↦→ E2], � ` 4 ⇒ E denotes that the result of interp(4, �[G ↦→ E2], �) is E.

E2 ↦→ �1 ⇓ E
E2 ↦→ [�1 �] :: � ⇓ E

[Continue-DoAppK-ContV]
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The conclusion, E2 ↦→ [�1 �] :: � ⇓ E, denotes that the result of continue(DoAppK(ContV(�1), �), E2) is E.

The result of continue(DoAppK(ContV(�1), �), E2) is the same as that of continue(�1, E2). E2 ↦→ �1 ⇓ E
denotes that the result of continue(�1, E2) is E.

E ↦→ [�] ⇓ E [Continue-MtK]

The conclusion, E ↦→ [�] ⇓ E, denotes that the result of continue(MtK, E) is E. The result of continue(MtK,

E) is actually E.

17.3 Exercises

Exercise 17.1 This exercise asks you to implement an interpreter of FAE with val and if0 in CPS without

first-class functions. Complete the following implementation:

sealed trait Expr

...

case class Val(x: String, e: Expr, b: Expr) extends Expr

case class If0(c: Expr, t: Expr, f: Expr) extends Expr

sealed trait Cont

...

case class ValSecondK(???) extends Cont

case class If0SecondK(???) extends Cont

def continue(k: Cont, v: Value): Value = k match {

...

case ValSecondK(???) => ???

case If0SecondK(???) => ???

}

def interp(e: Expr, env: Env, k: Cont): Value = e match {

...

case Val(x, e, b) => ???

case If0(c, t, f) => ???

}

Exercise 17.2 This exercise asks you to implement an interpreter of FAEwith pairs in CPSwithout first-class

functions. Complete the following implementation:

sealed trait Expr

...

case class Pair(f: Expr, s: Expr) extends Expr

case class Fst(p: Expr) extends Expr

case class Snd(p: Expr) extends Expr

sealed trait Value

...

case class PairV(f: Value, s: Value) extends Value

sealed trait Cont
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...

case class PairSecondK(???) extends Cont

case class DoPairK(???) extends Cont

case class DoFstK(???) extends Cont

case class DoSndK(???) extends Cont

def continue(k: Cont, v: Value): Value = k match {

...

case PairSecondK(???) => ???

case DoPairK(???) => ???

case DoFstK(???) => ???

case DoSndK(???) => ???

}

def interp(e: Expr, env: Env, k: Cont): Value = e match {

...

case Pair(f, s) => ???

case Fst(p) => ???

case Snd(p) => ???

}

Pair(e1, e2) creates a new pair; Fst(e) gives the first value of a pair; Snd(e) gives the second value of a

pair.



Nameless Representation of

Expressions 18

In previous chapters, languages distinguish different variables by naming them with different identifiers.

For example, �x.�y.x is a function that takes an argument twice and returns the first argument. Since two

parameters have different names, one can easily conclude that the first argument is the result. The first

parameter is named x, and the second parameter is named y. Therefore, x in the function body denotes the

first parameter.

Naming variables is an intuitive and practically useful way to represent variables. However, it becomes

problematic in some cases like formalizing the semantics of languages and implementing interpreters and

compilers, which take source code as input.

First, two variables may not be distinguished when their names are the same. Environments can easily deal

with variables of the same name well, but substitution is often used instead of environments to define the

semantics of languages. For instance, defining the semantics of function applications with substitutions is as

follows: evaluating (�x.x + x) 1 is the same as evaluating 1 + 1, which is obtained by substituting x with 1 in

the function body x + x.1 In fact, it is difficult to define the semantics correctly with substitutions. Consider

the expression (�f.�x.f) �y.x. By applying the same principle, evaluating the expression is the same as

evaluating �x.�y.x, which is obtained by substituting f with �y.x in �x.f. Alas, it is wrong. x in the original

argument �y.x is a free identifier, while x in �x.�y.x is a bound occurrence. The meaning of x before and

after the substitution is completely different. This example shows that the current semantics is incorrect, and

the root cause of the problem is two different variables of the same name x.

Second, names hinder us from checking the semantic equivalence of expressions. For example, both �x.x and

�y.y are identity functions. However, a naïve syntactic check cannot prove the semantic equivalence of them,

i.e. that their behaviors are the same, because the first expression names the parameter x, while the second

expression names the parameter y. The ability to check semantic equivalence is valuable in many places.

Consider optimization of expressions.

val f = �x.x;

val g = �y.y;

(f 1) + (g 2)

The above expression defined the functions f and g and, then, evaluate (f 1) + (g 2). f and g are semantically

equivalent, but the names of their parameters are different. If a compiler is aware of their equivalence, it can

reduce the size of the program by modifying the expression like below:

val f = �x.x;

(f 1) + (f 2)

As the example shows, comparing the semantic equivalence of expressions is an important problem, but

naming variables is not a good way for this purpose.

For these reasons, names are often problematic in programming languages. Multiple solutions have been

proposed to resolve the issue. This chapter introduces de Bruĳn indices, which are one of those solutions. De
Bruĳn indices represent variables with indices, not names. This chapter shows how de Bruĳn indices can be

used in FAE. Note that FAE is just one possible use case of de Bruĳn indices. De Bruĳn indices can be used

anywhere names lead to a problem.

1
Since the main purpose of mentioning substitutions is explaining the problem of naming, we do not formally define substitutions. To

find more about substitution, see Exercise 9.15.
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18.1 De Bruĳn Indices

De Bruĳn indices represent variables with indices, which are natural numbers. The number of � between a

bound occurrence and the corresponding binding occurrence represents the binding occurrence. For instance,

�.0 is the nameless version of �x.x. �.0 is a function with one parameter. Its body is 0, which differs from a

natural number 0. 0 denotes a variable whose distance from its definition is zero. The distance means the

number of �. Therefore, the parameter of �.0 is the one that 0 is bound to. In a similar fashion, �.�.1 is the

nameless version of �x.�y.x. �.�.1 is a function with one parameter and the body expression �.1. �.1 also is

a function with one parameter. Its body is 1, which is a variable whose distance from the definition is one.

Thus, the parameter of �.1 cannot be denoted by 1. There is no � between the parameter and 1. 1 denotes the

parameter of �.�.1 because there is one � in between. The following table shows various examples of de

Bruĳn indices.

With names Without names

�x.x �.0
�x.�y.x �.�.1
�x.�y.y �.�.0

�x.�y.x + y �.�.1 + 0

�x.�y.x + y + 42 �.�.1 + 0 + 42

�x.(x �y.(x y)) �.(0 �.(1 0))
�x.((�y.x) (�z.x)) �.((�.1) (�.1))

It is important to notice that different indices can denote the same variable, and the same indices can denote

different variables. Consider the second example from the bottom. The first 0 in �.(0 �.(1 0)) denotes x of the

original expression. At the same time, 1 also denotes x of the original expression. On the other hand, the

second 0 denotes y of the original expression. The distance from the definition depends on the location of a

variable. Since de Bruĳn indices represent variables with their distances, the indices of a single variable can

vary among places.

Note that expressions should be treated as trees, not strings, to calculate the distances. Consider the last

example. There are two �’s between the last x and its definition when the expression is written as a string.

However, when the abstract syntax tree representing the expression is considered, there is only one � in

between. Therefore, the index of the last x is 1, not 2. We usually write expressions as strings for convenience,

but they always have tree structures in fact.

De Bruĳn indices successfully resolve the issues arising from names. Consider the comparison of expressions.

�x.x and �y.y are semantically equivalent but syntactically different expressions. Both become �.0 when

de Bruĳn indices are used. By the help of de Bruĳn indices, a simple syntactic check will find out that two

expressions are equal.

Now, let us define the procedure that transforms named expressions into nameless expressions. It helps

readers understand de Bruĳn indices. At the same time, the procedure is practically valuable. Use of names is

the best way to denote variables for programmers. Therefore, expressions written by programmers have

names. On the other hand, programs like interpreters and compilers sometimes need to use de Bruĳn indices

to represent variables. In such cases, the procedure is a part of the interpreter/compiler implementation.

First, we define indices as follows:

8 ∈ ℕ

where the metavariable 8 ranges over indices.

Then, we can define nameless expressions as follows:
2

2
This chapter uses 4 to denote both named expressions and nameless expressions. Strictly speaking, two different metavariables should

be introduced to denote each sort of an expression separately. However, for brevity, we abuse the notation and use 4 for both sorts of an
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4 ::= 8 | �.4 | 4 4 | = | 4 + 4

In nameless expressions, natural numbers represent variables. Those numbers have underlines and, therefore,

cannot be confused with integers. A lambda abstraction �.4 lacks the name of its parameter. Note that �.4
does have a single parameter. It is not a function with zero parameters.

A context, which is a finite partial function from names to natural numbers, takes an important role during

the transformation. A context gives the distance between a variable and its definition.

" ∈ Id fin↦→ ℕ

The metavariable " ranges over contexts.

Let [4]" be a nameless expression representing 4 under a context ". The definition of [4]" is as follows:

[G]" = 8 if "(G) = 8
[�G.4]" = �.[4]"′ where "′ = (↑ ")[G ↦→ 0]
[41 42]" = [41]" [42]"
[=]" = =

[41 + 42]" = [41]" + [42]"

[G]" is the result of transforming G. A natural number represents a variable, and the natural number can be

found in ". Therefore, when "(G) is 8, G is transformed into 8.

[�G.4]" is the result of transforming �G.4 and should look like �.4. However, 4 uses names and, thus, needs

to be transformed. " is not the correct context for the transformation of 4. First, it lacks the information of

G. If G appears in 4 without any function definitions, there is no � between the use and the definition. The

context must know that the index of G is 0. In addition, indices in " need changes. Suppose that G′ is in " and

its index is 0. If G′ occurs in 4, its index is not 0 anymore. Since 4 is the body of �G.4, there is one � between

G′ and its definition. During the transformation of 4, the index of G′ is 1, not 0. Similarly, if there is a variable

whose index is 1 in ", its index must be 2 during the transformation of 4. In conclusion, every index in " has

to increase by one. ↑ " denotes the context same as " but whose indices are one larger. The context used

during the transformation of 4 is (↑ ")[G ↦→ 0]. [�G.4]" is �.[4]"′ where "′ is (↑ ")[G ↦→ 0].

The remaining cases are straightforward. The transformations of 41 42 and 41 + 42 are recursively defined.

Since = does not contain variables, = itself is the result.

Below shows how �x.�y.x+y is transformed by the procedure. In the beginning, the context is empty because

there is no variable yet.

[�x.�y.x + y]∅
= �.[�y.x + y][x ↦→ 0]
= �.�.[x + y][x ↦→ 1, y ↦→ 0]
= �.�.[x][x ↦→ 1, y ↦→ 0] + [y][x ↦→ 1, y ↦→ 0]
= �.�.1 + [y][x ↦→ 1, y ↦→ 0]
= �.�.1 + 0

Now, let us implement the procedure in Scala. For named expressions, we can reuse the previous implemen-

tation. The following code defines nameless expressions:

object Nameless {

sealed trait Expr

case class Num(n: Int) extends Expr

expression.



18 Nameless Representation of Expressions 196

case class Add(l: Expr, r: Expr) extends Expr

case class Id(i: Int) extends Expr

case class Fun(e: Expr) extends Expr

case class App(f: Expr, a: Expr) extends Expr

}

Id(8) represents 8, and Fun(4) represent �.4.

Note that nameless expressions are defined in the Nameless singleton object. Therefore, outside the object,

Expr denotes the type of named expressions, while Nameless.Expr denotes the type of nameless expressions.

Similarly, Id represents a variable represented by a name,while Nameless.Id represents a variable represented

by an index.

type Ctx = Map[String, Int]

Ctx, the type of a context, is a map from strings to integers.

The following transform function recursively transforms a named expression into a nameless expression:

def transform(e: Expr, ctx: Ctx): Nameless.Expr = e match {

case Id(x) => Nameless.Id(ctx(x))

case Fun(x, e) =>

val nctx = ctx.map{ case (x, i) => x -> (i + 1) } + (x -> 0)

Nameless.Fun(transform(e, nctx))

case App(f, a) =>

Nameless.App(transform(f, ctx), transform(a, ctx))

case Num(n) => Nameless.Num(n)

case Add(l, r) =>

Nameless.Add(transform(l, ctx), transform(r, ctx))

}

The function exactly looks like its mathematical definition, so it is easy to understand the code.

Lists can replace maps in the implementation. A context is a list of names, and the index of a name is the

location of the name in the list. Lists simplify the implementation. When a name is added to a context, its

index is always zero. It means that the name is the head of the list. Adding a name is the same as making

the head of the list be the name. Increasing every index by one is the same as moving each name backward

by one slot. Therefore, if a context is a list, prepending a new name in front of the list does everything we

need to extend the context. For example, consider a context containing x and y. Let the indices of x and y,

respectively, be 0 and 1. The context is represented by List("x", "y"). It is enough to prepend z to the list

to add z to the context. The resulting list is List("z", "x", "y")—z at index 0, x at index 1, and y at index

2. Since z is the new name, its index should be 0. At the same time, the indices of x and y should be greater

by one than before. The new list does represent the new context well.

To use lists instead, we change the definition of Ctx.

type Ctx = List[String]

Now, Ctx is a list of strings. Then, we can revise transform accordingly.

def transform(e: Expr, ctx: Ctx): Nameless.Expr = e match {

case Id(x) => Nameless.Id(locate(x, ctx))

case Fun(x, e) => Nameless.Fun(transform(e, x :: ctx))

case App(f, a) =>
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Nameless.App(transform(f, ctx), transform(a, ctx))

case Num(n) => Nameless.Num(n)

case Add(l, r) =>

Nameless.Add(transform(l, ctx), transform(r, ctx))

}

def locate(x: String, ctx: Ctx): Int = ctx match {

case Nil => error()

case h :: t => if (h == x) 0 else 1 + locate(x, t)

}

The Id case needs to calculate the location of a given variable in a given context. For this purpose, we define

locate. In the Fun case, x :: ctx is everything we need to add x to ctx.

18.2 Evaluation of Nameless Expressions

Evaluation of nameless expressions is similar to evaluation of named expressions. The definition of a value

has a minor difference:

E ::= = | 〈�.4 , �〉

As lambda abstractions lack parameter names, closures also lack parameter names.

The definition of an environment also has an insignificant difference:

� ∈ ℕ fin↦→ +

Environments are finite partial functions from indices, which are natural numbers, to values.

Now, let us define the inference rules.

Rule Id

If 8 is in the domain of �,
then 8 evaluates to �(8) under �.

8 ∈ Domain(�)
� ` 8 ⇒ �(8)

[Id]

The value of a variable can be found in a given environment.

Rule Fun

�.4 evaluates to 〈�.4 , �〉 under �.

� ` �.4 ⇒ 〈�.4 , �〉 [Fun]

A lambda abstraction evaluates to a closure without evaluating anything.

Rule App
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If

41 evaluates to 〈�.4 , �′〉 under �,
42 evaluates to E2 under �, and
4 evaluates to E under (↑ �′)[0 ↦→ E2],

then

41 42 evaluates to E under �.

� ` 41 ⇒ 〈�.4 , �′〉 � ` 42 ⇒ E2 (↑ �′)[0 ↦→ E2] ` 4 ⇒ E

� ` 41 42 ⇒ E
[App]

Evaluation of 41 42 evaluates both 41 and 42. Then, the body of the closure is evaluated under the environment

captured by the closure with the value of the argument. If the parameter is used in the body, there is no �
between the use and the definition. Its index is 0. Therefore, the value of the argument has the index 0 in the

new environment. In addition, every index in the environment of the closure needs a change. Let a value E

correspond to the index 0. The value is not the value of the argument, so it cannot correspond to the index 0

anymore. As � from the closure exists between the use and the definition, the index should increase by one.

By the same principle, every index in the environment increases by one. Since ↑ �′ denotes the environment

same as �′ but whose indices are one larger, the body of the closure is evaluated under (↑ �′)[0 ↦→ E2].

The rules for integers and addition are omitted because they are the same as those of FAE.

This new semantics for nameless expressions is equivalent to the previous semantics for named expressions.

Let 4 be a named expression. The result of evaluating 4 is the same as evaluating 4′ where 4′ is the nameless

expression obtained by transforming 4. 3 Mathematically, the following proposition is true:

∀4.∀E.(∅ ` 4 ⇒ E) ↔ (∅ ` [4]∅ ⇒ E).

Let us implement an interpreter of nameless expressions in Scala. Below is the definitions of values and

environments.
4

type Env = List[Value]

sealed trait Value

case class NumV(n: Int) extends Value

case class CloV(e: Expr, env: Env) extends Value

An environment is a list of values. As shown by the implementation of transform, lists are simpler than

maps from integers to values.

def interp(e: Expr, env: Env): Value = e match {

case Id(i) => env(i)

case Fun(e) => CloV(e, env)

case App(f, a) =>

val CloV(b, fenv) = interp(f, env)

interp(b, interp(a, env) :: fenv)

case Num(n) => NumV(n)

case Add(l, r) =>

val NumV(n) = interp(l, env)

val NumV(m) = interp(r, env)

NumV(n + m)

}

The App case is the only interesting case. The others are the same as before. Since a closure lacks its parameter

3
Assume that the equality of closures is defined properly.

4
At this point, we do not consider named expressions, so we omit the Nameless singleton object.
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name and an environment does not need the name, it is enough to prepend the value of the argument in

front of the list.

18.3 Exercises

Exercise 18.1 Write the nameless representation of the following expression:

(�x.�y.�z.(z − x) + y) 42 0 10

Exercise 18.2 Write an expression whose nameless representation is as follows:

�.�.�.0 1 0
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This chapter is the first chapter about typed languages. This chapter explains the motivation of type checking

and introduces a simple type system by defining TFAE, a typed variant of FAE.

19.1 Run-Time Errors

In FAE, expressions can be classified into three groups according to their behaviors. Let us see what those

three groups are. Note that in most languages, expressions can be classified into three groups in the same

manner. Thus, the discussion of this section can be applied to various real-world languages. Just for brevity,

this section uses FAE.

The first group includes every expression that evaluates to a value. For example, (1+2)−3 and (�x.�y.x+y) 1 2

belong to the first group because (1 + 2) − 3 evaluates to 0, and (�x.�y.x + y) 1 2 evaluates to 3. Expressions

in this group correspond to programs that terminate without any problem. When we write a program, the

program usually belongs to the first group.

The second group includes every expression that never teminates. For instance, (�x.x x) (�x.x x) belongs
to the second group. The expression is function application. The first �x.x x is a function, and the seceond

�x.x x is an argument. To evaluate the function application, the body, x x, is evaluated under the environment

that maps x to �x.x x. Following the content of the environment, evaluating x x is equivalent to evaluating

(�x.x x) (�x.x x), which is the original expression. Thus, we can say that the evaluation of (�x.x x) (�x.x x)
leads to the evaluation of the exactly same expression. The evaluation runs forever and never terminates.

There are many nonterminating programs in real world. If a language supports recursive functions or

loops, writing nonterminating programs becomes much easier. Some of them are created by programmers’

mistakes. Wrong use of recursive functions or loops makes programs run forever, contrary to the expectation

of the programmers. However, programmers sometimes intentionally write nonterminating programs.

Consider operating systems, web servers, and shells. They do not finish their execution unless a user inputs a

termination command. If an operating system terminates although a user has not given any commands, such a

behavior should be considered as a bug. These examples clearly show the necessity of writing nonterminating

programs.

The third group includes every expression that terminates but fails to produce a result. For example, (�x.x)+1,

1 0, and 2− x belong to the third group. The first example, (�x.x) + 1 adds a function to an integer. Since such

addition is impossible, the evaluation cannot proceed beyond the addition. Thus, the evaluation terminates

at the middle of the computation rather than reaching the final stage and producing a result. The second

example, 1 0, applies an integer to a value. Functions can be applied to values, but integers cannot. Such

an application expression also makes the evaluation terminate abnormally. In the last example, x is a free

identifier. Its value is unknown, so there is no way to subtract the value of x from 2. Expressions in this group

correspond to programs that incur run-time errors.

Run-time errors are always unintentional. The only reason to write expressions that incur run-time errors

is programmers’ mistakes. Run-time errors terminate programs abnormally before the programs produce

meaningful results. Programmers write programs to achieve their goals: getting particular results or

performing certain tasks forever. Run-time errors hinder programmers from achieving the goals. Run-time

errors are problematic not only to programmers but also to other people. In commercial software, run-time

errors are unpleasant experiences for users and harm the profits and reputations of the company. Moreover,

people use programs for various purposes these days, so run-time errors can cause much more serious

problems. Programs control cars, airplanes, and medical devices. Improper operations of such devices may

kill or hurt people. A device will operate in a weird way if the program controlling the device terminates

abnormally. Programmers surely need a way to check the existence of run-time errors before they deploy



19 Type Systems 202

programs.

19.2 Detecting Run-Time Errors

The simplest way to detect run-time errors is to run a program. This strategy is called dynamic analysis. The
term dynamic means “with execution” (or “during execution”). In general, analysis of a program means to

determine whether the program satisfies a certain property. In this chapter, we are interested in existence of

run-time errors, so analysis means to detect run-time errors. It is straightforward to find run-time errors in a

program with dynamic analysis. If execution finishes due to a run-time error, the program needs revision.

Otherwise, the program may be usable without any problems.

However, dynamic analysis often fails to detect run-time errors. Execution can take a long time or run

forever. Programmers want to deploy their programs; they cannot wait for the execution forever to finish. The

dynamic analysis must stop at some point. It makes complete prevention of run-time errors impossible. Even

though a program runs one hundred hours without any run-time errors, it can incur a run-time error after

one more hour of execution. Moreover, most programs take inputs from users, and there are infinitely many

possible inputs. Dynamic analysis cannot cover all the cases. Even if a program runs fine for every input

being tried, the program can result in a run-time error for another input. In addition, some programs are

nondeterministic. For example, multithreaded programs can produce different results among multiple runs

because the execution of threads is interleaved arbitrarily. Even when run-time errors are not found during a

few trials, the absence of run-time errors cannot be guaranteed. Dynamic analysis is a simple and popular

way to find run-time errors but cannot ensure the nonexistence of run-time errors. To rule out run-time errors

in programs, we need a better way than dynamic analysis.

Since executing programs cannot prove the absence of run-time errors, we should explore a way to detect

run-time errors without executing programs. This approach is called static analysis. The term static means

“without execution” (or “before execution”). We want to make a program that automatically checks whether

a given program can cause a run-time error. More precisly, we want a program % that satisfies the following

conditions:

I For any program � given as an input, % outputs OK or NOT OK in a finite time.

I If � never incurs run-time errors, %(�) = OK.1

I If � can incur a run-time error, %(�) = NOT OK.

The first property implies that % always terminates, which is different from dynamic analysis. The second

property is called completeness, which implies that % never detects run-time errors by mistake, i.e., there is no

false positive—a false positive is to incorrectly say that there is a run-time error (NOT OK). If %(�) is NOT OK, �
must be able to incur a run-time error.

2
The third property is called soundness, which implies that % never

misses run-time errors, i.e., there is no false negative—a false negative is to incorrectly say that there is no

run-time error (OK). If %(�) is OK, � must be free from run-time errors.
3 % can liberate programmers from

the burden of detecting run-time errors. If % says OK, then the programmers do not need to worry about

run-time errors at all. If % says NOT OK, then the program is certainly wrong, and the programmers should

fix the problem.

Alas, such a program % does not exist. It has not existed so far and will not exist in the future as well. In

other words, the problem of deciding whether a certain program can incur a run-time error is proven to be

undecidable. The undecidability can be proved in a similar fashion to Turing’s proof of the undecidability of

the halting problem. We do not explain the proof because the proof is outside the scope of this book.

Fortunately, there is a tolerable solution. If we give up either completeness or soundness, we can find such

a program %. The most common choice is to forgo completeness. Dynamic analysis is complete because a

run-time error found during execution always indicates a real bug. Dynamic analysis does not suffer from

1 %(�) denotes the output of % when � is an input.

2
It is the contrapositive of the second property.

3
It is the contrapositive of the third property.



19 Type Systems 203

false positives. The limitation of dynamic analysis is its unsoundness; it can miss run-time errors. It would be

better to design static analysis as a complementary technique. %, which performs static analysis, should be

sound at the cost of losing completeness. Now, % satisfies the following conditions:

I For any given program � as an input, % outputs OK or NOT OK in a finite time.

I If � never incurs run-time errors, both %(�) = OK and %(�) = NOT OK are possible.

I If � can incur a run-time error, %(�) = NOT OK.

If % says OK, it still guarantees the absence of run-time errors; there is no false negative. However, if % says

NOT OK, we cannot get any information. False positives are possible, so % can say NOT OK even when a given

program never causes a run-time error in fact.

After giving up completness, % should satisfy two more conditions in order to be practically useful. First,

the number of false positives must be modest. If not, programmers cannot get useful information from %.

For example, we can design % to output NOT OK in any case. Such % surely satisfies the above conditions

because producing NOT OK is allowed when a given program never incurs run-time errors. Of course,

programmers cannot get any help from such %. Therefore, the number of false positives must be modest.

Second, when % says NOT OK, it must provide additional information to let programmers know why it says

so. The information can help programmers decide whether NOT OK is a false positive or not.

Sadly, it is difficult to make % that satisfies the original three conditions and the new two conditions. It is still

possible but extremely challenging. Therefore, people forgo the detection of all the run-time errors and try to

catch a subset of them. They classify run-time errors into two categories: type errors and the others. Type
errors are run-time errors due to use of values of wrong types. The other run-time errors are irrelevant to

types. Now, the goal of % is to detect every type error. % satisfies the following conditions:

I For any given program � as an input, % outputs OK or NOT OK in a finite time.

I If � never incurs type errors, both %(�) = OK and %(�) = NOT OK are possible.

I If � can incur a type error, %(�) = NOT OK.
I The number of false positives is modest.

I When %(�) = NOT OK, % provides additional information about its decision.

Currently, there is no notion of a type. To distinguish type errors from the others, we first need to define what

a type is.

19.3 Type Errors

A type is a set of values. We use types to categorize values according to their ability and structures. Values

with the same ability and structure belong to the same type, and values with different ability or structures

belong to different types. There are various values in each programming language, and each value has its

own ability and structure. For instance, integers can be used for addition and subtraction, while functions

can be applied to values. Thus, it is natural to classify values according to their characteristics. In TFAE, the
easiest way to categorize values is to split them into numbers and functions. For example, 1, 42, 0, and −1 are

numbers and belong to the type num. On the other hand, �x.x, �x.x + x, and �x.x 1 are functions and belong

to the type fun. Actually, this classification is too coarse, and we will refine it later. For now, num and fun are

quite enough to introduce the notion of a type.

Now, we can explain what a type error is. When a value of an unexpected type appears, a type error happens.

More precisely, if a value of the fun type appears where a value of the num type is required, or vice versa,

then a type error happens. Consider (�x.x) + 1. The first operand belongs to fun, and the second operand

belongs to num. Addition expects both operands to be num. Since a value of fun appears where a value of

num is expected, evaluation of the expression incurs a type error. As another example, consider 1 0. The

first operand belongs to num. However, function application expects the first operand to be fun. A type error

happens during the evaluation because a value of num appears where a value of fun is expected.

Sometimes, it is unclear to determine whether a certain run-time error is a type error or not. The definition of
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a type error can vary among people. For example, recall the expression 2−x. The expression incurs a run-time

error because x is a free identifier. One may say this error is irrelevant to types. From this perspective, such

an error is just a free identifier error, not a type error. However, another may say the error is relevant to types

because x, whose value is unknown, cannot belong to any type and, therefore, is not a value of num although

subtraction requires both operands to be num. From this perspective, free identifiers are just a subset of type

errors. There is no single correct answer; both perspectives make sense. This book follows the latter, i.e., that

free identifiers are type errors, because it fits the purpose of our discussion better.

Even if we classify free identifier errors as type errors, not all run-time errors are type errors. Some run-time

errors happen even when the types of values are correct, so they cannot be classified as type errors. We cannot

find such examples in FAE. Type errors are all of possible run-time errors in FAE. However, in many real-world

languages, which provide various features FAE excludes, we can find run-time errors irrelevant to types.

One of the most famous examples is NullPointerException of Java. In Java, null is a value that belongs to

any type.
4
Thus, null is a value of the String type. Java strings provide various methods, including length,

which computes the length of the string. However, the following code incurs NullPointerException, which

is one sort of a run-time error in Java, because computing the length of null is impossible:

String s = null;

s.length();

NullPointerException is not a type error since a value of String is expected in front of .length(), and s,

which denotes null, does belong to String.

19.4 Type Checking

%, which detects type errors in a given program, is called a type checker. A type error happens when a value of

an unexpected type occurs. Therefore, to find type errors, a type checker predicts the type of the result of an

expression and compares the predicted type with the expected type.

For example, consider 41 + 42. To evaluate 41 + 42 without type errors, the following conditions must be

satisfied:

I 41 does not incur a type error.

I 41 evaluates to a value of num or does not terminate.

I 42 does not incur a type error.

I 42 evaluates to a value of num or does not terminate.

When the conditions are true, not only the absence of type errors in 41 + 42 is guaranteed, but also we can

predict the result of 41 + 42: it evaluates to a value of num or does not terminate.

Now, let us say that “the type of 4 is �” when the following conditions are true:

I 4 does not incur a type error.

I 4 evaluates to a value of � or does not terminate.

where the metavariable � ranges over types. Then, we can restate the finding of the above paragraph: when

the type of 41 is num and the type of 42 is num, the type of 41 + 42 is num.

This example shows what a type checker does. A type checker computes the type of an expression. When the

type is successfully computed, it ensures that the expression does not incur type errors. In this case, we say

that the expression is well-typed. Then, the type can be used to check whether an expression containing the

previously checked expression can cause type errors. This process is repeated until the whole program is

checked. We call this process type checking.

A type checker requires different strategies to predict the types of different sorts of an expression. In the

4
In fact, Java classifies types into primitive types and reference types, and null is a value of any reference type.
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above example, addition requires both subexpressions to have num as their types. However, it is clear that

function application requires different types. It requires the first subexpression to have fun as its type because

only functions can be applied to values. These examples show that a type checker needs a separate rule for

each sort of an expression to predict the type of the expression. We call such rules typing rules.

There are multiple typing rules in a single language, and we call the collection of all the typing rules in

a language the type system of the language. Static semantics is another name of a type system since type

systems explain the behaviors of expressions by predicting their types without execution. To distinguish the

semantics so far, which explains the behaviors of expressions by defining their values from execution, from

static semantics, we use the term dynamic semantics.

The following table compares dynamic semantics and static semantics:

Dynamic semantics Static semantics

What it is for Evaluation Type checking

Which program implements it Interpreter Type checker

Result Value Type

Dynamic semantics defines how expressions are evaluated. By evaluation, expressions result in values. An

interpreter is a program that takes an expression and computes its result. Static semantics defines how

expressions are type-checked. By type checking, the types of expressions are computed. A type checker is a

program that takes an expression, predicts its type, and checks whether run-time errors are possible. We can

consider static semantics as overapproximation of dynamic semantics. For example, dynamic semantics lets

us know that 1+ 2 results in 3, while static semantics lets us know that 1+ 2 results in an integer without any

run-time errors or does not terminate.

As mentioned before, the goal of a type checker, %, is soundness. Therefore, the most important property of

type systems is type soundness, or simply, just soundness. If a type checker says OK for a given program, then

the program must never incur type errors. In this case, we say that the program passes type checking or that

the type checker accepts the program. On the other hand, if a type checker says NOT OK for a given program,

we cannot conclude anything, but the program might incur a type error. In this case, we say that the type

checker rejects the program.

It is nontrivial to design a sound type system for a given language. Proving the soundness of a type system is

more challenging. Proving type soundness is beyond the scope of this book. This book introduces various

type systems whose type soundness has been proved by researchers already.

Since designing a type system and implementing a type checker are difficult tasks, those tasks are the jobs

of language designers, not language users in most cases. Some languages come out with type systems. We

call such languages typed languages or statically typed languages. The terms imply that the languages have the

notion of a type whose correct use is verified statically. In such languages, only programs that pass type

checking can be executed. Programs rejected by the type checker are disallowed to be exectued because their

safety is not ensured. Therefore, any execution is guaranteed to be type error free. Java, Scala, and Rust are

well-known statically typed languages in real world.

On the other hand, some languages do not provide type systems. We call such languages untyped languages
or dynamically typed languages. The term untyped languages implies that they do not have type checking.

The term dynamically typed languages implies that they have the notion of a type only at run time. Note

that a type is a natural concept that exists anywhere because values can be classified according to their

characteristics in any languages. However, in dynamically typed languages, types exist only during execution

since there are no static type checking. In such languages, programs may incur type errors during execution.

Python and JavaScript are well-known dynamically typed languages in real world.

Statically typed languages and dynamically typed languages have their own pros and cons. Statically typed

languages have the following advantages:

I Errors can be detected early. Programmers can find errors before execution.

I Static type checking gives type information to compilers, and the compilers can optimize programs
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with the information. For these reasons, programs in statically typed languages usually outperform

programs in dynamically typed languages.

I Some statically typed languages require programmers to write types explicitly on the source code. Such

types on the code are called type annotations. Type checkers verify the correctness of the type annotations.

Thus, type annotations are automatically verified comments, which never become outdated, and help

programmers understand the programs easily.

On the other hand, statically typed languages have the following disadvantages:

I Statically typed languages attain type soundness by giving up completeness. Type checkers may reject

programs that never incur type errors. Therefore, programmers may waste their time in making type

checkers agree that given programs do not result in type errors.

I Type annotations make code unnecessarily verbose despite their usefulness. In addition, programmers

spend their time on writing correct type annotations.

Due to these characteristics, statically typed languages are attractive when one writes complex programs

whose error detection is difficult. In addition, programs that have to be highly trustworthy or require high

performance are typical use cases of statically typed languages. Programs that need long-term maintenance

also are good clients of statically typed languages.

The characteristics of dynamically typed languages are the opposite of statically typed languages. Due to

the lack of static type checking, errors are discovered during execution, and programs lose some chances of

optimization. However, inconvenience due to the incompleteness of type systems disappears. Dynamically

typed languages liberate programmers from the burden of fighting against type checking and allow them to

save their time.

Therefore, dynamically-typed languages are ideal for the early stage of development. Programmers can

easily make prototypes of their programs and try various changes in the prototypes. They do not waste

their time arguing with type checkers. Also, programs that are very small and used only a few times are

where dynamically typed languages should be used. In such applications, the advantages of statically typed

languages are worthless.

19.5 TFAE

This section defines TFAE, a statically typed version of FAE.

19.5.1 Syntax

The syntax of TFAE is as follows:

4 ::= = | 4 + 4 | 4 − 4 | G | �G:�.4 | 4 4

The only difference from FAE is the type annotation of a lambda abstraction. �G:�.4 is a function whose

parameter is G, parameter type is �, and body is 4. The parameter type annotation is required during type

checking, which will be explained soon.

Now, we need to define types. Classifying values into num and fun like so far is too imprecise. We need more

fine-grained types for functions for a few reasons. First, functions require arguments to belong to specific

types. Consider �x.x + x. When the function is applied to a value, the value must be a number to avoid a

type error. If a function is given as an argument, the evaluation of the body incurs a type error. Each function

has its own requirement. Therefore, the type of a function must describe the type of an argument expected

by the function. Second, different functions return different values. Some functions return numbers, while

others return functions. To predict the type of a function application expression, the type checker must be

able to predict the type of the return value. Thus, the type of a function must describe the type of the return
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value as well.

Based on the above observations, we define types as follows:

� ::= num | �→ �

The type num is the type of every number. A type �1 → �2 is the type of a function that takes a value of �1 as

an argument and returns a value of �2. For example, �x:num.x takes a value of num and returns the value. Its

type is num→ num. �x:num.�y:num.x + y takes a value of num and returns �y:num.x + y. �y:num.x + y also

takes a value of num. Since both x and y are numbers, x+y also is a number, whose type is num. Therefore, the

type of �y:num.x + y is num→ num, and the type of �x:num.�y:num.x + y is num→ (num→ num). Because
arrows in function types are right associative, we can write num→ num→ num instead.

A type is either num or �1 → �2 for some �1 and �2. Every value belongs to at most one type. No value is an

integer and a function at the same time. No function takes an integer as an argument and a function as an

argument at the same time. In this chapter, every value has at most one type, and, therefore, every expression

has at most one type as well. However, in some type systems, a single value or a single expression can have

multiple types. Chapter 23 shows such an example.

19.5.2 Dynamic Semantics

The dynamic semantics of TFAE is similar to that of FAE. The only difference is type annotations in lambda

abstractions. Since type annotations are used only for type checking and do not have any role at run time,

they are simply ignored when closures are constructed.

Rule Fun

�G:�.4 evaluates to 〈�G.4 , �〉 under �.

� ` �G:�.4 ⇒ 〈�G.4 , �〉 [Fun]

19.5.3 Interpreter

An interpreter of TFAE is similar to that of FAE. Since lambda abstractions have type annotations, the Fun

case class needs a change.

sealed trait Expr

...

case class Fun(x: String, t: Type, b: Expr) extends Expr

Fun(G, �, 4) represents �G:�.4.

In addition, we define types as an ADT.

sealed trait Type

case object NumT extends Type

case class ArrowT(p: Type, r: Type) extends Type

NumT represents num, and ArrowT(�1, �2) represents �1 → �2.

The interp function needs only one fix in the Fun case.

case Fun(x, _, b) => CloV(x, b, env)
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Type annotations are ignored.

19.5.4 Static Semantics

Now, we define the static semantics of TFAE. One naïve approach is to define the static semantics as a relation

over expressions and types because static semantics defines the type of each expression. However, this

approach does not work. Recall that the dynamic semantics is a relation over environments, expressions,

and values. An environment stores the values of variables. Since variables exist both before and at run time,

the static semantics needs information about variables. While the dynamic semantics requires the values of

variables, the static semantics requires the types of variables. To fulfill this requirement, we introduce a type

environment, which is a finite partial function from identifiers to types. Let ) be the set of every type and

TEnv be the set of every type environment.

TEnv = Id
fin↦→ T

Γ ∈ TEnv

The metavariable Γ ranges over type environments.

The static semantics defines a relation over type environments, expressions, and types.

:⊆ TEnv × � × )

Γ ` 4 : � denotes that the type of an expression 4 under a type environment Γ is �. If ∅ ` 4 : � is true for some

�, then 4 is well-typed, and the type system accepts the expression. If ∅ ` 4 : � is false for every �, then 4 is
ill-typed, i.e. not well-typed, and the type system rejects the expression.

Let us define the typing rule for each sort of an expression.

Rule Typ-Num

The type of = is num under Γ.

Γ ` = : num [Typ-Num]

The type of a number is num.

Rule Typ-Add

If the type of 41 is num under Γ and the type of 42 is num under Γ,

then the type of 41 + 42 is num under Γ.

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 + 42 : num
[Typ-Add]

If the types of 41 and 42 are both num, then the type of 41 + 42 is num.

Rule Typ-Sub

If the type of 41 is num under Γ and the type of 42 is num under Γ,

then the type of 41 − 42 is num under Γ.

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 − 42 : num
[Typ-Sub]
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The rule for subtraction is similar to that for addition.

Rule Typ-Id

If G is in the domain of Γ,

then the type of G is Γ(G) under Γ.

G ∈ Domain(Γ)
Γ ` G : Γ(G)

[Typ-Id]

The dynamic semantics finds the value of a variable from an environment. Similarly, the static semantics

finds the type of a variable from a type environment. This rule allows the type system to detect free identifier

errors.

Rule Typ-Fun

If the type of 4 is �2 under Γ[G : �1],5
then the type of �G:�1.4 is �1 → �2 under Γ.

Γ[G : �1] ` 4 : �2

Γ ` �G:�1.4 : �1 → �2

[Typ-Fun]

The rule for a lambda abstraction needs to compute the type of a closure created by the lambda abstraction.

The type of an argument is given as �1 by the type annotation. The rule should determine the type of the

return value of the function as well. The return type equals the type of 4, the function body. The value of an

argument is unknown, but the type is known as �1. It shows why a lambda abstraction needs a parameter type

annotation. It gives information to compute the type of the body. Since a closure captures the environment

when it is created, evaluation of its body can use variables in the environment. Thus, computation of the type

of 4 needs every information in Γ and that the type of G is �1. The computation uses Γ[G : �1]. If the type of 4
is �2, the return type of the function also is �2. Finally, the type of the lambda abstraction becomes �1 → �2.

Rule Typ-App

If the type of 41 is �1 → �2 under Γ and the type of 42 is �1 under Γ,

then the type of 41 42 is �2 under Γ.

Γ ` 41 : �1 → �2 Γ ` 42 : �1

Γ ` 41 42 : �2

[Typ-App]

A function application expression 41 42 is well-typed only if 41 is a function. Let the type of 41 be �1 → �2.

The type of the argument, 42 must be �1. The type of the return value is �2, so the type of 41 42 is �2.

The following proof tree proves that the type of (�x:num.�y:num.x + y) 1 2 is num:

x ∈ Domain(Γ2)
Γ2 ` x : num

y ∈ Domain(Γ2)
Γ2 ` y : num

Γ2 ` x + y : num

Γ1 ` �y:num.x + y : num→ num

∅ ` 4 : num→ num→ num
∅ ` 1 : num

∅ ` 4 1 : num→ num
∅ ` 2 : num

∅ ` 4 1 2 : num

5
Since ↦→ looks similar to arrows in types, we use : instead of ↦→ to prevent confusion.
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where

4 = �x:num.�y:num.x + y
Γ1 = [x : num]
Γ2 = [x : num, y : num]
We call a proof tree that proves the type of an expression a type derivation.

This type system is sound; it rejects every expression producing a type error. For example, consider

(�x:num→ num.x 1) 1. Evaluation of the expression results in evaluation of 1 1, which causes a type error.

Since the type of x 1 is num, the type of the function is (num→ num) → num. The function takes an argument

of type num→ num. However, 1, the argument, has the type num, which differs from num→ num. Therefore,

the type checker rejects the expression, which is a correct decision.

Any sound type system is incomplete. Therefore, this type system is incomplete. The type system can reject a

type-error-free expression. Various such expressions exist. Consider (�x:num.x) (�x:num.x). The expression
evaluates to 〈�x.x, ∅〉 without any type error. However, the type system rejects the expression. �x:num.x takes

an argument of the type num. However, �x:num.x, the argument, has the type num→ num, which differs

from num. As a result, the type system rejects the expression even though it evaluates to a value without any

type error.

19.5.5 Type Checker

To implement a type checker of TFAE, we first define the TEnv type, which is the type of a type environment.

type TEnv = Map[String, Type]

TEnv is a map from strings to TFAE types.

The following mustSame function compares given two types:

def mustSame(t1: Type, t2: Type): Unit =

if (t1 != t2)

throw new Exception

If the types are different, it throws an exception.

The following typeCheck function type-checks a given expression under a given type environment.

def typeCheck(e: Expr, env: TEnv): Type = e match {

case Num(n) => NumT

case Add(l, r) =>

mustSame(typeCheck(l, env), NumT)

mustSame(typeCheck(r, env), NumT)

NumT

case Sub(l, r) =>

mustSame(typeCheck(l, env), NumT)

mustSame(typeCheck(r, env), NumT)

NumT

case Id(x) => env(x)

case Fun(x, t, b) =>

ArrowT(t, typeCheck(b, env + (x -> t)))

case App(f, a) =>

val ArrowT(t1, t2) = typeCheck(f, env)

mustSame(t1, typeCheck(a, env))
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t2

}

If type checking succeeds, the function returns the type of the expression. Otherwise, it throws an exception.

Therefore, if the function throws an exception for a given expression, the expression is ill-typed. If the function

terminates without throwing an exception, the expression is well-typed.

Each case of the pattern matching coincides with the corresponding typing rule. In the Num case, the type

is NumT. In the Add and Sub cases, the subexpressions of the expression must have the type NumT. The type

of the expression also is NumT. The Fun case checks the type of the function body under the extended

type environment. The type of the function is a function type. The parameter type is the same as the type

annotation, and the return type is the type of the body. The App case checks the types of the function and

the argument positions. The parameter type of the function position must equal the type of the argument

position. The type of the application expression is the return type of the function position.

19.6 Extending Type Systems

Type system designers extend type systems to enhance their usability. Type systems can be extended in

various ways. Adding new sorts of an expression or a type is a typical way. On the other hand, it is possible to

refine typing rules without changing the syntax of a language. Chapter 23 illustrates an example of refining

typing rules by adding subtyping.

There are multiple reasons to extend type systems. First, people extend type systems to make them less

incomplete. Incompleteness is an inherent limitation of type systems. Type systems reject some expressions

that do not incur type errors. False positives cannot be eliminated completely. However, we can extend

type systems to reduce the number of false positives. By doing so, programmers can suffer less from the

misfortune that type-error-free programs are rejected. Reducing false positives is the most common reason

of extending type systems. The subsequent four chapters show famous and practically useful type system

extensions of this kind.

Second, type systems are extended just for the convenience of programmers. Extensions of this kind do not

reduce the number of false positives. However, by adding useful language constructs, programmers become

easily able to express their high-level ideas in source code. It is the same as extensions of dynamically typed

languages described by previous chapters. For example, it is possible to define recursive functions in FAE.
However, defining recursive functions in FAE is difficult and complex. To resolve the problem, we define

RFAE by extending FAE with primitive support for recursive functions. Recursive functions can be defined

much easily in RFAE than FAE. Statically typed languages can be improved in similar ways.

Third, more run-time errors can be considered as type errors by extending type systems. In most real-world

languages, some run-time errors are not type errors. For example, recall NullPointerException of Java.

Since Java does not classify NullPointerException as a type error, the Java type checker does not detect

NullPointerException, and every Java program suffers from the possibility of NullPointerException.

NullPointerException is one of the most commonly occuring run-time errors in Java. Kotlin introduces the

notion of an explicit null type by extending the type system of Java. In Kotlin, null is not a value of String,

and NullPointerException is considered as a type error. If a Kotlin program passes type checking, it is

free of NullPointerException. Extending type systems to detect more run-time errors is valuable but can

increase false positives. Thus, type system designers always consider the tradeoff between enlarging the set

of type errors and reducing false positives.

Now, let us consider two simple extensions of TFAE: local variable definitions and pairs.
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19.6.1 Local Variable Definitions

Local variable definitions (val expressions) are the first kind of extension. Even without local variable

definitions, programmers can write the equivalent code with functions. However, local variable definitions

help them write code concisely.

The syntax and dynamic semantics of local variable definitions follow VAE. The static semantics is as follows:

Rule Typ-Val

If the type of 41 is �1 under Γ and the type of 42 is �2 under Γ[G : �1],
then the type of val G=41 in 42 is �2 under Γ.

Γ ` 41 : �1 Γ[G : �1] ` 42 : �2

Γ ` val G=41 in 42 : �2

[Typ-Val]

Note that local variable definitions do not require type annotations, while lambda abstractions do. Therefore,

local variable definitions are more convenient than lambda abstractions for binding.

19.6.2 Pairs

Pairs are the second kind of extension. In FAE, we can desugar pairs to functions:

I (41 , 42), which creates a new pair, is desugared to �f.f 41 42.6

I 4.1, which acquires the first element of a pair, is desugared to 4 �x.�y.x.
I 4.2, which acquires the second element of a pair, is desugared to 4 �x.�y.y.

However, such expressions are ill-typed in TFAE. When the type of 41 is num and the type of 42 is num→ num,

�f.f 41 42 is a function that returns num in some cases and num→ num in some other cases. There is no way

to represent the type of such a function. Thus, programs using pairs cannot be written in TFAE.

To overcome the limitation, we extend TFAE to support pairs. We add pair types as follows:

� ::= · · · | � × �

A type �1 × �2 is the type of (E1 , E2) if the type of E1 is �1 and the type of E2 is �2. The following rules define

the static semantics:

Rule Typ-Pair

If the type of 41 is �1 under Γ and the type of 42 is �2 under Γ,

then the type of (41 , 42) is �1 × �2 under Γ.

Γ ` 41 : �1 Γ ` 42 : �2

Γ ` (41 , 42) : �1 × �2

[Typ-Pair]

Rule Typ-Fst

If the type of 4 is �1 × �2 under Γ,

then the type of 4.1 is �1 under Γ.

Γ ` 4 : �1 × �2

Γ ` 4.1 : �1

[Typ-Fst]

6
Strictly speaking, the correct desugaring is (�x.�y.�f.f x y) 41 42 in eager languages like FAE, but we use the simpler one here.
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Rule Typ-Snd

If the type of 4 is �1 × �2 under Γ,

then the type of 4.2 is �2 under Γ.

Γ ` 4 : �1 × �2

Γ ` 4.2 : �2

[Typ-Snd]

19.7 Exercises

Exercise 19.1 If we change the typing rule for addition as follows, the type system is not sound any longer:

Γ ` 41 : num

Γ ` 41 + 42 : num

Write a TFAE expression that passes type checking but incurs a run-time error.

Exercise 19.2 This exercise extends TFAE with lists.

4 ::= · · · | nil[�] | cons 4 4 | head 4 | tail 4
� ::= · · · | list �

Write the typing rules of the added expressions.

Exercise 19.3 This exercise extends TFAE with boxes.

4 ::= · · · | box 4 | !4 | 4:=4 | 4; 4
� ::= · · · | box �

The dynamic semantics of boxes is the same as BFAE.

1. Write the typing rules of the added expressions. Assignments should not change the types of the

values at given locations.

2. Draw the type derivation of the following expression:

val x=box 3 in
val y=!x + 7 in
x:=8;

y+!x

Exercise 19.4 This exercise extends TFAE with mutable variables.

4 ::= · · · | G:=4

The dynamic semantic of mutable variables is the same as MFAE.

1. Write the typing rule of the added expression.

Now, we extend the language again with pointers.

4 ::= · · · | ∗ 4 | &G | ∗ 4:=4
� ::= · · · | �∗

The dynamic semantic of pointers is the same as Exercise 12.4. A type �∗ denotes the address type of a type
�. For example, for a given address 0, if the value at 0 is a number, then the type of 0 is num∗.
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2. Write the typing rules of the added expressions.
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In FAE, recursive functions can be considered as syntactic sugar. For example, a function that computes the

sum from one to a given integer can be implemented as the following:

/ (�f.�v.if0 v 0 (v + f (v − 1)))

where

/ = �f.(�x.f (�v.x x v)) (�x.f (�v.x x v))

Thus, RFAE has the exactly same expressive power as FAE.

However, we cannot implement recursive functions in TFAE. Why cannot we use the same approach as FAE?
See the body of /. We can find x x. Unfortunately, such an expression is ill-typed in TFAE. Let us try to find

the type of x. It is sure that the type cannot be num because x is applied to a value. Therefore, the type must

be �1 → �2 for some �1 and �2. Since a function of �1 → �2 is applied to x, the type of xmust be �1. It implies

that the type of x is �1 → �2 and �1 at the same time. Since a value has at most one type in TFAE, �1 → �2

must be the same as �1. However, it is impossible. In TFAE, such a type does not exist. A type cannot be the

same as a part of itself. Since the fixed point combinator is ill-typed, we cannot desugar recursive functions to

nonrecursive functions in TFAE.

More interestingly, not only recursive functions, but also any nonterminating programs cannot be written in

TFAE. In other words, every well-typed TFAE expression evaluates to a value in a finite time. This is called the

normalization property of TFAE. The normalization property of TFAE was proved by Tait in 1967 [Tai67].
1

This chapter defines TRFAE, which extends TFAE with recursive functions. By adding recursive functions to

the language, programmers become able to implement recursive functions and nonterminating programs,

which are impossible in TFAE. Thus, while the extension from FAE to RFAE does not increase the expressivity,

the extension from TFAE to TRFAE does.

20.1 Syntax

The following is the syntax of TRFAE:

4 ::= · · · | if0 4 4 4 | def G(G:�):�=4 in 4

def G1(G2:�1):�2=41 in 42 defines a recursive function. It is similar to a recursive function inRFAE but additionally

has type annotations �1 and �2. �1 denotes the parameter type of the function, and �2 denotes the return type

of the function. They are used for type checking, just like type annotations in TFAE.

20.2 Dynamic Semantics

The dynamic semantics of TRFAE is similar to that of RFAE, but type annotations are ignored during closure

construction.

Rule Rec

If 42 evaluates to E under �′, where �′ = �[G1 ↦→ 〈�G2.41 , �′〉],
then def G1(G2:�1):�2=41 in 42 evaluates to E under �.

1
Actually, the Tait’s proof is about the lazy version of TFAE, but the same technique can be applied to TFAE, which is eager, as Pierce

discussed [Pie02].
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�′ = �[G1 ↦→ 〈�G2.41 , �
′〉] �′ ` 42 ⇒ E

� ` def G1(G2:�1):�2=41 in 42 ⇒ E
[Rec]

20.3 Interpreter

The following Scala code implements the syntax:

sealed trait Expr

...

case class If0(c: Expr, t: Expr, f: Expr) extends Expr

case class Rec(

f: String, x: String, p: Type, r: Type, b: Expr, e: Expr

) extends Expr

If0(41, 42, 43) represents if0 41 42 43, andRec(G1, G2, �1, �2, 41, 42) representsdef G1(G2:�1):�2=41 in 42.

The interp function is similar to that of RFAE, but type annotations are ignored during closure construction.

def interp(e: Expr, env: Env): Value = e match {

...

case Rec(f, x, _, _, b, e) =>

val cloV = CloV(x, b, env)

val nenv = env + (f -> cloV)

cloV.e = nenv

interp(e, nenv)

}

20.4 Static Semantics

We need to define typing rules for conditional expressions and recursive functions. Let us consider conditional

expressions first.

Rule Typ-If0

If

the type of 41 is num under Γ,

the type of 42 is � under Γ, and

the type of 43 is � under Γ,

then

the type of if0 41 42 43 is � under Γ

Γ ` 41 : num Γ ` 42 : � Γ ` 43 : �

Γ ` if0 41 42 43 : �
[Typ-If0]

The condition of a conditional expression must be a value of num. The rule cannot determine which branch

will be evaluated at run time. Since every expression has at most one type, 42 and 43 must have the same type,

�. The type of the whole expression also is �.

Actually, the condition can have any type. If the result of the condition is 0, then the true branch is evaluated.

If the result is a nonzero integer or a closure, then the false branch is evaluated. A value of any type can be

safely used as the condition. Therefore, the type system may use the following rule instead of Rule Typ-If0:
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Rule Typ-If0’

If

the type of 41 is �′ under Γ,
the type of 42 is � under Γ, and

the type of 43 is � under Γ,

then

the type of if0 41 42 43 is � under Γ

Γ ` 41 : �′ Γ ` 42 : � Γ ` 43 : �

Γ ` if0 41 42 43 : �
[Typ-If0’]

Both rules make the type system sound, but they are different from each other. Rule Typ-If0 rejects more

expressions than Rule Typ-If0’ because the former allows only integers to be conditions, while the latter

allows functions as well. Therefore, from the perspective of reducing false positives, Rule Typ-If0’ is better

than Rule Typ-If0. However, if the type of the condition is a function type, it is highly likely to be a mistake of

the programmer. When the condition evaluates to a function, the conditional expression always evaluates

its false branch. The use of a conditional expression is totally meaningless. Thus, from the perspective of

detecting programmers’ mistakes, Rule Typ-If0 is better than Rule Typ-If0’.

Now, we define the typing rule of a recursive function.

Rule Typ-Rec

If

the type of 41 is �2 under Γ[G1 : �1 → �2 , G2 : �1] and
the type of 42 is � under Γ[G1 : �1 → �2],

then

the type of def G1(G2:�1):�2=41 in 42 is � under Γ.

Γ[G1 : �1 → �2 , G2 : �1] ` 41 : �2 Γ[G1 : �1 → �2] ` 42 : �

Γ ` def G1(G2:�1):�2=41 in 42 : �
[Typ-Rec]

The principle of the rule is the same as the typing rule of a lambda abstraction: given type annotations are

used during the type checking of the function body. Since the function itself can be used in the body, the

type checking of the body requires the type of the function. This is the reason that the expression needs the

return type annotation in addition to the parameter type annotation. To type-check the body, the return type

must be known. For the type checking of the body, the type environment is extended with the type of the

function, �1 → �2, and the type of the parameter, �1. Since the type of the body is the return type, it must be

�2. After the type checking of the body, 42 is type-checked. For 42, only the type of the function is required;

the parameter can be used only in the body.

The following proof trees prove that the type of def f(x:num):num=if0 x 0 (x + f (x − 1)) in f 3 is num:

x ∈ Domain(Γ1)
Γ1 ` x : num

f ∈ Domain(Γ1)
Γ1 ` f : num→ num

x ∈ Domain(Γ1)
Γ1 ` x : num

Γ1 ` 1 : num

Γ1 ` x − 1 : num

Γ1 ` f (x − 1) : num

Γ1 ` x + (f (x − 1)) : num

x ∈ Domain(Γ1)
Γ1 ` x : num

Γ1 ` 0 : num Γ1 ` x + (f (x − 1)) : num

Γ1 ` if0 x 0 (x + f (x − 1)) : num



20 Typing Recursive Functions 218

Γ1 ` if0 x 0 (x + f (x − 1)) : num

f ∈ Domain(Γ2)
Γ2 ` f : num→ num

Γ2 ` 3 : num

Γ2 ` f 3 : num

∅ ` def f(x:num):num=if0 x 0 (x + f (x − 1)) in f 3 : num

where Γ1 = [f : num→ num, x : num] and Γ2 = [f : num→ num].

20.5 Type Checker

To implement a type checker, we need to add the If0 and Rec cases to the typeCheck function for TFAE.

case If0(c, t, f) =>

mustSame(typeCheck(c, env), NumT)

val tt = typeCheck(t, env)

val tf = typeCheck(f, env)

mustSame(tt, tf)

tt

The condition of an expression must belong to num. The type of c is computed with typeCheck and compared

to NumTwith mustSame. The types of the branches must be the same. The typeCheck function computes the

types of t and f, and the mustSame function compares them. If they are the same, then the type is the type of

the whole expression.

case Rec(f, x, p, r, b, e) =>

val t = ArrowT(p, r)

val nenv = env + (f -> t)

mustSame(typeCheck(b, nenv + (x -> p)), r)

typeCheck(e, nenv)

The parameter type is p, and the return type is r. Thus, the type of f is the function type from p to r. The type

of x is p. To type-check b, the type environment must have the types of f and x. The type of bmust equal r.

The mustSame function compares the types. The function can be used not only in b, which is the body of the

function, but also in e. On the other hand, the parameter x cannot be used in e. Therefore, it is enough to add

only the type of f to the type environment used to type-check e. The type of the whole expression is equal to

the type of e.

20.6 Exercises

Exercise 20.1 Write a TRFAE expression 4 such that only one of 4 and �x:num.(4 x) terminates, while both

4 and �x:num.(4 x) are well-typed.

Exercise 20.2 Consider the following language:

4 ::= = 2 ::= skip 1 ::= true
| 1 | G:=4 | false
| G | if 4 2 2 E ::= =

| 4 + 4 | while 4 2 | 1

| 4 < 4 | 2; 2 � ::= num
| bool
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The metavariable 2 ranges over commands.

Under a given environment �, evaluation of an expression yields a value and does not change �. The
following is the operational semantics of the expressions:

� ` = ⇒ = � ` 1 ⇒ 1
G ∈ Domain(�)
� ` G ⇒ �(G)

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 < 42 ⇒ =1 < =2

1. Write the typing rules of the form Γ ` 4 : � .

Evaluation of a command produces a new environment. The following is the operational semantics of the

commands:

� ` skip⇒ �
� ` 4 ⇒ E

� ` G:=4 ⇒ �[G ↦→ E]

� ` 4 ⇒ true � ` 21 ⇒ �1

� ` if 4 21 22 ⇒ �1

� ` 4 ⇒ false � ` 22 ⇒ �1

� ` if 4 21 22 ⇒ �1

� ` 4 ⇒ true � ` 2 ⇒ �1 �1 ` while 4 2 ⇒ �2

� ` while 4 2 ⇒ �2

� ` 4 ⇒ false

� ` while 4 2 ⇒ �

� ` 21 ⇒ �1 �1 ` 22 ⇒ �2

� ` 21; 22 ⇒ �2

2. Write the typing rules of the form Γ ` 2 : Γ . The following command must be well-typed:

x := 1; x := 2. However, the following command must be ill-typed: x := 1; x := true.
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Algebraic Data Types (ADTs) are ubiquitous in functional programming. Chapter 5 explains the concept of

an ADT and how programmers can use ADTs in Scala. ADTs are useful when a single type includes values

of different structures. Such types are common in computer science. For example, lists and options, which

almost every programming language provides, are typically implemented as ADTs. In addition, ASTs, which

all the compilers, interpreters, and static analyzers need, can be easily implemented as ADTs as well.

Nonrecursive ADTs can be considered as syntactic sugar in TFAE.1 Let us see how they can be desugared

with an example. Consider the following Scala code:

sealed trait Fruit

case class Apple(radius: Int) extends Fruit

case class Banana(radius: Int, height: Int) extends Fruit

A fruit is either an apple or a banana. In this example, we are interested in the sizes of fruits. An apple is

approximated as a sphere and, therefore, parametrized by its radius. A banana is approximated as a cylinder

and, therefore, parametrized by its radius and height.

We can easily create values that represent apples and bananas like below.

val apple = Apple(5)

val banana = Banana(2, 6)

In the above code, apple represents an apple whose radius is 5, and banana represents a banana whose

radius is 2 and height is 6.

In TFAE, we can represent a fruit as a value of num × (num × (num × num)). Thus, a fruit value is a pair. The
first value of the pair indicates which fruit it is. If the value is 0, it is an apple. Otherwise, it is a banana. The

second value of the pair is another pair, which represents the size of the fruit. If the fruit is an apple, only

the first value of the second pair is meaningful. The value denotes the radius of the apple. Therefore, the

following value represents an apple whose radius is 5:

(0, (5, (0, 0)))

Note that (0, 0) can be replaced with any pair of integers. On the other hand, if the fruit is a banana, only the

second value, which is a pair again, of the pair is meaningful. The pair consists of the radius and height of

the banana. The following value represents a banana whose radius is 2 and height is 6:

(1, (0, (2, 6)))

Note that 1 can be replaced with any nonzero integer, and 0 can be replaced with any integer.

It is tedious and error-prone to make fruit values like the above, while Scala provides a simple way to

construct fruit values. In TFAE, we can define functions to mimic constructors in Scala.

val Apple=�x:num.(0, (x, (0, 0))) in
val Banana=�x:(num × num).(1, (0, x)) in
· · ·
Apple is a function that takes an integer as an argument and returns an apple whose radius is the given

integer. Similarly, Banana is a function that takes a pair of integers as an argument and returns a banana

whose size is represented by the given pair. We can now easily create fruit values with Apple and Banana.

1
Here, TFAE means the extended version defined in Section 19.6.
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val apple=Apple 5 in
val banana=Banana (6, 2) in
· · ·
In Scala, a typical way to use a value of an ADT is pattern matching. For instance, consider a function that

computes the radius of a given fruit. The function can be implemented like below.

def radius(f: Fruit): Int = f match {

case Apple(r) => r

case Banana(r, _) => r

}

TFAE does not have pattern matching, but we can exploit the fact that the first value of a given pair indicates

which fruit it is. We use a conditional expression to perform a certain operation when the fruit is an apple,

i.e. the first value is 0, and another operation when the fruit is a banana, i.e. the first value is nonzero. The

following expression defines the radius function:

val radius=�x:(num × (num × (num × num))).if0 x.1 x.2.1 x.2.2.1 in · · ·

This example shows that we can desugar ADTs and pattern matching to pairs, functions, and conditional

expressions in TFAE. The ADT of the example has only two variants, which have one or two parameters.

ADTs can have any number of variants, and variants can have any number of parameters. The same strategy

can be used to desugar ADTs with more variants and variants with more parameters.

Although nonrecursive ADTs can be desugared in TFAE, there are a few flaws. First, desugared programs

have unnecessary values. Even when wemake an apple, we need (0, 0), which is a pair for the size of a banana.

Similarly, a banana value requires the size of an apple. They add unessential complexity and computation

to the code. Second, a single type may represent conceptually different types when a single program uses

multiple ADTs. In practice, it is common to use multiple ADTs in a single program. Recall that the type of

a fruit is num × (num × (num × num)). The same type may represent other types as well. For example, the

type of an electronic product can also be num × (num × (num × num)). In this case, the type system allows a

function intended to take a fruit to take an electronic product as an argument. It does not incur any type

errors at run time but can cause undesirable behaviors.

These flaws can be resolved by adding primitive support for ADTs to the language. After adding ADTs,

programs do not require unnecessary values to construct values of ADTs. In addition, each ADT can be

defined as a separate type, so conceptually different types can be correctly distinguished even when they

share the same structure.

The most critical limitation of the current desugaring strategy is the missing support for recursive ADTs.

Consider the following Scala code:

sealed trait List

case object Nil extends List

case class Cons(h: Int, t: List) extends List

which implements an integer list type. A list is one of the most famous recursive types. Look at the definition

of Cons. Cons is one variant of List, so it defines List. At the same time, the definition uses List as the type

of the second parameter. Thus, List is a recursively defined type, whose definition depends on itself.

Can we desugar the definition of a list in TFAE? For desugaring, the first thing to do is to determine the type

of a list. Let the type of a list be �. Then, � equals (num, �′) for some �′. The first element is an integer that

indicates which variant the value denotes. When the integer is 0, the value is Nil; otherwise, the value is Cons.

When the value is Nil, no other data is required since Nil does not have any parameters. Thus, the second

element of a type �′ is for Cons. Since Cons has two parameters, an integer and a list, �′ equals (num, �). Then,
we obtain the equation � = (num, (num, �)). However, as discussed in the previous chapter, no type in TFAE
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can be the same as a part of itself. Therefore, there is no such �. We can conclude that we cannot desugar lists

in TFAE. In general, recursive ADTs cannot be expressed in TFAE.

This chapter defines TVFAE by extending TFAE2
with ADTs, each of which can be either nonrecursive or

recursive. It allows programmers to represent ADTs efficiently and concisely. In addition, many interesting

recursive data types become able to be used in programs.

21.1 Syntax

First, we introduce type identifiers, which are the names of types defined by programmers. For example,

Fruit of the previous example is a type identifier. Let TId be the set of every type identifier.

C ∈ TId

The metavariable C ranges over type identifiers. Since TId includes only the names of user-defined types, num
is not a member of TId.

The names of user-defined types can be used as types. For example, Fruit, which is a type name, is used as a

type in def radius(f: Fruit): Int = .... Therefore, we extend the syntax of types as follows:

� ::= · · · | C

where C is a type that includes every value of an ADT whose name is C.

Now, we define the syntax of expressions:

4 ::= · · · | type C = G@� + G@� in 4 | 4 match G(G) → 4 , G(G) → 4

I type C = G1@�1 + G2@�2 in 4 is an expression that defines a new type. The name of the type is C, and the

type has two variants. The name of the first variant is G1, and it has a single parameter whose type is

�1. Similarly, the name of the second variant is G2, and it has a single parameter whose type is �2. The

names of the variants serve as constructors in 4. The type name C can be used in 4 as a type. In addition,

since types can be recursively defined, C can appear also in �1 and �2.

I 4 match G1(G3) → 41 , G2(G4) → 42 is a pattern matching expression. 4 is the target of the pattern

matching. G1 is the name of the variant handled by the first case, and G2 is the name of the variant

handled by the second case. In the first case, G3 denotes the value held by the match target, and 41
determines the result. Similarly, in the second case, G4 denotes the value held by the match target, and

42 determines the result.

Note that each type can have only two variants, and each variant can have only one parameter. This restriction

can be easily removed. For brevity, this chapter keeps the restriction.

Let us see some example expressions. The following expression defines the Fruit type and the radius

function:

type Fruit = Apple@num + Banana@(num × num) in
val radius=�x:Fruit.x match Apple(y) → y, Banana(y) → y.1 in
· · ·

The following expression defines the List type:

type List = Nil@num + Cons@(num × List) in · · ·

Note that Nil has one parameter since every variant of TVFAEmust have a parameter. Nil can have any value

2
For the rest of the chapter, local variable definitions and types are not parts of TFAE. However, we may keep using them in examples.
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because the value is not used at all anyway.

Recursive data types are typically used with recursive functions. If we add recursive functions of TRFAE to

the language, we can implement the following sum function, which calculates the sum of every integer in a

given list:

def sum(x:List):num=x match Nil(y) → 0, Cons(y) → y.1 + (sum y.2) in · · ·

21.2 Dynamic Semantics

We should introduce two new sorts of a value: a variant value and a constructor.

E ::= · · · | G(E) | 〈G〉

I G(E) is a value of a variant named G. It contains one value E. A variant value can be the target of pattern

matching.

I 〈G〉 is a constructor of a variant named G. A constructor can be considered as a special kind of a

function because it can be applied to a value. When a constructor is applied to a value, a variant value

is constructed.

For example, Apple(5) is an apple value whose radius is 5, and Banana((2, 6)) is a banana value whose radius

is 2 and height is 6. Both 〈Apple〉 and 〈Banana〉 are constructors. When 〈Apple〉 is applied to 5, the result is

Apple(5), and when 〈Banana〉 is applied to (2, 6), the result is Banana((2, 6)).

Now, let us define the dynamic semantics of the added expressions. First, consider an expression that defines

a new type.

Rule TypeDef

If 4 evaluates to E under �[G1 ↦→ 〈G1〉, G2 ↦→ 〈G2〉],
then type C = G1@�1 + G2@�2 in 4 evaluates to E under �.

�[G1 ↦→ 〈G1〉, G2 ↦→ 〈G2〉] ` 4 ⇒ E

� ` type C = G1@�1 + G2@�2 in 4 ⇒ E
[TypeDef]

The result of type C = G1@�1 + G2@�2 in 4 equals the result of 4. The constructors of the variants have to be

available during the evaluation of 4. For example, if the expression defines Fruit, then 4 should be able to

construct values with the constructors, 〈Apple〉 and 〈Banana〉. Programmers can use the names of the variants

to denote the constructors. They can write code like Apple 5 and Banana (2, 6). It shows that the identifier

Applemust denote the value 〈Apple〉 and that the identifier Bananamust denote the value 〈Banana〉. For this
reason, the environment used for the evaluation of 4 contains a mapping from G1 to 〈G1〉 and a mapping

from G2 to 〈G2〉.

The other new expression is a pattern matching expression. Like the dynamic semantics of a conditional

expression, we define two rules: one for when the target is handled by the first case and the other for when

the target is handled by the second case.

Rule Match-L

If 4 evaluates to G1(E′) under � and 41 evaluates to E under �[G3 ↦→ E′],
then 4 match G1(G3) → 41 , G2(G4) → 42 evaluates to E under �.

� ` 4 ⇒ G1(E′) �[G3 ↦→ E′] ` 41 ⇒ E

� ` 4 match G1(G3) → 41 , G2(G4) → 42 ⇒ E
[Match-L]
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For pattern matching, the target has to be evaluated first. Therefore, 4 is the first expression to be evaluated. If

the result of 4 is G1(E′), then it matches the first case. Thus, 41 is the next expression to be evaluated. During

the evaluation of 41, G3 denotes E
′
. Therefore, the environment has a mapping from G3 to E

′
. The result of 41

is the result of the whole pattern matching expression.

Rule Match-R

If 4 evaluates to G2(E′) under � and 42 evaluates to E under �[G4 ↦→ E′],
then 4 match G1(G3) → 41 , G2(G4) → 42 evaluates to E under �.

� ` 4 ⇒ G2(E′) �[G4 ↦→ E′] ` 42 ⇒ E

� ` 4 match G1(G3) → 41 , G2(G4) → 42 ⇒ E
[Match-R]

On the other hand, if 4 evaluates to G2(E′), it matches the second case. Then, 42 is evaluated under the

environment that contains a mapping from G4 to E
′
. The result of 42 is the result of the whole pattern matching

expression.

In addition, we should define a new rule for function application. In TFAE, closures are the only values that

can be applied to values. However, TVFAE has constructors, which also can be applied to values. We need a

rule to handle such cases.

Rule App-Cnstr

If 41 evaluates to 〈G〉 under � and 42 evaluates to E under �,
then 41 42 evaluates to G(E) under �.

� ` 41 ⇒ 〈G〉 � ` 42 ⇒ E

� ` 41 42 ⇒ G(E)
[App-Cnstr]

If 41 evaluates to the constructor of a variant named G, the application expression constructs a value of the

variant.

Let 4 be type Fruit = Apple@num+Banana@(num×num) in (Apple 5)match Apple(y) → y, Banana(z) → z.1.
The following proof tree proves that 4 evaluates to 5:

Apple ∈ Domain(�1)
�1 ` Apple⇒ 〈Apple〉

�1 ` 5⇒ 5

�1 ` Apple 5⇒ Apple(5)
y ∈ Domain(�2)
�2 ` y⇒ 5

�1 ` (Apple 5) match Apple(y) → y, Banana(z) → z.1⇒ 5

∅ ` 4 ⇒ 5

where

�1 = [Apple ↦→ 〈Apple〉, Banana ↦→ 〈Banana〉]
�2 = �1[y ↦→ 5]

21.3 Interpreter

The following code implements expressions of TVFAE:

sealed trait Expr

...

case class TypeDef(
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t: String, v1: String, vt1: Type,

v2: String, vt2: Type, b: Expr

) extends Expr

case class Match(

e: Expr, v1: String, x1: String, e1: Expr,

v2: String, x2: String, e2: Expr

) extends Expr

TypeDef(C, G1, �1, G2, �2, 4) represents type C = G1@�1 + G2@�2 in 4, and Match(4, G1, G3, 41, G2,

G4, 42) represents 4 match G1(G3) → 41 , G2(G4) → 42.

The following code implements values of TVFAE:

sealed trait Value

...

case class VariantV(x: String, v: Value) extends Value

case class ConstructorV(x: String) extends Value

VariantV(G, E) represents G(E), and ConstructorV(G) represents 〈G〉.

case TypeDef(_, v1, _, v2, _, b) =>

interp(b, env + (v1 -> ConstructorV(v1)) + (v2 -> ConstructorV(v2)))

An expression defining a type evaluates its body under the environment with the constructors.

case Match(e, v1, x1, e1, v2, x2, e2) =>

interp(e, env) match {

case VariantV(`v1`, v) => interp(e1, env + (x1 -> v))

case VariantV(`v2`, v) => interp(e2, env + (x2 -> v))

}

A pattern matching expression evaluates the target expression first. If the result is a variant value and its

name is the same as v1, then e1 is evaluated under the environment with the value of x1. If the name is the

same as v2, then e2 is evaluated under the environment with the value of x2.

case App(f, a) =>

val fv = interp(f, env)

val av = interp(a, env)

fv match {

case CloV(x, b, fEnv) =>

interp(b, fEnv + (x -> av))

case ConstructorV(x) =>

VariantV(x, av)

}

Function application allows a constructor to occur at the function position. If a constructor appears, the result

is a variant value that contains the value denoted by the argument.

21.4 Static Semantics

To define the static semantics, the definition of a type environment should be revised first. In TFAE, type
environments store the types of variables. They are finite partial functions from identifiers to types. In TVFAE,
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type environments have more things to do. They have to store the information about user-defined types. The

type checking process uses the information. Let Γ be the type environment when type C = G1@�1+G2@�2 in 4 is
type-checked.Adding the informationof C toΓyieldsΓ[C : {(G1 , �1), (G2 , �2)}]. The variants are elements of a set

since the order between them is unimportant. We will write C = G1@�1+ G2@�2 to denote C : {(G1 , �1), (G2 , �2)}
just for the sake of intuitive notation. The domain of a type environment now needs to include C, which is a

type identifier. Also, the codomain has to contain G1@�1 + G2@�2. Below is the revised definition. Note that

P(�) denotes the power set of �.

TEnv = (Id ∪ TId) fin↦→ () ∪P(Id × )))

21.4.1 Well-Formed Types

An arbitrary type identifier can be a type in TVFAE. For example, Fruit is a type. It is true regardless of

whether the type Fruit is bound by a type definition. Programmers can write �x:Fruit.xwithout defining

Fruit. Such a function does not make sense at all since Fruit is a free type identifier, whose information is

missing. Expressions with free type identifiers are weird and useless. Furthermore, they can break the type

soundness of the type system.

To prevent free type identifiers, we introduce the notion of a well-formed type. A well-formed type is a type

that does not contain any free type identifiers. The opposite of a well-formed type is an ill-formed type, which

contains a free type identifier.

When a type appears in an expression, the type must be well-formed. Any expression that contains an

ill-formed type is rejected by the type system. In this way, weird programs like �x:Fruit.x can be effectively

prevented by type checking.

Now, we defined well-formed types. The well-formedness relation is a relation over type environments and

types because we need type information in a type environment to decide whether a certain type identifier is

free or not.

`⊆ TEnv × )

Γ ` � denotes that � is well-formed under Γ.

Well-formedness rules prescribe which types are well-formed.

Rule Wf-NumT

num is well-formed under Γ.

Γ ` num [Wf-NumT]

The first well-formedness rule states that num is always well-formed. num is neither a type identifier nor the

name of a user-defined type. It is a built-in type, which always exists. Thus, num is well-formed under any

type environment.

Rule Wf-ArrowT

If �1 is well-formed under Γ and �2 is well-formed under Γ,

then �1 → �2 is well-formed under Γ.

Γ ` �1 Γ ` �2

Γ ` �1 → �2

[Wf-ArrowT]



21 Algebraic Data Types 227

If both �1 and �2 are well-formed, then �1 → �2 also is well-formed. The reason is clear: if both �1 and �2 lack

free type identifiers, then �1 → �2 also does.

Rule Wf-IdT

If C is in the domain of Γ,

then C is well-formed under Γ.

C ∈ Domain(Γ)
Γ ` C

[Wf-IdT]

If a type identifier can be found in the type environment, the type identifier is a well-formed type. For example,

if �x:Fruit.x is the whole expression, Fruit is ill-formed since there is no Fruit in the type environment.

However, in type Fruit = Apple@num + Banana@(num × num) in �x:Fruit.x, Fruit is well-formed since the

expression puts the definition of Fruit into the type environment.

21.4.2 Typing Rules

Before defining the typing rules, we need to classify newly introduced values. The type of a variant value is

the type that defines the variant. For example, if G is a variant of C, then G(E) is a value of C. The type of a

constructor is a function type because constructors can be applied to values. Each constructor takes a value of

the type that is specified in the type definition and returns a value of the type that constructor belongs to. For

instance, if G is a variant of C and C defines the parameter type of G to be �, then the type of G is �→ C.

Now, let us define the typing rules. First, consider expressions that define types.

Rule Typ-TypeDef

If

Γ′ denotes Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C],
�1 is well-formed under Γ′,
�2 is well-formed under Γ′, and
the type of 4 is � under Γ′,

then

the type of type C = G1@�1 + G2@�2 in 4 is � under Γ.

Γ′ = Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C] Γ′ ` �1 Γ′ ` �2 Γ′ ` 4 : �

Γ ` type C = G1@�1 + G2@�2 in 4 : �
[Typ-TypeDef]

Rule Typ-TypeDef defines the type of an expression that defines a new type. First, the definition of C must be

added to the type environment. In addition, since 4 can use the constructors, the type environment should

also contain the types of G1 and G2. Γ
′
denotes the type environment after adding the type definition and

the constructors. Since �1 and �2 are user-written type annotations, they can be ill-formed types. To rule out

ill-formed types, the well-formedness of �1 and �2 is checked. For the well-formedness checking, Γ′ is used
instead of Γ. The use of Γ′ allows recursively defined types. Since Γ′ contains the definition of C, �1 and �2 can

be well-formed even when C occurs in them. Finally, 4 is type-checked under Γ′. The type of 4 is the type of
the whole type-defining expression. Note that the type of 4 does not need well-formedness checking since it

is the result of type checking, not a user-written type annotation. The same principle can be applied to all the

other typing rules in TVFAE.

Rule Typ-Match
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If

the type of 4 is C under Γ,

C is in the domain of Γ,

Γ(C) equals G1@�1 + G2@�2,

the type of 41 is � under Γ[G3 : �1], and
the type of 42 is � under Γ[G4 : �2],

then

the type of 4 match G1(G3) → 41 , G2(G4) → 42 is � under Γ.

Γ ` 4 : C C ∈ Domain(Γ) Γ(C) = G1@�1 + G2@�2 Γ[G3 : �1] ` 41 : � Γ[G4 : �2] ` 42 : �

Γ ` 4 match G1(G3) → 41 , G2(G4) → 42 : �
[Typ-Match]

Rule Typ-Match defines the type of a pattern matching expression. First, the type of 4, which is the target, is

computed. Since pattern matching in TVFAE can be used for only user-defined types, the type of the target

must be C, which is a type identifier. In addition, its definition must be found in the type environment. Since

G1 and G2 in the cases denote the names of variants, the names of C’s variants must be G1 and G2. Note that

the order does not need to be the same. The pattern matching expression can place G1 first while the type

definition places G2 first. The fact that the order does not matter is reflected in the rule by representing

variant information as G1@�1 + G2@�2, which actually denotes a set {(G1 , �1), (G2 , �2)}. Finally, 41 and 42 are
type-checked. The type of G3 is �1 during the type checking of 41, and the type of G4 is �2 during the type

checking of 42. The type of 41 must be the same as the type of 42 because an expression can have at most one

type. It is similar to the typing rule of a conditional expression. The common type to 41 and 42 is the type of

the whole pattern matching expression.

In addition, one typing rule from TFAE needs a revision: Rule Typ-Fun.

Rule Typ-Fun

If �1 is well-formed under Γ and the type of 4 is �2 under Γ[G : �1],
then the type of �G:�1.4 is �1 → �2 under Γ.

Γ ` �1 Γ[G : �1] ` 4 : �2

Γ ` �G:�1.4 : �1 → �2

[Typ-Fun]

A lambda abstraction also has a user-written type annotation, whichmight be ill-formed. To rule out ill-formed

types, the well-formedness of the type annotation must be checked.

Let 4 be type Fruit = Apple@num+Banana@(num×num) in (Apple 5)match Apple(y) → y, Banana(z) → z.1.
The following proof trees prove that the type of 4 is num:

Apple ∈ Domain(Γ1)
Γ1 ` Apple : num→ Fruit

Γ1 ` 5 : num

Γ1 ` Apple 5 : Fruit

y ∈ Domain(Γ2)
Γ2 ` y : num

z ∈ Domain(Γ3)
Γ3 ` z : num × num

Γ3 ` z.1 : num



21 Algebraic Data Types 229

Γ1 ` Apple 5 : Fruit

Fruit ∈ Domain(Γ1) Γ1(Fruit) = Apple@num + Banana@(num × num) Γ2 ` y : num Γ3 ` z.1 : num

Γ1 ` (Apple 5) match Apple(y) → y, Banana(z) → z.1 : num

Γ1 = Γ1 Γ1 ` num
Γ1 ` num Γ1 ` num

Γ1 ` num × num
Γ1 ` (Apple 5) match Apple(y) → y, Banana(z) → z.1 : num

∅ ` 4 : num

where

Γ1 = [Fruit = Apple@num + Banana@(num × num), Apple : num→ Fruit, Banana : (num × num) → Fruit]
Γ2 = Γ1[y : num]
Γ3 = Γ1[z : num × num]

21.5 Type Checker

First, we extend the definition of a type since TVFAE has a new sort of a type.

sealed trait Type

...

case class IdT(t: String) extends Type

IdT(C) represents C.

In TVFAE, type environments store type definitions and the types of variables. Thus, they cannot be represented

by simple maps any longer. Now, they are represented by TEnv instances, each of which contains two maps.

case class TEnv(

vars: Map[String, Type],

tbinds: Map[String, Map[String, Type]]

) {

def add(x: String, t: Type): TEnv =

TEnv(vars + (x -> t), tbinds)

def add(x: String, m: Map[String, Type]): TEnv =

TEnv(vars, tbinds + (x -> m))

def contains(x: String): Boolean =

tbinds.contains(x)

}

TEnv has two fields: vars and tbinds. The field vars, which is a map from strings to TVFAE types, contains

the types of variables. The field tbinds, which is a map from strings to maps, contains type definitions. Each

map in tbindsmaps strings, which are the names of variants, to TVFAE types, which are the parameter types

of variants. For example, tbinds containing the Fruit type is as follows:

Map("Fruit" -> Map("Apple" -> NumT, "Banana" -> PairT(NumT, NumT)))

For the ease of adding type definitions and variables to type environments, the TEnv class has two methods

named add. Adding that the type of a variable x is num to env can be written like below.
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env.add("x", NumT)

Adding the Fruit type to env can be written like below.

env.add("Fruit", Map("Apple" -> NumT, "Banana" -> PairT(NumT, NumT)))

The containsmethod of the TEnv class checks whether a particular type identifier is a bound type identifier.

For instance, the following code checks whether Fruit is bound:

env.contains("Fruit")

Now let us define a function that checks the well-formedness of a type. The following wfType function checks

whether a given type is well-formed under a given type environment:

def wfType(t: Type, env: TEnv): Unit = t match {

case NumT =>

case ArrowT(p, r) =>

wfType(p, env)

wfType(r, env)

case IdT(t) =>

if (!env.contains(t))

throw new Exception

}

If the type is ill-formed under the type environment, the function throws an exception.

Now, we add the TypeDef and Match cases to the typeCheck function.

case TypeDef(t, v1, vt1, v2, vt2, b) =>

val nenv = env

.add(t, Map(v1 -> vt1, v2 -> vt2))

.add(v1, ArrowT(vt1, IdT(t)))

.add(v2, ArrowT(vt2, IdT(t)))

wfType(vt1, nenv)

wfType(vt2, nenv)

typeCheck(b, nenv)

First, the function adds the type definition and the constructors to the type environment. Then, it checks

the well-formedness of the parameter types of the variants under the new type environment. If both are

well-formed, it type-checks the body expression. The type of the body is the type of the whole type-defining

expression.

case Match(e, v1, x1, e1, v2, x2, e2) =>

val IdT(t) = typeCheck(e, env)

val tdef = env.tbinds(t)

val t1 = typeCheck(e1, env.add(x1, tdef(v1)))

val t2 = typeCheck(e2, env.add(x2, tdef(v2)))

mustSame(t1, t2)

t1

First, the function type-checks the target expression. The type must be a type identifier. The definition of

the type should be found in the type environment. The definition gives the parameter type of each variant.
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The function type-checks e1 and e2 under the type environments with the type of x1 and with the type of

x2, respectively. The types must be the same, and if it is the case, the common type is the type of the whole

pattern matching expression.

case Fun(x, t, b) =>

wfType(t, env)

ArrowT(t, typeCheck(b, env.add(x, t)))

As discussed already, the Fun case needs a revision. The well-formedness of the parameter type annotation

needs to be checked.

case Id(x) => env.vars(x)

The Id case also has a small change. Due to the new definition of a type environment, a way to find the type

of a variable is a bit different.

21.6 Type Soundness of TVFAE

Actually, TVFAE is not type sound. If an expression defines multiple types of the same name, the expression

can be well-typed and incur a run-time error at the same time. Consider the following expression:

type Fruit = Apple@num + Banana@(num × num) in (
(�f:Fruit→ num.

type Fruit = Cherry@num + Durian@(num × num) in
f (Cherry 1)
) (�x:Fruit.x match
Apple(y) → y,

Banana(z) → z.1
)
)

The expression defines Fruit twice in a nested manner. The outer Fruit has Apple and Banana as variants,

and the inner Fruit has Cherry and Durian as variants. The expression applies a function of (Fruit →
num) → num to a value of Fruit→ num, so it is well-typed. However, the expression causes a run-time error.

The function of (Fruit→ num) → num applies a given function to a value of the Cherry variant because

Fruit has Cherry and Durian inside the function. However, the inner definition of Fruit is unavailable

outside the function, so the argument given to the function is a function that expects a value of Apple or

Banana. Thus, at run time, the pattern matching fails and incurs a run-time error.

The reason of broken type soundness is that the language allows multiple different types of the same name,

while its type checking depends solely on the names of types to distinguish different types. Two different

types may incorrectly considered as the same type when they have the same name.

There are multiple ways to fix the problem. The first solution is to prohibit local type definitions. Every type

definition should be at top level, just like functions in F1VAE. Then, types cannot be nested, and every type

must have a different name from each other. Since there cannot be different types of the same name, the

problem is resolved.

The second solution is to prevent interaction between different types of the same name. It can be achieved by

changing Rule Typ-TypeDef like below.

Rule Typ-TypeDef’



21 Algebraic Data Types 232

If

C is not in the domain of Γ,

Γ′ denotes Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C],
�1 is well-formed under Γ′,
�2 is well-formed under Γ′,
the type of 4 is � under Γ′, and
� is well-formed under Γ,

then

the type of type C = G1@�1 + G2@�2 in 4 is � under Γ.

C ∉ Domain(Γ)
Γ′ = Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C] Γ′ ` �1 Γ′ ` �2 Γ′ ` 4 : � Γ ` �

Γ ` type C = G1@�1 + G2@�2 in 4 : �
[Typ-TypeDef’]

The rule has two new premises:

I C ∉ Domain(Γ)
I Γ ` �

The first one prevents nested types from having the same name. The second one prevents each locally defined

type from escaping its scope. In this way, we can effectively solve the issue. A program still can have different

types of the same name, but different types of the same name cannot meet each other, i.e. they cannot be

used in the same place.

The third solution is to rename types before type checking in order to remove any duplication in type names.

Since the bound-bind relation between identifiers can be easily determined with simple syntactic checking,

it is possible to rename types without changing the semantics of a given program. For instance, the above

example becomes the following expression after renaming:

type Fruit = Apple@num + Banana@(num × num) in (
(�f:Fruit→ num.

type Fruit1 = Cherry@num + Durian@(num × num) in
f (Cherry 1)
) (�x:Fruit.x match
Apple(y) → y,

Banana(z) → z.1
)
)

This expression is certainly ill-typed because Cherry 1 is a value of Fruit1, while f, which is applied to

Cherry 1, is a function that expects a value of Fruit. This solution is desirable in the sense that it does not

need any change in the language. It only requires one additional step of transformation, which can be easily

implemented. On the other hand, the first solution changes the language at syntax level, and the second

solution changes the static semantics of the language.

21.7 Exercises

Exercise 21.1 What does each of the following expressions evaluate to? If it is a run-time error, describe

where the error occurs.

1. type Fruit = Apple@num + Banana@num in
type Animal = Apple@(num→ num) + Banana@(num→ num) in
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(�x:Fruit.x match Apple(y) → y, Banana(y) → y) (Banana 10)
2. type Fruit = Apple@num + Banana@num in

type Fruit = Apple@(num→ num) + Banana@(num→ num) in
(�x:Fruit.x match Apple(y) → y, Banana(y) → y) (Banana 10)

Exercise 21.2 Suppose that Rule Typ-TypeDef has been changed as the following:

Γ′ = Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C] Γ ` �1 Γ ` �2 Γ′ ` 4 : �

Γ ` type C = G1@�1 + G2@�2 in 4 : �

It checks the well-formedness of �1 and �2 under Γ, instead of Γ′.

1. Explain why the new typing rule is problematic.

2. Write a TVFAE expression that

I is accepted by the original type system, but

I is rejected by the new type system.

Exercise 21.3 Suppose that Rule Typ-TypeDef has been changed as the following:

Γ′ = Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C] Γ′ ` �2 Γ′ ` 4 : �

Γ ` type C = G1@�1 + G2@�2 in 4 : �

It lacks the well-formedness check of �1. Write a TVFAE expression that

I is rejected by the original type system, but

I is accepted by the new type system, and

I results in a run-time error when evaluated.

Exercise 21.4 Consider the following expression:

type Fruit = Apple@num + Banana@num in
(type Color = Apple@num + Banana@num in
�x:Fruit.x match
Apple(y) → Apple (y + 1),
Banana(y) → Banana (y + 1)
) (Banana 10)
What is the result of type-checking the expression? If the result is Fruit, explain why in detail. Otherwise,

revise the typing rules to make it Fruit.

Exercise 21.5 This exercise extends TVFAE to have

I functions with multiple parameters

I types with more than two variants

I variants with multiple parameters

4 ::= · · ·
| �(G:�, · · · , G:�).4
| 4(4 , · · · , 4)
| type C = G@(�, · · · , �) + · · · + G@(�, · · · , �) in 4
| 4 match G(G, · · · , G) → 4 , · · · , G(G, · · · , G) → 4

� ::= · · ·
| (�, · · · , �) → �
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1. Write the well-formedness rule for the added type.

2. Write the typing rules for the added expressions.

3. Draw the type derivation of the following expression:

type Fruit = Apple@() + Banana@((Fruit) → num, Fruit) + Cherry@(num) in
Apple() match
Apple() → 42,

Banana(f, x) → f(x),
Cherry(x) → x

Exercise 21.6 It is known that every TFAE expression terminates. On the other hand, TRFAE expressions

can run forever by using def. Then, how about TVFAE? Is it possible to write a non-terminating TVFAE
expression? The answer is yes, and this exercise asks you to construct such an expression.

For simplicity, we extend TVFAE to allow a type of a single variant:

4 ::= · · · | type C = G@�; 4 | 4 match G(G) → 4

The following TVFAE expression passes type checking and runs forever:

type X = toX@(X→ X);
val fromX : X→ (X→ X) =???;

val f : X =???;

???

Complete the expression. Use the fact that the following FAE expression runs forever:

val f=�x.(x x) in f f
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A function in TFAE is more restrictive than a function in FAE. Consider �x.x in FAE. It is an identity function,

which takes a value as an argument and returns the value without changing it. Any value can be an argument

for this function. Since the body of the function does nothing with the argument, the evaluation of the

body never causes a run-time error. On the other hand, �x:num.x in TFAE is an identity function that takes

only an integer. The parameter type annotation restricts the type of an argument to be only num. The type

system rejects a program that passes a value other than an integer to the function. However, since the body

simply returns the argument, a run-time error never happens even when the argument is not an integer. This

example shows that a single identity function can be applied to a value of every type in FAE, while a different

identity function is required for each type in TFAE.

Because of this restrictiveness, programmers have to define more functions in TFAE than in FAE to implement

the same program. For example, the following FAE expression does not incur run-time errors:
1

val f=�x.x in
val y=f 1 in
f true

On the other hand, the following TFAE expression is rejected by the type system:

val f=�x:num.x in
val y=f 1 in
f true

The expression is ill-typed because f true on the last line applies a function of num→ num to a value that does

not belong to num. To make an equivalent and well-typed expression, we should define one more function

like below.
2

val f=�x:num.x in
val g=�x:bool.x in
val y=f 1 in
g true

Now, the expression is well-typed since g, whose type is bool→ bool, is applied to a value of bool.

Because of this problem, writing programs in TFAE is inconvenient. Programmers should define multiple

functions of the same functionality to convince the type checker that their programs do not incur any run-time

errors. Such functions of an overlapping role lead to duplicated code, which increases the code length and

harms maintainability. When a program has plenty of functions and types, the amount of duplicated code

will become huge.

Polymorphism can resolve the problem. Polymorphism is to use a single entity as multiple types. For example,

it may allow �x.x to have multiple types: num→ num and bool→ bool. There are three widely-used ways

to realize polymorphism in a language: parametric polymorphism, subtype polymorphism, and ad-hoc

polymorphism. The topic of this chapter is parametric polymorphism. Chapter 23 introduces subtype

polymorphism, and ad-hoc polymorphism is beyond the scope of this book.

To introduce parametric polymorphism, we first need to discuss what parameterization is. Functions are

well-known examples of parameterizing entities. Each function parameterizes an expression with a value (or

an expression in the case of lazy languages). Consider �x.x + x. In this function, x is the parameter. The body,

x + x is parameterized by x. This function is the most general form of adding a value to the same value. By

applying the function, we can express any expression that adds a value to the same value. For example, 1 + 1

is equivalent to (�x.x + x) 1, and 42 + 42 is equivalent to (�x.x + x) 42. A function abstracts an expression

1
Suppose that we extends FAE with booleans.

2
Suppose that the type of a boolean is bool.
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by replacing some portion of the expression with a parameter. By applying a function to values, multiple

expressions can be expressed without repeating the common constituents. Only different parts should be

written as an argument in each case.

Parametric polymorphism allows entities to be parameterized by types. It is a new form of parameterization,

which functions do not provide. Parametric polymorphism allows parameterizing an expression with a

type, instead of a value. To distinguish this new notion of parameterization from functions, we use the term

type abstraction. While functions are applied to values to replace their parameters with real values, type

abstractions are applied to types to replace their type parameterswith real types. To differentiate application

of type abstractions from application of functions, we use the term type application. Since type abstractions
parameterize expressions, the results of type application are values, just like functions. The following table

compares functions and type abstractions:

Function Type abstraction

What is parameterized? Expression Expression

With what? Value Type

Applied to what? Value Type

Result of application Value Value

Consider �x:num.x and �x:bool.x. The only difference is the type annotation: num and bool. We can parame-

terize both expressions with a type by introducing a type parameter . By replacing num with  in �x:num.x,
we obtain �x:.x. Similarly, by replacing bool with  in �x:bool.x, we obtain �x:.x. The results are exactly
identical to each other. We canmake a type abstraction that takes a type � as a type argument and returns�x:�.x
as a result. This book uses Λ to denote type abstractions. Thus, the type abstraction we want is Λ.�x:.x.
The type abstraction can be applied to types to recover the original expressions. This book uses [] to denote

type application. Then, (Λ.�x:.x)[num] is equivalent to �x:num.x, and (Λ.�x:.x)[bool] is equivalent to
�x:bool.x.

After adding parametric polymorphism, we can make the previous example well-typed while defining a

function only once.

val f=Λ.�x:.x in
val y=f[num] 1 in
f[bool] true
It is still more complex than the FAE version but defines a function only once, unlike the TFAE version.

Traditionally, parametric polymorphism was supported by only functional languages. For example, OCaml

and Haskell have been well-known for their support for parametric polymorphism. On the other hand, object-

oriented languages provided only subtype polymorphism. For instance, Java lacked parametric polymorphism

until Java 4. However, programmers in these days require languages to provide more advanced features

because their programs become more complicated. For this reason, Java has been supporting parametric

polymorphism since Java 5. Many recent languages, such as Scala, provide both parametric and subtype

polymorphism. In the context of object-oriented programming, parametric polymorphism is often called

generics since it allows generic programming.

This chapter defines PTFAE by extending TFAE with parametric polymorphism. PTFAE is known as System

F in the programming language community. System F was first discovered by Girard in the context of

logic in 1972 [Gir72]. Later, Reynolds independently discovered the equivalent system in the context of

computer science in 1974 [Rey74]. System F, or PTFAE, is the most foundational formulation of parametric

polymorphism, and its metatheory and variants are widely studied even in these days.
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22.1 Syntax

First, we introduce type identifiers like in TVFAE. Type identifiers are used as type parameters. Let TId be the

set of every type identifier. The metavariable  ranges over type identifiers.

 ∈ TId

We add two sorts of an expression: type abstraction and type application.

4 ::= · · · | Λ.4 | 4[�]

I Λ.4 is a type abstraction.  is the type parameter, and 4 is the body.  in Λ.4 is a binding occurrence

whose scope is 4.

I 4[�] is a type application expression. 4 denotes the type abstraction applied to �.

In addition, we add two sorts of a type.

� ::= · · · |  | ∀.�

I  is a type identifier as a type. Like in TVFAE, a type identifier can be used as a type. For example, in

Λ.�x:.x, the second  is the type of x.

I ∀.� is a universally quantified type. It is the type of a type abstraction that takes a type as a type argument

and returns a value of the type obtained by replacing every  with the given type in �.  in ∀.� is a

binding occurrence whose scope is �. For instance, the type of Λ.�x:.x is ∀.→  since applying

the type abstraction to num results in a function of num→ num and applying to bool results in a function

of bool→ bool.

22.2 Dynamic Semantics

The addition of type abstractions adds a new sort of a value to the language.

E ::= · · · | 〈Λ.4 , �〉

〈Λ.4 , �〉 is a type abstraction value. It is similar to a closure. A closure is a function value, which contains

the definition of a function and the environment of when the function is defined. Similarly, a type abstraction

value contains the definition of a type abstraction and the environment of when the type abstraction is

defined.

Now, we define the dynamic semantics of PTFAE. We should define the rules for the added expressions.

Rule TyAbs

Λ.4 evaluates to 〈Λ.4 , �〉 under �.

� ` Λ.4 ⇒ 〈Λ.4 , �〉 [TyAbs]

A type abstraction evaluates to a type abstraction value. It is almost the same as Rule Fun.

Rule TyApp
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If

4 evaluates to 〈Λ.4′, �′〉 under � and

4′[← �] evaluates to E under �′,
then

4[�] evaluates to E under �.

� ` 4 ⇒ 〈Λ.4′, �′〉 �′ ` 4′[← �] ⇒ E

� ` 4[�] ⇒ E
[TyApp]

To evaluate a type application expression, its only subexpression is evaluated. The result must be a type

abstraction value. 4′[← �] denotes an expression obtained by substituting every free occurrence of  with

� in 4′.3 Thus, the rule states that every occurrence of the type parameter is replaced with the given type

argument in the body of the type abstraction. Finally, the expression obtained by the substitution is evaluated

under the environment held by the type abstraction value. Its result is the result of the whole type application

expression.

One may wonder why Rule TyApp needs substitution because types do not have any roles at run time. We

can omit substitution in the dynamic semantics of PTFAE. However, if we extend the language to support any

form of dynamic type testing, substitution is mandatory. In addition, if we want to prove type soundness,

we should prove that every expression of a certain type evaluates to a value of the same type when the

evaluation terminates. This property is called type preservation, and evaluation will not preserve the type of

an expression if the rule omits substitution. For these reasons, Rule TyApp requires substitution.

The following proof trees prove that (Λ.�x:.x)[num] 1 evaluates to 1:

∅ ` Λ.�x:.x⇒ 〈Λ.�x:.x, ∅〉 ∅ ` �x:num.x⇒ 〈�x.x, ∅〉
∅ ` (Λ.�x:.x)[num] ⇒ 〈�x.x, ∅〉

∅ ` (Λ.�x:.x)[num] ⇒ 〈�x.x, ∅〉 ∅ ` 1⇒ 1

x ∈ Domain(�1)
�1 ` x⇒ 1

∅ ` (Λ.�x:.x)[num] 1⇒ 1

where �1 = [x ↦→ 1].

22.3 Static Semantics

Like in TVFAE, the definition of a type environment needs to be revised. Type environments should be able to

store type identifiers in addition to the types of variables. Unlike type definitions in TVFAE, type identifiers in
PTFAE do not have any further information. However, the type checking procedure needs to know whether a

certain type identifier is free or not to determine the well-formedness of types. Thus, type environments store

type identifiers to record their existence.

TEnv = (Id ∪ TId) fin↦→ () ∪ {·})

Now, the codomain of a type environment contains ·, which is a meaningless mathematical object. For brevity,

let Γ[] denote Γ[ : ·].

3
We do not discuss substitution in detail here. Interested readers can refer to Exercise 9.15, which introduces substition of an identifier

with a value in an expression. The same principle applies to substition of a type identifier with a type in an expression.
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22.3.1 Well-Formed Types

The well-formedness checking of PTFAE is similar to that of TVFAE. The following three rules are the same as

those of TVFAE:

Rule Wf-NumT

num is well-formed under Γ.

Γ ` num [Wf-NumT]

Rule Wf-ArrowT

If �1 is well-formed under Γ and �2 is well-formed under Γ,

then �1 → �2 is well-formed under Γ.

Γ ` �1 Γ ` �2

Γ ` �1 → �2

[Wf-ArrowT]

Rule Wf-IdT

If  is in the domain of Γ,

then  is well-formed under Γ.

 ∈ Domain(Γ)
Γ ` 

[Wf-IdT]

One remaining sort of a type is a universally quantified type, which is new in PTFAE.

Rule Wf-ForallT

If � is well-formed under Γ[],
then ∀.� is well-formed under Γ.

Γ[] ` �
Γ ` ∀.�

[Wf-ForallT]

In ∀.�,  is a binding occurrence and, thus, can appear in �. Therefore,  must be in the type environment

when the well-formedness of � is checked. For example, ∀. is well-formed under the empty type

environment, while ∀.� is ill-formed under the same type environment.

22.3.2 Typing Rules

Now, let us define the typing rules of PTFAE.

Rule Typ-TyAbs

If the type of 4 is � under Γ[],
then the type of Λ.4 is ∀.� under Γ.

Γ[] ` 4 : �

Γ ` Λ.4 : ∀.�
[Typ-TyAbs]
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The type of Λ.4 is ∀.� if the type of 4 is �. Since  is a binding occurrence whose scope is 4, 4 should be

type-checked under the type environment containing .

Rule Typ-TyApp

If � is well-formed under Γ and the type of 4 is ∀.�′ under Γ,
then the type of 4[�] is �′[← �] under Γ.

Γ ` � Γ ` 4 : ∀.�′

Γ ` 4[�] : �′[← �]
[Typ-TyApp]

If the type of 4 is ∀.�′, the type of 4[�] is �′[← �], which is a type obtained by substituting  with � in �′.
Since � is a user-written type annotation, the well-formeness of �must be checked.

In addition, like in TVFAE, Rule Typ-Fun has to check the well-formedness of the parameter type annotation.

Rule Typ-Fun

If �1 is well-formed under Γ and the type of 4 is �2 under Γ[G : �1],
then the type of �G:�1.4 is �1 → �2 under Γ.

Γ ` �1 Γ[G : �1] ` 4 : �2

Γ ` �G:�1.4 : �1 → �2

[Typ-Fun]

The following proof tree proves that the type of (Λ.�x:.x)[num] 1 is num:

∅ ` num

 ∈ Domain([])
[] ` 

x ∈ Domain([, x : ])
[, x : ] ` x : 

[] ` �x:.x : → 

∅ ` Λ.�x:.x : ∀.→ 

∅ ` (Λ.�x:.x)[num] : num→ num
∅ ` 1 : num

∅ ` (Λ.�x:.x)[num] 1 : num

The current type system of PTFAE has two problems. First, multiple type parameters of the same name

breaks the type soundness, as multiple type definitions of the same name does in TVFAE. Second, syntactic
comparison of types makes the type checking too restrictive. For example, if Λ�.�x:�.x is given to a function

that expects a value of ∀. → , syntactically comparing ∀. →  and ∀�.� → � judges them to be

different and makes the type checking reject the program. However, ∀. →  and ∀�.� → � denote the

same type semantically.

The best solution to both of the problems is de Bruĳn indices, introduced in Chapter 18. Chapter 18 shows

use of de Bruĳn indices for expressions. However, de Bruĳn indices are not limited to expressions; they

can be applied to types. For instance, both ∀. →  and ∀�.� → � can be represented with ∀.0→ 0, so

their semantic equivalence can be verified with syntactic comparison. In addition, de Bruĳn indices prevent

multiple types from being considered as the same type because of their names.

De Bruĳn indices seem to be the best solution, but, still, other solutions can be used. The three solutions

described in Chapter 21 can be applied to PTFAE in the same manner to resolve the first issue. The second

issue can be fixed by renaming type parameters before the comparison. For example, simple syntactic

transformation can transform ∀.→  into ∀�.�→ �.

22.4 Exercises
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Exercise 22.1 Draw the type derivation of each of the following expressions:

1. (�f:∀.→ .f[num] 10) (Λ.�x:.x)
2. (Λ.Λ�.�f:→ �.�x:.f x)[num][num] (�y:num.17 − y) 9

Exercise 22.2 In PTFAE, types have type variables. Chapter 18 shows howwe can replace symbols in expres-

sions with numbers. Similarly, we can replace symbols in types with numbers. For example, ForallT("a",

ArrowT(VarT("a"), VarT("a"))),which is∀.→ , becomesForallT( ArrowT(VarT(0), VarT(0))).

Complete the following implementation:

sealed trait Type

case object NumT extends Type

case class ArrowT(p: Type, r: Type) extends Type

case class ForallT(a: String, t: Type) extends Type

case class VarT(a: String) extends Type

object Nameless {

sealed trait Type

case object NumT extends Type

case class ArrowT(???) extends Type

case class ForallT(???) extends Type

case class VarT(???) extends Type

}

type Ctx = List[String]

def transform(t: Type, ctx: Ctx): Nameless.Type =

t match {

case NumT => ???

case ArrowT(p, r) => ???

case ForallT(a, t) => ???

case VarT(a) => ???

}

Exercise 22.3 This exercise extends PTFAE with polymorphic recursive type definitions.

4 ::= · · · | type C[] = G@� + G@�; 4 | 4 match G(G) → 4 , G(G) → 4

E ::= · · · | Λ.〈G〉 | 〈G〉 | G(E)
� ::= · · · | C[�]
Γ ∈ (Id ∪ TId ∪ TN) fin↦→ () ∪ {·} ∪ (TId × Id × ) × Id × )))
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�[G1 ↦→ Λ.〈G1〉, G2 ↦→ Λ.〈G2〉] ` 4 ⇒ E

� ` type C[] = G1@�1 + G2@�2; 4 ⇒ E

� ` 4 ⇒ Λ.〈G〉
� ` 4[�] ⇒ 〈G〉

� ` 41 ⇒ 〈G〉 � ` 42 ⇒ E

� ` 41 42 ⇒ G(E)

� ` 4 ⇒ G1(E′) �[G3 ↦→ E′] ` 41 ⇒ E

� ` 4 match G1(G3) → 41 , G2(G4) → 42 ⇒ E

� ` 4 ⇒ G2(E′) �[G4 ↦→ E′] ` 42 ⇒ E

� ` 4 match G1(G3) → 41 , G2(G4) → 42 ⇒ E

For example, programmers can write the following code, which defines a polymorphic option type:

type option[] = None@num + Some@;

val getOrElse = Λ.�x:option[].�y:.(
x match
None(z) → y,

Some(z) → z

);
getOrElse[num] (Some[num] 1) 2

1. Write the typing rules of the form Γ ` 4 : � of type C[] = G1@�1 + G2@�2 in 4 and 4 match G1(G3) →
41 , G2(G4) → 42.

2. Write the well-formedness rule of the form Γ ` � of C[�].
3. Write the type of getOrElse in the above example.
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This chapter introduces subtype polymorphism. Subtype polymorphism is often found in object-oriented

languages, but some functional languages also support subtype polymorphism these days. For example,

OCaml, which stands for Objective Caml, is a functional language that provides subtype polymorphism.

Understanding subtype polymorphism is important in many real-world languages.

This chapter defines STFAE by extending TFAEwith subtype polymorphism. To illustrate the need of subtype

polymorphism, we start with adding records to TFAE. We can add subtype polymorphism to TFAE without

adding records together, but examples with records can clearly show the benefits of subtype polymorphism.

23.1 Records

A record is a value that consists of multiple values. Records are similar to tuples, but users can designate

the names of the elements in a record. When we talk about the elements of records, we often use the term

fields. From the perspective of their expressivity and roles in programming, records are the same as tuples.

However, records help programmers express their high-level ideas in the code more directly than tuples and

prevent mistakes.

For example, consider a tuple representing the height, score, and scholarship state of a student. The tuple

(180, 91, true) represents a student who is 180-centimeter-tall, got 91 points from the recent exam, and is

currently receiving a scholarship. One disadvantage of using tuples is that programmers may use wrong

elements by mistake. When st denotes the previously mentioned tuple, one should write st.1 to get the

height. However, there is no reason to associate the first element with the height. If he or she writes st.2
instead st.1, then the wrong conclusion—the student is 91-centimeter-tall—will be obtained.

Records effectively prevent such mistakes. We can represent the same student with the record {height =
180, score = 91, scholarship = true}. This record has three fields: height, score, and scholarship. Then,

the height can be found by st.height. In this case, there is a logical reason to associate the field whose name

is height with the height of the student. It is clear that st.score does not denote the height of the student.

23.1.1 Syntax

First, we introduce labels, which are the names of fields in records. Let Lbe the set of every label and the

metavariable ; ranges over labels.

; ∈ L

Now, we define the syntax of expressions related to records.

4 ::= · · · | {; = 4 , · · · , ; = 4} | 4.;

I {;1 = 41 , · · · , ;= = 4=} is an expression that creates a record. A record has zero or more fields. ;’s are

the names of the fields. We assume that the fields of a single record have distinct names. Since a record

can have zero fields, {} is an expression.

I 4.; is an expression that gives the value of a certain field from a record. It is usually called a projection. 4
determines the record, and ; is the name of the field whose value is acquired.
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23.1.2 Dynamic Semantics

To make a language support records, we should add record values to the language.

E ::= · · · | {; = E, · · · , ; = E}

A value {;1 = E1 , · · · , ;= = E=} is a record value. ;’s are the names of the fields. E8 is the value of the field ;8 .

For example, the result of {a = 1 + 2, b = 3 + 4} is {a = 3, b = 7}. The record has two fields: a and b. The

value of a is 3, and the value of b is 7. The result of {} is {}, which is the empty record value.

Now, we add rules to define the dynamic semantics of the added expressions.

Rule Record

If 41 evaluates to E1 under �, · · · , and 4= evaluates to E= under �,
then {;1 = 41 , · · · , ;= = 4=} evaluates to {;1 = E1 , · · · , ;= = E=} under �.

� ` 41 ⇒ E1 · · · � ` 4= ⇒ E=

� ` {;1 = 41 , · · · , ;= = 4=} ⇒ {;1 = E1 , · · · , ;= = E=}
[Record]

Every 48 has to be evaluated for the evaluation of {;1 = 41 , · · · , ;= = 4=}. If the value of 48 is E8 , the value of
the field ;8 is E8 . The result is {;1 = E1 , · · · , ;= = E=}.

Rule Proj

If 4 evaluates to {· · · , ; = E, · · · } under �,
then 4.; evaluates to E under �.

� ` 4 ⇒ {· · · , ; = E, · · · }
� ` 4.; ⇒ E

[Proj]

For the evaluation of 4.;, 4 has to be evaluated first. If the result of 4 is a record that contains a field named ;,

then 4.; results in the value of the field. If 4 evaluates to a nonrecord value or a record value that does not

contain ;, 4.; incurs a run-time error.

23.1.3 Static Semantics

Since records are a new sort of a value, existing types cannot include records. We need to add new types that

records can belong to.

� ::= · · · | {; : �, · · · , ; : �}

A type {;1 : �1 , · · · , ;= : �=} is a record type that includes records whose fields follow the designated names

and types. In other words, if a record value has fields named ;1 to ;= and the value of a field ;8 is a value

of �8 , then the value belongs to {;1 : �1 , · · · , ;= : �=}. For example, the type of the value {a = 3, b = 7}
is {a : num, b : num}. In addition, the type of the expression {a = 1 + 2, b = 3 + 4}, which evaluates to

{a = 3, b = 7}, also is {a : num, b : num}. Similarly, the type of the empty record is {}.

Let us define the typing rules for the added expressions.

Rule Typ-Record

If the type of 41 is �1 under Γ, · · · , the type of 4= is �= under Γ,

then the type of {;1 = 41 , · · · , ;= = 4=} is {;1 : �1 , · · · , ;= : �=} under Γ.
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Γ ` 41 : �1 · · · Γ ` 4= : �=

Γ ` {;1 = 41 , · · · , ;= = 4=} : {;1 : �1 , · · · , ;= : �=}
[Typ-Record]

Let the type of 48 be �8 . Then, 48 evaluates to a value of �8 . Thus, {;1 = 41 , · · · , ;= = 4=} evaluates to a value of

{;1 : �1 , · · · , ;= : �=}, and the type of {;1 = 41 , · · · , ;= = 4=} is {;1 : �1 , · · · , ;= : �=}.

Rule Typ-Proj

If the type of 4 is {· · · , ; : �, · · · } under Γ,
then the type of 4.; is � under Γ.

Γ ` 4 : {· · · , ; : �, · · · }
Γ ` 4.; : �

[Typ-Proj]

4.; can be evaluated without an error only if 4 evaluates to a record containing a field named ;. Therefore, the

type of 4 has to be a record type that contains a field ;. Then, the type of 4.; is the type of ;.

For example, the type of {a = 1 + 2, b = 3 + 4}.a is num since the type of {a = 1 + 2, b = 3 + 4} is
{a : num, b : num}. On the other hand, {a = 1 + 2, b = 3 + 4}.c is ill-typed because {a : num, b : num} lacks a
field named c.

23.2 Subtype Polymorphism

The current type system is sound but not expressive enough. It rejects many expressions that do not cause

any run-time errors. Consider the following expression:

(�x:{a : num}.x.a) {a = 1, b = 2}

The expression evaluates {a = 1, b = 2}.a, which yields 1 without any error. However, the type system rejects

the expression. The type of {a = 1, b = 2} is {a : num, b : num}, while the parameter type of the function

is {a : num}. Since the argument type is different from the designated parameter type, the application

expression is ill-typed.

Currently, the type {a : num} denotes the set of every record that has only the integer-valued field a. However,

this definition is too restrictive. The type implies that its value can be used for any place that accesses the

field a and expects the value of the field to be an integer. Thus, the type does not need to exclude values that

have other fields in addition to the field a.

To resolve the problem, we extend the meaning of {a : num}. Now, the type includes any records that have an

integer-valued field a. Records that have additional fields also can be values of {a : num}. This change can be

attained by modifying Rule Typ-Record like below.

Rule Typ-Record’

If the type of 41 is �1 under Γ, · · · , the type of 4= is �= under Γ, · · · , the type of 4=+< is �=+< under Γ,

then the type of {;1 = 41 , · · · , ;= = 4= , · · · , ;=+< = 4=+<} is {;1 : �1 , · · · , ;= : �=} under Γ.

Γ ` 41 : �1 · · · Γ ` 4= : �= · · · Γ ` 4=+< : �=+<

Γ ` {;1 = 41 , · · · , ;= = 4= , · · · , ;=+< = 4=+<} : {;1 : �1 , · · · , ;= : �=}
[Typ-Record’]

The rule allows forgetting the types of some fields if they are unnecessary. Now, {a = 1, b = 2} is a value of
{a : num}. Thus, the previous example, (�x:{a : num}.x.a) {a = 1, b = 2}, is well-typed.

Does this fix solve all the problems? Unfortunately, no. Consider the following expression:
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val x={a = 1, b = 2} in
val y=(�x:{a : num}.x.a) x in
(�x:{a : num, b : num}.x.a + x.b) x

This expression is still ill-typed though it does not incur any run-time errors. If we say the type of x is {a : num},
the first function application is well-typed. However, the second function application is ill-typed. If we say

the type of x is {a : num, b : num} instead, the second function application becomes well-typed. However, the

first function application becomes ill-typed. There is no way to make both application expressions well-typed.

We need a way to consider x as an expression of {a : num} and as an expression of {a : num, b : num} at
the same time. In other words, we should assign multiple types to a single entity, and this is the notion of

polymorphism.

Subtype polymorphism is one way of polymorphism, which is based on the notion of subtyping. Recall that a

type is a set of values. Sometimes, one type is a subset of another type. For example, any values that belong to

{a : num, b : num} are values of {a : num}, so {a : num, b : num} is a subset of {a : num}. When �1 is a subset

of �2, we say that �1 is a subtype of �2 and �2 is a supertype of �1. For example, {a : num, b : num} is a subtype

of {a : num} and {a : num} is a supertype of {a : num, b : num}. This is the notion of subtyping.

Roughly speaking, subtyping is an “A is a B” relation between types. As an example, consider Animal and

Cat, which denote the type of every animal and the type of every cat, respectively. We know that a cat is an

animal. Then, we can say that Cat is a subtype of Animal. On the other hand, can we say that an animal is a

cat? No, because there is an animal that is not a cat. For instance, a dog is an animal, but not a cat. Thus,

Animal is not a subtype of Cat. We can do the same thing for record types. A record that has fields a and b is

a record that has a. (For brevity, ignore the types of the fields here.) Therefore, {a : num, b : num} is a subtype
of {a : num}. On the other hand, a record that has a is not a record that has both a and b since it may lack b.

As a consequence, {a : num} is not a subtype of {a : num, b : num}.

Mathematically, subtyping is a relation over types and types.

<:⊆ ) × )

We write �1 <: �2 to denote that �1 is a subtype of �2. For example, both Cat <: Animal and {a : num, b :

num} <: {a : num} are true.

Now, let us see how subtyping induces polymorphsim. The key insight is that any expression of �1 can be

treated as an expression of �2 without breaking type soundness when �1 is a subtype of �2. For example,

suppose that there is an animal hospital that cures any animal. We can consider the hospital as a function

that takes a value of Animal. A cat is an animal, so any cat can be cured in the hospital. Thus, if an expression

evaluates to a value of Cat, it can be considered as an expression that evaluates to a value of Animal and

safely given to the function representing the hospital. On the other hand, the inverse is false. If a hospital

cures only cats and we know only that someone has an animal, then we cannot say to him or her to carry the

animal to the hospital. There is no guarantee that the hospital will be able to cure the animal. Thus, the fact

that �1 is a subtype of �2 does not imply that any expression of �2 can be treated as an expression of �1. In

a similar fasion, any expression of {a : num, b : num} can be treated as an expression of {a : num}, but the
inverse is false. We can express this idea with the following typing rule:

Rule Typ-Sub

If the type of 4 is �′ under Γ and �′ is a subtype of �,
then the type of 4 is � under Γ.

Γ ` 4 : �′ �′ <: �

Γ ` 4 : �
[Typ-Sub]

The rule states that if 4 is an expression of �′, then it is an expression of � at the same time when �′ is a
subtype of �.
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Subtyping has two important characteristics. It is reflexive and transitive. The reason is clear. Every set is a

subset of itself. Thus, every type is a subtype of itself. In addition, if � is a subset of � and � is a subset of �,

then � is a subset of �. Therefore, if �1 is a subtype of �2 and �2 is a subtype of �3, then �1 is a subtype of �3.

We can formally state these properties with the following subtyping rules, which describe when two types are

in the subtype relation.

Rule Sub-Refl

� is a subtype of �.

� <: � [Sub-Refl]

Rule Sub-Trans

If �1 is a subtype of �2 and �2 is a subtype of �3,

then �1 is a subtype of �3.

�1 <: �2 �2 <: �3

�1 <: �3

[Sub-Trans]

If we have only Rule Sub-Refl and Rule Sub-Trans, we cannot prove any interesting subtype relationships,

e.g. {a : num, b : num} <: {a : num}, even though both of the rules can help us prove interesting subtype

relationships by being used with other subtyping rules. Thus, we introduce subtyping rules for record types

in the next section.

23.3 Subtyping of Record Types

Consider the previous example again. The type system should be able to prove {a : num, b : num} <: {a : num}.
To achieve the goal, we define the following subtyping rule:

Rule Sub-Width

{;1 : �1 , · · · , ;= : �= , ; : �} is a subtype of {;1 : �1 , · · · , ;= : �=}.

{;1 : �1 , · · · , ;= : �= , ; : �} <: {;1 : �1 , · · · , ;= : �=} [Sub-Width]

Any value of {;1 : �1 , · · · , ;= : �= , ; : �} is a value of {;1 : �1 , · · · , ;= : �=} because a record that has fields from

;1 to ;= and ; additionally is a record that has fields from ;1 to ;= . Therefore, the rule is valid.

Now, {a : num, b : num} <: {a : num} is true. Using this fact, the following proof tree proves that {a : num} is
a type of {a = 1, b = 2}:

∅ ` 1 : num ∅ ` 2 : num

∅ ` {a = 1, b = 2} : {a : num, b : num}
{a : num, b : num} <: {a : num}

∅ ` {a = 1, b = 2} : {a : num}

In addition, the following expression is now well-typed:

val x={a = 1, b = 2} in
val y=(�x:{a : num}.x.a) x in
(�x:{a : num, b : num}.x.a + x.b) x
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{a : num, b : num} is a type of x, so the second function application is well-typed. At the same time, by

Rule Typ-Sub, {a : num} also is a type of x, so the first function application is well-typed as well.

If we use Rule Sub-Width and Rule Sub-Trans together, other interesting subtype relationships can be proven.

For example, the following proof tree proves that {a : num, b : num, c : num} is a subtype of {a : num}.

{a : num, b : num, c : num} <: {a : num, b : num} {a : num, b : num} <: {a : num}
{a : num, b : num, c : num} <: {a : num}

By the same principle, {}, which is the empty record type, is a supertype of every record type. In other words,

every record type is a subtype of {}.

Alas, the type system is still restrictive. The following expression is ill-typed but does not cause run-time

errors:

val x={a = 1, b = 2} in
val y=(�x:{b : num, a : num}.x.a + x.b) x in
(�x:{a : num, b : num}.x.a + x.b) x

The type of x is {a : num, b : num}. Therefore, the second function application is well-typed, while the first

function application is not.We need tomake x be a value of {a : num, b : num} and a value of {b : num, a : num}
at the same time. Like before, fixing Rule Typ-Record cannot be a proper solution. The correct solution is to

add a new subtyping rule.

The key idea to define a new subtyping rule is that the order between fields does not matter at all. For example,

a record that has fields a and b is a record that has fields b and a. Thus, it is safe to consider {a : num, b : num}
as a subtype of {b : num, a : num}. By generalizing this observation, we define the following subtyping rule:

Rule Sub-Perm

If (;1 , �1), · · · , (;= , �=) is a permutation of (;′
1
, �′

1
), · · · , (;′= , �′=),

then {;1 : �1 , · · · , ;= : �=} is a subtype of {;′
1

: �′
1
, · · · , ;′= : �′=}.

(;1 , �1), · · · , (;= , �=) is a permutation of (;′
1
, �′

1
), · · · , (;′= , �′=)

{;1 : �1 , · · · , ;= : �=} <: {;′
1

: �′
1
, · · · , ;′= : �′=}

[Sub-Perm]

The rule states that altering the order between the fields of a record type results in a subtype of the record

type.

The following proof tree proves that {a : num, b : num} is a subtype of {b : num, a : num}:

(a, num), (b, num) is a permutation of (b, num), (a, num)
{a : num, b : num} <: {b : num, a : num}

If we use multiple subtyping rules together, other interesting subtype relationships can be proven. For

example, the following proof tree proves that {a : num, b : num} is a subtype of {b : num}.

(a, num), (b, num) is a permutation of (b, num), (a, num)
{a : num, b : num} <: {b : num, a : num}

{b : num, a : num} <: {b : num}

{a : num, b : num} <: {b : num}

Even after the addition of Rule Sub-Width and Rule Sub-Perm, the type system still can be improved more.

Consider the following expression:

val x={a = {a = 1, b = 2}} in
val y=(�x:{a : {a : num}}.x.a.a) x in
(�x:{a : {a : num, b : num}}.x.a.a + x.a.b) x
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The above expression does not incur any run-time errors. However, the first function application is ill-typed,

while the second function application is well-typed. We need to make {a = {a = 1, b = 2}} be a value of

{a : {a : num}} and a value of {a : {a : num, b : num}} at the same time by adding a subtyping rule.

The current type system is too strict about the types of fields in records. For example, consider {a : {a :

num, b : num}} and {a : {a : num}}. A value of {a : {a : num, b : num}} has at least one field, whose name is a.

The value of the field is a value of {a : num, b : num}. We already know that any value of {a : num, b : num}
is a value of {a : num}. Therefore, we can say that a value of {a : {a : num, b : num}} has at least one field,
whose name is a and type is {a : num}. In fact, it is the characteristic of a value of {a : {a : num}}. As a result,

any value of {a : {a : num, b : num}} is a value of {a : {a : num}} at the same time, so {a : {a : num, b : num}}
must be a subtype of {a : {a : num}}. By generalizing this observation, we define the following subtyping

rule:

Rule Sub-Depth

If �1 is a subtype of �′
1
, · · · , �= is a subtype of �′= ,

then {;1 : �1 , · · · , ;= : �=} is a subtype of {;1 : �′
1
, · · · , ;= : �′=}.

�1 <: �′
1

· · · �= <: �′=

{;1 : �1 , · · · , ;= : �=} <: {;1 : �′
1
, · · · , ;= : �′=}

[Sub-Depth]

The rule states that strengthening
1
the type of each field in a record type results in a subtype of the record

type.

By using Rule Sub-Width and Rule Sub-Depth together, we can prove that {a : {a : num, b : num}} is a subtype
of {a : {a : num}}.

{a : num, b : num} <: {a : num}
{a : {a : num, b : num}} <: {a : {a : num}}

23.4 Subtyping of Function Types

It is time to consider a subtyping rule for function types. A function type consists of a parameter type and a

return type. Let us discuss return types first.

Consider two function types: �1 → �2 and �1 → �′
2
. Assume that �2 is a subtype of �′

2
. A value of �1 → �2 is

a function that takes a value of �1 and returns a value of �2. Since �2 is a subtype of �′
2
, any value of �2 is a

value of �′
2
. Therefore, we can say that a function of �1 → �2 returns a value of �′

2
. It implies that the function

is a value of �1 → �′
2
at the same time. Thus, any value of �1 → �2 is a value of �1 → �′

2
, and �1 → �2 is a

subtype of �1 → �′
2
. The following rule formalizes this fact:

Rule Sub-Ret

If �2 is a subtype of �′
2
,

then �1 → �2 is a subtype of �1 → �′
2
.

�2 <: �′
2

�1 → �2 <: �1 → �′
2

[Sub-Ret]

Function types preserve the subtype relationship between their return types. Suppose that there are two

function types. If their parameter types are the same and the return type of the former is a subtype of the

1
If we strengthen a type, a subtype is obtained in the sense that a subtype imposes a stronger condition on its value than the original

type.
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return type of the latter, then the former is a subtype of the latter. For example, num→ {a : num, b : num} is a
subtype of num→ {a : num}.

Now, let us discuss parameter types. Consider two function types: �1 → �2 and �′
1
→ �2. Assume that �′

1
is a

subtype of �1. A value of �1 → �2 is a function that takes a value of �1 and returns a value of �2. Since �′
1
is a

subtype of �1, any value of �′
1
is a value of �1. Therefore, a function of �1 → �2 should work properly when a

value of �′
1
is given. We can say that the function takes a value of �′

1
and returns a value of �2. It implies that

the function is a value of �′
1
→ �2 at the same time. Thus, any value of �1 → �2 is a value of �′

1
→ �2, and

�1 → �2 is a subtype of �′
1
→ �2. The following rule formalizes this fact:

Rule Sub-Param

If �′
1
is a subtype of �1,

then �1 → �2 is a subtype of �′
1
→ �2.

�′
1
<: �1

�1 → �2 <: �′
1
→ �2

[Sub-Param]

Function types reverse the subtype relationship between their parameter types. Suppose that there are two

function types. If their return types are the same and the parameter type of the former is a supertype of the

parameter type of the latter, then the former is a subtype of the latter. For example, {a : num} → num is a

subtype of {a : num, b : num} → num.

We can combine Rule Sub-Ret and Rule Sub-Param to form a single rule.

Rule Sub-ArrowT

If �′
1
is a subtype of �1 and �2 is a subtype of �′

2
,

then �1 → �2 is a subtype of �′
1
→ �′

2
.

�′
1
<: �1 �2 <: �′

2

�1 → �2 <: �′
1
→ �′

2

[Sub-ArrowT]

23.5 Top and Bottom Types

Now, we add two types to STFAE.

� ::= · · · | top | bottom

top is the top type. The type denotes the set of every value. The set is a superset of any set of values. Thus, the

top type is a supertype of every type. In other words, every type is a subtype of the top type. The following is

the subtyping rule for the top type:

Rule Sub-TopT

� is a subtype of top.

� <: top [Sub-TopT]

The top type can be used to give a single type to two or more completely irrelevant expressions. Suppose that

the language has conditional expressions. Then, the type of the following expression is {a : num}:

if0 0 {a = 1} {a = 1, b = 2}
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However, the following expression is ill-typed in STFAE when the top type does not exist:

if0 0 {a = 1} 1

By extending STFAE with the top type, the type of the above expression can be top.

bottom is the bottom type, which is the dual of the top type. The bottom type denotes the empty set. Since the

empty set is a subset of any set, the bottom type is a subtype of every type, and every type is a supertype of

the bottom type. The following is the subtyping rule for the bottom type:

Rule Sub-BottomT

bottom is a subtype of �.

bottom <: � [Sub-BottomT]

Even though no value is a value of the the bottom type, the bottom type is useful. It can be the type of

expressions that throw exceptions or call first-class continuations. Those expressions do not evaluate to any

values. They just change control flows. Thus, it is quite natural to say that the type of such an expression is

the bottom type.

23.6 Exercises

Exercise 23.1 Write whether each expression is well-typed in STFAE without the top type, If so, draw the

type derivation. Otherwise, explain why.

1. if0 1 {} 2

2. if0 1 {} {a = 2}

Exercise 23.2 If we change Rule Sub-ArrowT like below, the language is not type sound.

�1 <: �′
1

�2 <: �′
2

�1 → �2 <: �′
1
→ �′

2

Write an expression that is accepted by the new type system but causes a run-time error.

Exercise 23.3 Complete the following implementation of an STFAE subtype checker:

sealed trait Type

case object TopT extends Type

case object BottomT extends Type

case object NumT extends Type

case class ArrowT(p: Type, r: Type) extends Type

case class RecordT(fs: Map[String, Type]) extends Type

def subtype(t1: Type, t2: Type): Boolean = (t1, t2) match {

case ??? => true

case ??? => true

case ??? => true

case (ArrowT(p1, r1), ArrowT(p2, r2)) => ???

case (RecordT(fs1), RecordT(fs2)) => ???

case _ => false
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}

where RecordT(Map(;1 -> �1, · · · , ;= -> �=)) denotes {;1 : �1 , · · · , ;= : �=}.

The specification of subtype is as follows:

I subtype(�1, �2) is truewhen �1 <: �2 is true.

I subtype(�1, �2) is falsewhen �1 <: �2 is false.

Exercise 23.4 Complete the following implementation of a STFAE type checker:

sealed trait Type

case object NumT extends Type

case class ArrowT(p: Type, r: Type) extends Type

case object TopT extends Type

case object BottomT extends Type

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

case Num(n) => NumT

case Add(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

???

case Id(x) => tenv(x)

case Fun(x, t, b) =>

ArrowT(t, typeCheck(b, tenv + (x -> t)))

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

ft match {

case NumT => ???

case ArrowT(pt, rt) => ???

case TopT => ???

case BottomT => ???

}

case Throw => BottomT

}

We say that � is the minimal type of 4 under Γ if and only if the following conditions are satisfied:

I Γ ` 4 : �
I for every �′ satisfying Γ ` 4 : �′, � <: �′

If � is the minimal type of 4 under Γ, typeCheck(4, Γ) returns �. If there is no � satisfying Γ ` 4 : �,
typeCheck(4, Γ) throws an exception.

You may use the following helper function without defining it:

// returns true if t1 is a subtype of t2

// returns false otherwise

def subtype(t1: Type, t2: Type): Boolean
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Exercise 23.5 Type is defined as the same as Exercise 23.3. Consider the following implementation:

def lub(t1: Type, t2: Type): Type = (t1, t2) match {

case (BottomT, t) => ???

case (t, BottomT) => ???

case (NumT, NumT) => ???

case (ArrowT(p1, r1), ArrowT(p2, r2)) => ???

case (RecordT(fs1), RecordT(fs2)) => ???

case _ => TopT

}

def glb(t1: Type, t2: Type): Type = (t1, t2) match {

case (TopT, t) => ???

case (t, TopT) => ???

case (NumT, NumT) => ???

case (ArrowT(p1, r1), ArrowT(p2, r2)) => ???

case (RecordT(fs1), RecordT(fs2)) => ???

case _ => BottomT

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case If0(c, t, f) => ???

}

lub and glb compute the least upper bound and the greatest lower bound of given types, respectively. The

least upper bound of �1 and �2 is �3 if and only if the following three conditions are satisfied:

I �1 <: �3

I �2 <: �3

I for every �, if �1 <: � and �2 <: �, then �3 <: �

The greatest lower bound of �1 and �2 is �3 if and only if the following three conditions are satisfied:

I �3 <: �1

I �3 <: �2

I for every �, if � <: �1 and � <: �2, then � <: �3

typeCheck satisfies the same condition as that of Exercise 23.4.

Complete the implementation.

Exercise 23.6 Consider TFAE with boxes in Exercise 19.3. When can box �1 be a subtype of box �2? Write a

new subtyping rule for box types.

Exercise 23.7 Consider TFAE with lists in Exercise 19.2.

1. When can list �1 be a subtype of list �2? Write a new subtyping rule for list types.

2. Suppose that we extend the language as follows:

4 ::= · · · | 4[4] := 4

� ::= · · · | top
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The typing rule for the new expression, which mutates an element of a list, is as follows:

Γ ` 41 : list � Γ ` 42 : num Γ ` 43 : �

Γ ` 41[42] := 43 : �

When can list �1 be a subtype of list �2? Write a new subtyping rule for list types.

Exercise 23.8 This exercise extends STFAE with first-class continuations.

4 ::= · · · | (vcc G in 4):�

The type of (vcc G in 4):� is � when it is well-typed.

1. Write the typing rule of (vcc G in 4):� of the form Γ ` 4 : � .

2. Draw the type derivation tree of (vcc x in (x 1) 42):num.

Exercise 23.9 Many real-world languages, such as Scala and TypeScript, provide intersection types. The

intersection type of two types is a type containing values that belong to both of the types. In other words, E

is an element of �1 ∧ �2, the intersection type of �1 and �2, if and only if E is an element of both �1 and �2.

1. Write one or more subtyping rules each of which has �1 ∧ �2 <: �3 as a conclusion.

2. Write one or more subtyping rules each of which has �3 <: �1 ∧ �2 as a conclusion.

3. Draw a subtype derivation tree proving that �1 ∧ �2 <: �2 ∧ �1.

Exercise 23.10 Many real-world languages, such as Scala and TypeScript, provide union types. The union

type of two types is a type containing values that belong to at least one of the types. In other words, E is an

element of (�1 ∨ �2), the union type of �1 and �2, if and only if E is an element of either �1 or �2.

1. Write one or more subtyping rules each of which has (�1 ∨ �2) <: �3 as a conclusion.

2. Write one or more subtyping rules each of which has �3 <: (�1 ∨ �2) as a conclusion.

3. Draw a subtype derivation tree proving that ((�1 ∨ �2) ∨ �3) <: (�1 ∨ (�2 ∨ �3)).

Exercise 23.11 This exercise extends TVFAE to allow types with any number (including zero) of variants.

4 ::= · · · | type C = G@� + · · · + G@�; 4 | 4 match G(G) → 4 , · · · , G(G) → 4

For example, you can write the following code in the extended language:

type fruit = apple@num + banana@num + cherry@num;

· · ·

Suppose that the operational semantics and the typing rules are the same as those of TVFAE except that

some rules are revised to handle zero or more variants properly.

Some expressions are rejected by the type system even though they do not cause run-time errors. The

following expression is such an example:
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type abc = apple@num + banana@num + cherry@num;

val f = �x:abc.(
x match
apple(a) → a

banana(b) → b

cherry(c) → c

);
type ab = apple@num + banana@num;

f (apple 42)

We want to add subtyping to the language to allow more expressions including the above one. Add

subtyping rule(s) of the form Γ ` � <: � to the language. Assume that the following rules already exist:

Γ ` � <: �
Γ ` �1 <: �2 Γ ` �2 <: �3

Γ ` �1 <: �3

Γ ` �′
1
<: �1 Γ ` �2 <: �′

2

Γ ` �1 → �2 <: �′
1
→ �′

2

Γ ` 4 : �′ Γ ` �′ <: �

Γ ` 4 : �

Exercise 23.12 Consider a language with exceptions. Its syntax and semantics are as follows:

4 ::= = | 4 + 4 | G | �G:�.4 | 4 4 | throw 4 | try 4 catch 4
E ::= = | 〈�G.4 , �〉
A ::= E | ↑ E
� ::= num | �→ �/↑ � | top | bottom

� ` = ⇒ =
� ` 41 ⇒↑ E

� ` 41 + 42 ⇒↑ E
� ` 41 ⇒ E1 � ` 42 ⇒↑ E2

� ` 41 + 42 ⇒↑ E2

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

G ∈ Domain(�)
� ` G ⇒ �(G)

� ` �G:�.4 ⇒ 〈�G.4 , �〉
� ` 41 ⇒↑ E
� ` 41 42 ⇒↑ E

� ` 41 ⇒ E1 � ` 42 ⇒↑ E2

� ` 41 42 ⇒↑ E2

� ` 41 ⇒ 〈�G.4 , �′〉 � ` 42 ⇒ E2 �′[G ↦→ E2] ` 4 ⇒ A

� ` 41 42 ⇒ A
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� ` 4 ⇒↑ E
� ` throw 4 ⇒↑ E

� ` 4 ⇒ E

� ` throw 4 ⇒↑ E

� ` 41 ⇒↑ E1 � ` 42 ⇒↑ E2

� ` try 41 catch 42 ⇒↑ E2

� ` 41 ⇒↑ E1 � ` 42 ⇒ 〈�G.4 , �′〉 �′[G ↦→ E1] ` 4 ⇒ A

� ` try 41 catch 42 ⇒ A

� ` 41 ⇒ E

� ` try 41 catch 42 ⇒ E

where

I � ` 4 ⇒ E implies that 4 evaluates to E under �, and
I � ` 4 ⇒↑ E implies that 4 throws an exception carrying E under �.

Note that each exception carries a single value, which can be used by exception handlers.

A type �1 → �2/↑ �3 is a type of a function that takes a value of �1 as an argument and either returns a

value of �2 or throws an exception carrying a value of �3. The following subtyping rules are given:

� <: �
�1 <: �2 �2 <: �3

�1 <: �3

�′
1
<: �1 �2 <: �′

2
�3 <: �′

3

�1 → �2/↑ �3 <: �′
1
→ �′

2
/↑ �′

3

� <: top bottom <: �

Γ ` 4 : �1 ↑ �2 implies that 4 either evaluates to a value of �1 or throws an exception carrying a value of �2.

Write the typing rules of this language, where one typing rule is given as follows:

Γ ` 4 : �′
1
↑ �′

2
�′

1
<: �1 �′

2
<: �2

Γ ` 4 : �1 ↑ �2



Type Inference 24

While type checking helps programmers by preventing run-time errors, it gives programmers the burden of

attaching type annotations to function parameters. Compare the following code snippets:

def f(x: Int): Int =

x + 1

def f(x):

return x + 1

They are written in Scala and Python, respectively. While Scala, a statically typed language, requires type

annotations, Python, a dynamically typed language, does not. Writing correct type annotations requires

programmers’ time and effort. Besides, type annotations make code verbose. The necessity of type annotations

is a crucial downside of statically typed languages.

For this reason, many languages provide type inference, which recovers omitted type annotations. Under the

presence of type inference, programmers can selectively write type annotations. When a particular type

annotation is beneficial for documentation purpose, they can leave it in the code. Otherwise, they can omit

the type annotation and save their time. Then, the type checker will infer correct types for missing type

annotations.

Each real-world language has a different capability of type inference. For example, Scala’s type checker

can infer the parameter types of anonymous functions used as arguments. The following code passes type

checking:

def f(g: Int => Int): Int = g(0)

f(x => x + 1)

The type checker infers the type of x to Int. However, parameter types cannot be inferred in other cases. Both

lines of the following code do not pass type checking:

def f(x) = x + 1

(x => x + 1)(0)

As these examples show, Scala’s type inference is quite limited. On the other hand, OCaml and Haskell’s type

inference is much more powerful. They allow programmers to omit all the parameter type and return type

annotations. For example, the following code snippets pass type checking:

I OCaml:

let f x = x + 1

I Haskell:

f x = x + 1

This chapter introduces a basic implementation of type inference by implementing a type checker of TIFAE,
which extends TFAE with type inference.
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24.1 Syntax

The syntax of TIFAE is as follows:

4 ::= = | 4 + 4 | G | �G.4 | 4 4

The only difference from TFAE is the absence of type annotations. TIFAE allows omission of every type

annotation, just like OCaml and Haskell, so the syntax does not require type annotations.

24.2 Type Inference as Decision Problem

The usual type checking problem is formulated as the following decision problem on an expression 4:

Is 4 well-typed?

A type checking algorithm is an algorithm solving this decision problem. Our typeCheck function, which is

an implementation of a type checking algorithm, terminates without an exception if the answer is “yes” and

throws an exception if the answer is “no.”

This section formulates the type inference problem as a decision problem in two different ways. While they

reflect two different perspectives on type inference, they define the same problem.

24.2.1 Type Recovery

We first define the type erasure of TFAE. Type erasure removes type annotations from expressions. The type

erasure of TFAE is defined as the following function erase:

erase(=) = =
erase(41 + 42) = erase(41) + erase(42)

erase(G) = G
erase(�G:�.4) = �G.erase(4)
erase(41 42) = erase(41) erase(42)

It takes a TFAE expression as an input and outputs a TIFAE expression. For example, erase(�x:num.x + x) is
�x.x + x.

The type inference problem of TIFAE is the following decision problem on a TIFAE expression 4:

Is there a well-typed TFAE expression 4′ such that erase(4′) = 4?

For example, when �x.x+ x is given, the answer is “yes” because �x:num.x+ x is such a TFAE expression. On

the other hand, when �x.x x is given, the answer is “no” because there is no such expression. An algorithm

solving this decision problem is the type inference algorithm of TIFAE.

From this perspective, type inference is to figure out whether there are type annotations that can make a

given expression become a well-typed, fully type-annotated expression. If such type annotations exist, the

expression passes type checking. Otherwise, it is rejected by the type checker. This formulation fits our

intuitive understanding of type inference.

24.2.2 Non-Algorithmic Type System

Consider the following static semantics of TIFAE:
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Rule Typ-Num

The type of = is num under Γ.

Γ ` = : num [Typ-Num]

Rule Typ-Add

If the type of 41 is num under Γ and the type of 42 is num under Γ,

then the type of 41 + 42 is num under Γ.

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 + 42 : num
[Typ-Add]

Rule Typ-Id

If G is in the domain of Γ,

then the type of G is Γ(G) under Γ.

G ∈ Domain(Γ)
Γ ` G : Γ(G)

[Typ-Id]

Rule Typ-Fun

If the type of 4 is �2 under Γ[G : �1] for some �1,

then the type of �G:4. is �1 → �2 under Γ.

Γ[G : �1] ` 4 : �2

Γ ` �G.4 : �1 → �2

[Typ-Fun]

Rule Typ-App

If the type of 41 is �1 → �2 under Γ and the type of 42 is �1 under Γ,

then the type of 41 42 is �2 under Γ.

Γ ` 41 : �1 → �2 Γ ` 42 : �1

Γ ` 41 42 : �2

[Typ-App]

It is mostly the same as the type system of TFAE. The only difference is in Rule Typ-Fun. While the expression

does not have �1, it is used in the premise. �1 just comes out of thin air. How can it be possible?

A type system does not necessarily let us know how to implement a type checker. Its goal is to declare

whether a certain expression is well-typed or not. Therefore, �1 coming out of thin air cannot be any problem.

This type system still tells us the well-typedness of each TIFAE expression. For example, we can prove that

�x.x + x is well-typed with the type system:

x ∈ Domain([x : num])
[x : num] ` x : num

x ∈ Domain([x : num])
[x : num] ` x : num

[x : num] ` x + x : num

∅ ` �x.x + x : num→ num

Why have we chosen num as �1? So far, it is just our intuition. The type system does not let us know how
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we can choose a type for �1, and we do not have any systematic explanation. However, if we choose num
somehow, we can prove that the type of �x.x + x is num→ num. In addition, if we try to prove that the type

of �x.x x is � for some �, we will conclude that it is impossible after a few attempts. As these examples show,

the type system allows us to determine the well-typedness of each expression, while it does not tell us how.

We say that this type system is non-algorithmic, or declarative, because it only declares well-typed expressions

but does not directly give us an algorithm to check the well-typedness of each expression. It is different

from most of the type systems we saw before this chapter. Except the type system of STFAE, which also

is non-algorithmic, all the other type systems are algorithmic, or syntax-directed. They let us know how to

implement type checking algorithms in a syntax-directed fashion, i.e., by giving an exact type-checking

procedure for each syntactic form of an expression.

The type inference problem of TIFAE is the following decision problem on a TIFAE expression 4:

Is 4 well-typed under this non-algorithmic type system?

Like before, the answer to �x.x+ x is “yes,” and the answer to �x.x x is “no.” The type inference algorithm of

TIFAE is the same as the type checking algorithm of this non-algorithmic type system.

From this perspective, the type inference problem asks us to design a type checking algorithm of a non-

algorithmic type system. Since a non-algorithmic type system is literally non-algorithmic, finding a type

checking algorithm is a nontrivial problem.

24.3 Type Variables and Constraints

Now, our goal is to design and implement a type inference algorithm of TIFAE. We mostly focus on the first

perspective on type inference. Therefore, the decision problem we want to solve is as follows:

Is there a well-typed TFAE expression 4′ such that erase(4′) = 4?

Our type checker must terminate without an exception if the answer is “yes” and throw an exception if the

answer is “no.” Before going into the detailed implementation, this section gives you a high-level idea of type

inference.

The goal of type inference is to find proper types for missing type annotations in a given expression. If such

types exist, the type checker accepts the expression. Otherwise, it rejects the expression. For this purpose, the

type checker attaches a type variable to each function parameter before starting type inference. For example,

�x.x + x becomes �x:X.x + xwhere X is a type variable. Similarly, �x.�y.x + y becomes �x:X.�y:Y.x + y, and
((�x.x) 1) + ((�x.x) 2) becomes ((�x:X.x) 1) + ((�x:Y.x) 2). During type inference, each type variable acts as a

type, just like ordinary types such as num and num→ num. Now, the goal of the type inference is to find a

correct type for each type variable.

Note that type variables are different from program variables and type parameters. They are similar to

variables in mathematical equations. Consider the following system of equations:

G + H = 3

2G + 3H = 7

By solving this system, we get G = 2 and H = 1 as the solution. Similarly, the type checker creates a system of

equations for type variables. The following system of equations is an example:

X = num
X→ num = Y→ num

By solving the system, the type checker gets X = num and Y = num. In the context of type inference, each

equation consisting a system is called a constraint.



24 Type Inference 261

How does the type checker construct such a system of equations? It collects constraints by checking how

each subexpression is used in a given expression. Let us consider various examples.

Single Solution: Number Consider �x:X.x + x. This expression uses x for addition. Addition is possible

for only integers. Thus, the type of xmust be num. Since the type of x is X, the type checker concludes that

X = num. This is the only constraint that can be found. Therefore, the type checker gets the following system:

X = num

The solution to this system is X = num. By applying this solution to the original expression, we get�x:num.x+x,
which is a well-typed TFAE expression.

Single Solution: Function Consider �x:X.(x 0) + 1. The expression applies x to 0. The type of x must be

a function type. In addition, the parameter type of x must be num because the type of its argument, 0, is

num. On the other hand, there is no information to decide the return type of x yet. Thus, the type checker

introduces a new type variable Y and uses it as the return type. This results in the constraint X = num→ Y. In

addition, the type of x 0 is Y. The return value, whose type is Y, is used for addition. Therefore, The type

checker gets one more constraint, Y = num, and completes the following system:

X = num→ Y

Y = num

The solution to this system is X = num → num and Y = num. By applying this solution to the original

expression, we get �x:num→ num.(x 0) + 1, which is a well-typed TFAE expression.

Multiple Solutions In mathematics, there is a system of equations with multiple solutions. The following

system is such an example:

G − 2H = 0

3G − 6H = 0

G = 2 and H = 1 are one possible solution. G = 4 and H = 2 are also a solution. Any G and H satisfying G = 2H

are a solution to this system.

Similarly, there is an expression generating a system with multiple solutions. Consider �x:X.�y:Y.x y. This

expression applies x to y, whose type is Y. Therefore, the type of x is Y→ Z, where Z is a new type variable.

This gives X = Y→ Z, which is the only constraint. Thus, the type checker gets the following system:

X = Y→ Z

This system has multiple solutions. One solution is X = num→ num, Y = num, and Z = num. It is easy to find

more solutions. The existence of multiple solutions is not a problem at all. If at least one solution exists, we

have type annotations making a given expression well-typed. Therefore, expressions with multiple solutions

also pass type checking.

No Solution: Conflicting Requirements In mathematics, there is a system of equations without any

solutions. One example is below.

G − 2H = 1

3G − 6H = 0
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Similarly, there is an expression generating a system with no solutions. Consider �x:X.(x 0) + x. Because of
x 0, the type checker gets X = num→ Y, where Y is a new type variable. At the same time, using x 0 and x for

addition gives Y = num and X = num. The resulting system is as follows:

X = num→ Y

Y = num
X = num

By inlining the second constraint in the first constraint, we can simplify the system as follows:

X = num→ num
X = num

To satisfy both constraints, Xmust be num→ num and num at the same time. Such conflicting requirements

cannot be satisfied. It is impossible to annotate the original expression to make a well-typed TFAE expression.

Thus, the type checker rejects the expression.

No Solution: Cyclic Constraint Consider �x:X.x x. The only constraint is X = X→ Y, obtained from x x.

Therefore, the type checker constructs the following system:

X = X→ Y

This system does not have any solutions either. The reason is that X occurs in X → Y. If a type occurs in

another type, the two types cannot be the same.

24.4 Type Checker

This section implements a type checker of TIFAE.

We define type variables as follows:

sealed trait Type

...

case class VarT(x: String) extends Type

For instance, VarT("X") denotes the type variable X. We implement the abstract syntax is as usual:

sealed trait Expr

...

case class Fun(x: String, t: Type, b: Expr) extends Expr

This allows the type checker to attach type variables to parameters. For example, Fun("x", VarT("X"),

Add(Id("x"), Id("x"))) corresponds to �x:X.x + x. Note that it is still possible for programmers to attach

type annotations to parameters because the type of t is still Type. However, to focus on type inference, this

chapter does not consider expressions with type annotations.

Following the high-level idea illustrated in the previous section, the type checker consists of two steps:

collecting constraints and solving them.
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24.4.1 Collecting Constraints

The constraints-collecting procedure is similar to the usual type checking procedure. The type of each

subexpression in a given expression is computed. However, while the usual procedure immediately checks

whether the type of each subexpression fits the required type, the new procedure adds constraints to a global

constraint list in order to solve them later.

For this purpose, we define the global constraint list as follows:

import scala.collection.mutable.ListBuffer

val constraints: ListBuffer[(Type, Type)] = ListBuffer()

A ListBuffer is a mutable list. While we can avoid mutation by using a strategy similar to store-passing style,

we simply use mutable collections because the main focus of this chapter is type inference, not mutation.

Adding (�1, �2) to the list corresponds to adding the constraint �1 = �2.

We implement the typeCheck function, which collects the constraints from a given expression, as follows:

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

case Num(_) => NumT

case Add(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

constraints.append((lt, NumT))

constraints.append((rt, NumT))

NumT

case Id(x) => tenv(x)

case Fun(x, t, b) =>

ArrowT(t, typeCheck(b, tenv + (x -> t)))

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

val rt = VarT(fresh())

constraints.append((ft, ArrowT(at, rt)))

rt

}

def fresh(): String = ...

The Num, Id, and Fun cases are the same as before. They do not add any constraints. On the other hand, the

types of both operands for addition must be num, so the Add case adds two constraints. In a similar manner,

the App case also adds a constraint. The fresh function returns a new type variable.

Let us run typeCheckwith the examples in the previous section.

I �x:X.x + x

typeCheck(

Fun("x", VarT("X"), Add(Id("x"), Id("x"))),

Map()

)

println(constraints)

It prints
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ListBuffer(

(VarT(X), NumT),

(VarT(X), NumT)

)

which is equivalent to the following system:

X = num
X = num

I �x:X.(x 0) + 1

typeCheck(

Fun("x", VarT("X"), Add(App(Id("x"), Num(0)), Num(1))),

Map()

)

println(constraints)

It prints

ListBuffer(

(VarT(X), ArrowT(NumT, VarT(Y))),

(VarT(Y), NumT),

(NumT, NumT)

)

which is equivalent to the following system:

X = num→ Y

Y = num
num = num

I �x:X.�y:Y.x y

typeCheck(

Fun("x", VarT("X"), Fun("y", VarT("Y"), App(Id("x"), Id("y")))),

Map()

)

println(constraints)

It prints

ListBuffer((VarT(X), ArrowT(VarT(Y), VarT(Z))))

which is equivalent to the following system:

X = Y→ Z

I �x:X.(x 0) + x

typeCheck(

Fun("x", VarT("X"), Add(App(Id("x"), Num(0)), Id("x"))),

Map()

)

println(constraints)

It prints
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ListBuffer(

(VarT(X), ArrowT(NumT, VarT(Y))),

(VarT(Y), NumT),

(VarT(X), NumT)

)

which is equivalent to the following system:

X = num→ Y

Y = num
X = num

I �x:X.x x

typeCheck(

Fun("x", VarT("X"), App(Id("x"), Id("x"))),

Map()

)

println(constraints)

It prints

ListBuffer((VarT(X), ArrowT(VarT(X), VarT(Y))))

which is equivalent to the following system:

X = X→ Y

As these examples show, the constraints collected by the procedure are the same as our expectation, only

except that there additionally are redundant or trivially satisfied constraints.

24.4.2 Solving Constraints

Let us see how to solve a system of equations for type variables. We use a mutable map to denote a solution.

Like before, we use mutation to focus only on type inference, although we can avoid mutation.

import scala.collection.mutable.Map

val solution: Map[String, Type] = Map()

By importing scala.collection.mutable.Map, we can use mutable maps. When solution contains - ->

�, the solution to a type variable - is a type �. For example, "X" -> NumTmeans that the solution to X is num.

On the other hand, if map does not contain - as a key, then - can be any type. Initially, the map is empty

since we have not solved the system and each type variable can be any type. During the solving procedure,

the type checker adds entries to the map by considering each constraint.

The main function of the solving procedure is the following solve function:

def solve() =

for ((t1, t2) <- constraints)

unify(t1, t2)

It iterates over the constraints list and possibly updates the solution map at each iteration. The unify

function updates the map. It takes two types as arguments and updates the map by using the fact that the

two types are equal.
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def unify(t1: Type, t2: Type): Unit =

(t1, t2) match {

...

}

Its behavior depends on what given types are. The simplest case is when both are num.

case (NumT, NumT) =>

Since they are already equal, there is nothing to do. The function immediately returns.

On the other hand, if they are different, it throws an exception.

case (NumT, ArrowT(_, _)) | (ArrowT(_, _), NumT) => error()

When both types are function types, their parameter types and return types are unifed, respectively.

case (ArrowT(pt1, rt1), ArrowT(pt2, rt2)) =>

unify(pt1, pt2)

unify(rt1, rt2)

It follows the fact that if �1 → �′
1
= �2 → �′

2
, then �1 = �2 and �′

1
= �′

2
.

When at least one of given types is a type variable, it becomes a little more complicated. Suppose that t1 is a

type variable.

case (t1 @ VarT(x), t2) =>

if (t1 == t2)

()

else

solution(x) = t2

If t2 is the same type variable, they are already equal, so there is nothing to do, just like the (NumT, NumT)

case. Otherwise, to make the two types equal, the type checker sets t2 as the solution to t1 by updating the

solutionmap.

However, the above code is not quite right for two reasons. First, there can be a solution to t1 already. Suppose

that t1 is VarT("X") and solution has "X" -> NumT. If t2 is ArrowT(NumT, NumT), the type variable X

should be num and num→ num at the same time, which is impossible. In this case, the type checker must

throw an exception.

One may think considering the value of solution.get(t1) is enough to solve this problem. Unfortunately, it

is wrong. The reason is that a solution to a type variable can be another type variable. For example, the map

can contain "X" -> VarT("Y") and "Y" -> NumT. In this case, the type denoted by X is num, not Y. Therefore,

we define a recursive function to find the type denoted by each type variable.

def resolve(ty: Type): Type = ty match {

case VarT(x) => solution.get(x) match {

case None => ty

case Some(t) => resolve(t)

}

case _ => ty

}
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The resolve function computes the type denoted by a given type, which can be a type variable. If the given

type is not a type variable, it returns the type per se. If the type is a type variable, it checks the solutionmap.

If the map does not contain the type variable, the type variable can be any type, so it just returns the type

variable as it is. If the map has a solution type to the type variable, it makes a recursive call on the type to

handle cases that the type is another type variable.

The results of resolve(VarT("X")) under various conditions are as follows:

I When solution is Map(): VarT("X")

I When solution is Map("X" -> NumT): NumT

I When solution is Map("X" -> VarT("Y")): VarT("Y")

I When solution is Map("X" -> VarT("Y"), "Y" -> NumT): NumT

Now, we resolve types before unifying them.

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

}

It prevents a type variable from having a solution in the map already. If the resolved type is a type variable,

the type variable is guaranteed not to have a solution. It allows the type checker to set t2 as the solution to t1

without worrying any conflicts.

Another problem is that t1 can occur in t2. For example, t2 can be ArrowT(VarT("X"), NumT), where t1 is

VarT("X"). As mentioned already, there are no solutions in such cases. Thus, the type checker must throw

an exception. To detect such cases, it must check whether t1 occurs in t2. For this purpose, we define the

following occurs function:

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

case NumT => false

case ArrowT(l, r) => occurs(t1, l) || occurs(t1, r)

case t2 @ VarT(_) => t1 == t2

}

The function checks whether a type variable t1 occurs in a type t2. When t2 is NumT, t1 does not occur in t2.

On the other hand, when t2 is a function type, we can say that t1 occurs in t2 if t1 occurs in either parameter

type or return type. When t2 is a type variable, t1 occurs in t2 if they are the same.

Now, we fix unify to call occurs.

case (t1 @ VarT(x), t2) =>

if (t1 == t2)

()

else if (occurs(t1, t2))

error()

else

solution(x) = t2

Like before, if t1 and t2 are the same type variable, there is nothing to do. If t1 occurs in t2, it throws an

exception. Otherwise, t2 becomes the solution to t1.

The only remaining case is when t2 is a type variable. As we already have implemented the case when t1 is a

type variable, it is enough to call unify again with t1 and t2 swapped.
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case (t1, t2 @ VarT(_)) => unify(t2, t1)

By combining all the cases, we complete unify as below.

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

case (t1 @ VarT(x), t2) =>

if (t1 == t2)

()

else if (occurs(t1, t2))

error()

else

solution(x) = t2

case (t1, t2 @ VarT(_)) => unify(t2, t1)

case (NumT, NumT) =>

case (ArrowT(t3, t4), ArrowT(t5, t6)) =>

unify(t3, t5)

unify(t4, t6)

case (NumT, ArrowT(_, _)) |

(ArrowT(_, _), NumT) => error()

}

Let us run solvewith some of the examples in the previous section.

I �x:X.x + x
The constraints list is as follows:

ListBuffer(

(VarT(X), NumT),

(VarT(X), NumT)

)

In the first iteration, VarT("X") and NumT are unified. unify adds "X" -> NumT to solution. In the

second iteration, VarT("X") and NumT are unified again. Since resolving VarT("X") gives NumT, it goes

to the (NumT, NumT) case, which does nothing. Therefore, solution becomes Map("X" -> NumT) after

running solve.

I �x:X.(x 0) + x
The constraints list is as follows:

ListBuffer(

(VarT(X), ArrowT(NumT, VarT(Y))),

(VarT(Y), NumT),

(VarT(X), NumT)

)

After the first two iterations, solution has "X" -> ArrowT(NumT, VarT(Y)) and "Y" -> NumT. In

the third iteration, VarT("X") and NumT are unified. Since resolving VarT("X") gives ArrowT(NumT,

VarT(Y)), it goes to the (ArrowT(_, _), NumT) case, which throws an exception.

I �x:X.x x

The constraints list is as follows:

ListBuffer((VarT(X), ArrowT(VarT(X), VarT(Y))))

Since occurs(VarT("X"), ArrowT(VarT("X"), VarT("Y"))) is true, unify throws an exception.



24 Type Inference 269

24.5 Improving Type Checker

24.5.1 Solving while Collecting

While the current type checker starts solving after collecting all the constraints, we can implement a type

checker that gradually improves the solution each time it collects a new constraint. Since the type checker

immediately reflects each constraint in the solution, there is no need to store constraints in the global list.

Therefore, we do not use the collections list anymore. In addition, solve is not required either because

there is no separate solving step. After removing collections and solve, the only remaining change is to fix

typeCheck to immediately call unify for each constraint instead of storing the constraint in collections.

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case Add(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

unify(lt, NumT)

unify(rt, NumT)

NumT

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

val rt = VarT(fresh())

unify(ft, ArrowT(at, rt))

rt

}

All the other functions remain the same.

24.5.2 Removing Names of Type Variables

Instead of giving a name to each type variable and storing their types in the solutionmap, we can store a

type in each nameless type variable and avoid using the map. As the first step, we change the definition of

VarT as follows:

case class VarT(var ty: Option[Type]) extends Type

When a VarT has None, the type variable can be any type. It corresponds to solution not having a certain

type variable as a key. When a VarT has Some(�), the solution to the type variable is �. To make such updates

possible, ty is defined as a mutable field.

Note that updating one type variable does not affect other type variables. Consider the following code:

val tvx = VarT(None)

val tvy = VarT(None)

tvx.ty = Some(NumT)

After running this code, tvx.ty becomes Some(NumT), but tvy.ty remains the same as None.

Due to this change, each expression initially has type variables containing None, instead of their names.

Containing only None, not Some, corresponds to solution being empty in the beginning. Some examples of

expressions are below.
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I �x:X.x + x

Fun("x", VarT(None), Add(Id("x"), Id("x")))

I �x:X.�y:Y.x y

Fun("x", VarT(None),

Fun("y", VarT(None), App(Id("x"), Id("y"))))

In addition, we need to modify the App case of typeCheck as follows:

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

val rt = VarT(None)

unify(ft, ArrowT(at, rt))

rt

Thus, fresh is no longer required.

Now, we need to fix unify, occurs, and resolve. Let us start with unify. The first case of unify requires

changes.

case (t1 @ VarT(_), t2) =>

if (t1 eq t2)

()

else if (occurs(t1, t2))

error()

else

t1.ty = Some(t2)

There are two changes. One is t1 == t2 being t1 eq t2. In Scala, == compares values structurally, but eq

compares values physically. Consider the following code:

val tvx = VarT(None)

val tvy = VarT(None)

println(tvx == tvy)

println(tvx eq tvy)

It prints true and false. Since both have None, they are structurally equal. However, they are two distinct

VarT objects stored in different memory locations, so they are physically different. We want to check whether

two type variables are the same type variable, not whether they have the same solution. Thus, we should use

eq instead of ==.

Another change is solution(x) = t2 being t1.ty = Some(t2). This is because that we now store the

solution to each type variable in the type variable itself, not the solutionmap.

We need a similar change in occurs as well.

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case t2 @ VarT(_) => t1 eq t2

}
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For the same reason, == becomes eq.

Lastly, we fix resolve.

def resolve(ty: Type): Type = ty match {

case VarT(Some(t)) => resolve(t)

case _ => ty

}

Instead of looking up solution, it simply checks the optional type in a VarT.

Combining all, our type checker implementation is as follows:

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

case Num(_) => NumT

case Add(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

unify(lt, NumT)

unify(rt, NumT)

NumT

case Id(x) => tenv(x)

case Fun(x, t, b) =>

ArrowT(t, typeCheck(b, tenv + (x -> t)))

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

val rt = VarT(None)

unify(ft, ArrowT(at, rt))

rt

}

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

case (t1 @ VarT(x), t2) =>

if (t1 eq t2)

()

else if (occurs(t1, t2))

error()

else

t1.ty = Some(t2)

case (t1, t2 @ VarT(_)) => unify(t2, t1)

case (NumT, NumT) =>

case (ArrowT(t3, t4), ArrowT(t5, t6)) =>

unify(t3, t5)

unify(t4, t6)

case (NumT, ArrowT(_, _)) |

(ArrowT(_, _), NumT) => error()

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

case NumT => false

case ArrowT(l, r) => occurs(t1, l) || occurs(t1, r)
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case t2 @ VarT(_) => t1 eq t2

}

def resolve(ty: Type): Type = ty match {

case VarT(Some(t)) => resolve(t)

case _ => ty

}

Note that we do not need any global variables now.

24.6 Exercises

Exercise 24.1 This exercise extends TIFAE with pairs.

sealed trait Expr

...

case class Pair(l: Expr, r: Expr) extends Expr

case class Fst(e: Expr) extends Expr

case class Snd(e: Expr) extends Expr

sealed trait Type

...

case class PairT(l: Type, r: Type) extends Type

def resolve(ty: Type): Type = ...

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

case (PairT(l1, r1), PairT(l2, r2)) => ???

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case PairT(l, r) => ???

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case Pair(l, r) => ???

case Fst(e) => ???

case Snd(e) => ???

}

1. Complete the implementation. You may refer to the following typing rules:

Γ ` 41 : �1 Γ ` 42 : �2

Γ ` (41 , 42) : �1 × �2

Γ ` 4 : �1 × �2

Γ ` 4.1 : �1

Γ ` 4 : �1 × �2

Γ ` 4.2 : �2

where



24 Type Inference 273

I (41 , 42) denotes Pair(41,42).
I 4.1 denotes Fst(4).

I 4.2 denotes Snd(4).

I �1 × �2 denotes PairT(�1,�2).

2. Write the result of typeCheck(4, Map()), where 4 is Fun("x", VarT(None), Add(Fst(Id("x")),

Num(42))), which represents �x:X.((x.1) + 42).

Exercise 24.2 This exercise extends TIFAE with boxes. Complete the following implementation:

sealed trait Expr

...

case class NewBox(e: Expr) extends Expr

case class OpenBox(b: Expr) extends Expr

case class SetBox(b: Expr, e: Expr) extends Expr

sealed trait Type

...

case class BoxT(t: Type) extends Type

def resolve(ty: Type): Type = ...

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

case (BoxT(t3), BoxT(t4)) => ???

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case BoxT(t) => ???

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case NewBox(e) => ???

case OpenBox(b) => ???

case SetBox(b, e) => ???

}

You may refer to the following typing rules:

Γ ` 4 : �

Γ ` box 4 : box �

Γ ` 4 : box �

Γ `!4 : �

Γ ` 41 : box � Γ ` 42 : �

Γ ` 41:=42 : �

where

I box 4 denotes NewBox(4).
I !4 denotes OpenBox(4).

I 41:=42 denotes SetBox(41, 42).

I box � denotes BoxT(�).
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Exercise 24.3 This exercise extends TIFAE with lists. Complete the following implementation:

sealed trait Expr

...

case object Nil extends Expr

case class Cons(h: Expr, t: Expr) extends Expr

case class Head(e: Expr) extends Expr

case class Tail(e: Expr) extends Expr

sealed trait Type

...

case class ListT(t: Type) extends Type

def resolve(ty: Type): Type = ...

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

case (ListT(t3), ListT(t4)) => ???

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case ListT(t) => ???

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case Nil => ???

case Cons(h, t) => ???

case Head(e) => ???

case Tail(e) => ???

}

You may refer to the following typing rules:

Γ ` nil : list �
Γ ` 41 : � Γ ` 42 : list �

Γ ` cons 41 42 : list �

Γ ` 4 : list �

Γ ` head 4 : �

Γ ` 4 : list �

Γ ` tail 4 : list �

where

I nil denotes Nil.
I cons 41 42 denotes Cons(41, 42).

I head 4 denotes Head(4).
I tail 4 denotes Tail(4).
I list � denotes ListT(�).
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Exercise 24.4 This exercise extends TIFAE with options. Complete the following implementation:

sealed trait Expr

...

case object NoneE extends Expr

case class SomeE(e: Expr) extends Expr

case class Match(e: Expr, e1: Expr, x: String, e2: Expr) extends Expr

sealed trait Type

...

case class OptionT(t: Type) extends Type

def resolve(ty: Type): Type = ...

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

case (OptionT(t3), OptionT(t4)) => ???

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case OptionT(t) => ???

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case NoneE => ???

case SomeE(e) => ???

case Match(e, e1, x, e2) => ???

}

You may refer to the following typing rules:

Γ ` none : option �
Γ ` 4 : �

Γ ` some 4 : option �

Γ ` 4 : option �′ Γ ` 41 : � Γ[G : �′] ` 42 : �

Γ ` 4 match none→ 41 , some G → 42 : �

where

I none denotes NoneE.

I some 4 denotes SomeE(4).
I 4 match none→ 41 , some G → 42 denotes Match(4, 41, G, 42).

I option � denotes OptionT(�), which is the type of an option possibly containing a value of �.

Exercise 24.5 The following code implements type erasure of PTFAE:

object Erased {

sealed trait Expr
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case class Num(n: Int) extends Expr

case class Add(l: Expr, r: Expr) extends Expr

case class Sub(l: Expr, r: Expr) extends Expr

case class Id(x: String) extends Expr

case class Fun(p: String, b: Expr) extends Expr

case class App(f: Expr, a: Expr) extends Expr

}

def erase(e: Expr): Erased.Expr = e match {

case Num(n) => Erased.Num(n)

case Add(l, r) => Erased.Add(erase(l), erase(r))

case Sub(l, r) => Erased.Sub(erase(l), erase(r))

case Id(x) => Erased.Id(x)

case Fun(p, t, b) => Erased.Fun(p, erase(b))

case App(f, a) => Erased.App(erase(f), erase(a))

case TyFun(a, e) => erase(e)

case TyApp(e, t) => erase(e)

}

1. Formally define the type erasure function erase(4) = 4 according to the code.

2. Write the result of applying erase to each of the following expressions:

a) (Λ.�x:.x)[num] 1
b) (Λ.Λ�.�x:.�y:�.y)[num][num] 1 2

3. Write a well-typed expression that becomes the each of the following expressions by erase.

a) �x.(x (�x.x) (x 1))
b) (�x.�y.x x y) (�x.x) 1
c) (�x.x x 1) �y.y

Although Wells proved that the type inference problem of PTFAE is undecidable in 1994 [Wel94],

you can solve this problem with your intution.

Exercise 24.6 Consider the following language:

4 ::= = | �G.4 1 ::= true � ::= num
| 1 | 4 4 | false | bool
| G | val G=4 in 4 | �→ �
| 4; 4 | 

A type scheme � is a possibly polymorphic type, and a type environment contains type schemes instead of

types:

� ::= � | ∀.�

Γ ∈ Id fin↦→ TypeScheme

Consider the following non-algorithmic type system:
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Γ ` = : num Γ ` 1 : bool

G ∈ Domain(Γ) Γ(G) � �

Γ ` G : �

Γ ` 41 : �1 Γ ` 42 : �2

Γ ` 41; 42 : �2

Γ[G : �] ` 4 : �′

Γ ` �G.4 : �→ �′
Γ ` 41 : �→ �′ Γ ` 42 : �

Γ ` 41 42 : �′

Γ ` 41 : � � ≺Γ � Γ[G : �] ` 42 : �′

Γ ` val G=41 in 42 : �′

where

� � � � � �

∀1. · · · ∀= .� � �[1 ← �1 , · · · , = ← �=]

� ≺Γ �
FTV(�) \ FTV(Γ) = {1 , · · · , =}

� ≺Γ ∀1. · · · ∀= .�

FTV(num) = ∅
FTV(bool) = ∅

FTV(�1 → �2) = FTV(�1) ∪ FTV(�2)
FTV() = {}

FTV(∀.�) = FTV(�) \ {}
FTV(Γ) = ⋃

G∈Domain(Γ) FTV(Γ(G))

(� denotes specialization of a type scheme to a type. ≺ denotes generalization of a type to a type scheme.

FTV denotes free type variables in a type or a type environment.)

Is each of the following expressions well-typed? If so, draw a type derivation tree. Otherwise, explain why.

1. (�x.x 42) �y.y
2. (�x.x 42; x true) �y.y
3. val x=�y.y in x 42; x true

Note that this type system is called a Hindley-Milner type system, named after two independent inventors of

the type system, Hindley [Hin69] and Milner [Mil78]. OCaml and Haskell are well-known for the use of

this type system.
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Solutions to Exercises A

Many exercises are meant to have multiple solutions. Each provided solution may not be the only solution.

Exercise 3.1

def names(l: List[Student]): List[String] = l match {

case Nil => Nil

case h :: t => h.name :: names(t)

}

Exercise 3.2

def tall(l: List[Student]): List[Student] = l match {

case Nil => Nil

case h :: t =>

if (h.height > 170)

h :: tall(t)

else

tall(t)

}

Exercise 3.3

def length(l: List[Int]): Int = l match {

case Nil => 0

case h :: t => 1 + length(t)

}

Exercise 3.4

def append(l: List[Int], n: Int): List[Int] = l match {

case Nil => n :: Nil

case h :: t => h :: append(t, n)

}

$(=)

Exercise 4.1

def incBy(l: List[Int], n: Int): List[Int] = l.map(_ + n)

Exercise 4.2

def gt(l: List[Int], n: Int): List[Int] = l.filter(_ > n)

Exercise 4.3

def append(l: List[Int], n: Int): List[Int] =

l.foldRight(n :: Nil)(_ :: _)

Exercise 4.4

def reverse(l: List[Int]): List[Int] =

l.foldLeft(Nil: List[Int])((l, e) => e :: l)

Exercise 6.1
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1. No

2. No

3. No

4. No

5. Yes

Exercise 6.2

1. No

2. Yes

3. No

4. Yes

5. No

6. Yes

7. Yes

Exercise 6.3

1. No

2. Yes

3. Yes

4. Yes

5. No

6. Yes

Exercise 7.1

I val x�=(val x�=3 in 5 − x�) in 1 + x�
1. � → �, � → �

2. No shadowing

I val x�=3 in val y�=5 in 1 + x�
1. � → �

2. No shadowing

I val x�=3 in val x�=5 in 1 + x�
1. � → �

2. �→ �

Exercise 7.2

case Num(n) => Set()

case Add(l, r) => helper(l, env) ++ helper(r, env)

case Id(x) => Set()

case Val(x, e, b) =>

val s = if (env(x)) Set(x) else Set()

s ++ helper(e, env) ++ helper(b, env + x)

Exercise 8.1

1. Free identifier error

2. 5

3. 3

4. Free identifier error

5. Free identifier error

Exercise 9.1

�1 = [x ↦→ 5]
�2 = �1[f ↦→ E1]
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�3 = �2[g ↦→ E2]
�4 = �2[x ↦→ 1]
�5 = �1[y ↦→ 1]
E1 = 〈�y.y + x, �1〉
E2 = 〈�x.x, �2〉

expr env res

val x=5 in val f=�y.y + x in (�g.f (g 1)) (�x.x) ∅
5 ∅ 5

val f=�y.y + x in (�g.f (g 1)) (�x.x) �1

�y.y + x �1 E1

(�g.f (g 1)) (�x.x) �2

�g.f (g 1) �2 〈�g.f (g 1), �2〉
�x.x �2 E2

f (g 1) �3

f �3 E1

g 1 �3

g �3 E2

1 �3 1

x �4 1

y + x �5

y �5 1

x �5 5

Exercise 9.2

1. Dynamic scoping

2. The argument is the only identifier the body can use unless the body defines a new identifier by itself.

3. Static scoping

Exercise 9.3

(�x.�y.x (10 − y) ) �y.8 + y

Exercise 9.4

case Num(n) => Num(n)

case Id(x) => Id(x)

case Val(x, e, b) => App(Fun(x, desugar(b)), desugar(e))

case Fun(x, b) => Fun(x, desugar(b))

case App(f, a) => App(desugar(f), desugar(a))

Exercise 9.5

App(

App(

Fun("x", Fun("y", Fun("z",

App(App(Id("z"), Id("x")), Id("y"))

))),

desugar(f)

),

desugar(s)

)

Exercise 9.6

(�x.�y.x) 0 0
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Exercise 9.7

1 1

Exercise 9.8

�x.y

Exercise 9.9

1.

� ` 41 ⇒ E1 � ` 42 ⇒ E2

� ` (41 , 42) ⇒ (E1 , E2)

� ` 4 ⇒ (E1 , E2)
� ` 4.1⇒ E1

� ` 4 ⇒ (E1 , E2)
� ` 4.2⇒ E2

2.

∅ ` 8⇒ 8

∅ ` 320⇒ 320 ∅ ` 42⇒ 42

∅ ` (320, 42) ⇒ (320, 42)
∅ ` (320, 42).1⇒ 320

∅ ` (8, (320, 42).1) ⇒ (8, 320)
∅ ` (8, (320, 42).1).2⇒ 320

Exercise 9.10

� ` 41 ⇒ E1 · · · � ` 4= ⇒ E=

� ` {;1 : 41 , · · · , ;= : 4=} ⇒ 〈;1 : E1 , · · · , ;= : E=〉

� ` 4 ⇒ 〈· · · , ; : E, · · · 〉
� ` 4.; ⇒ E

Exercise 9.11

� ` ()⇒ ()

� ` 41 ⇒ () · · · � ` 4= ⇒ ()

� ` 41; · · · ; 4= ⇒ ()

� ` 41 ⇒ E1 · · · � ` 4< ⇒ E< E< ≠ () � ` 4<+1 ⇒ () · · · � ` 4= ⇒ ()

� ` 41; · · · ; 4= ⇒ E<

Exercise 9.12

fv(4) ⊆ Domain(�) ∪ {G}
� ` �G.4 ⇒ 〈�G.4 , �〉

fv(4) * Domain(�) ∪ {G}
� ` �G.4 ⇒↑

Exercise 9.13
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1.

� ` �G1 · · · G= .4 ⇒ 〈�G1 · · · G= .4 , �〉

� ` 40 ⇒ 〈�G1 · · · G= .4 , �′〉
� ` 41 ⇒ E1 · · · � ` 4= ⇒ E= �′[G1 ↦→ E1 , · · · , G= ↦→ E=] ` 4 ⇒ E

� ` 40(41 , · · · , 4=) ⇒ E

2. �1 = [f ↦→ 〈�x.x, ∅〉, m ↦→ 8], �2 = [x ↦→ 8]

∅ ` �f m.f(m) ⇒ 〈�f m.f(m), ∅〉

∅ ` �x.x⇒ 〈�x.x, ∅〉 ∅ ` 8⇒ 8

f ∈ Domain(�1)
�1 ` f⇒ 〈�x.x, ∅〉

m ∈ Domain(�1)
�1 ` m⇒ 8

x ∈ Domain(�2)
�2 ` x⇒ 8

�1 ` f(m) ⇒ 8

∅ ` (�f m.f(m))(�x.x, 8) ⇒ 8

Exercise 9.14

1.

�,  ` �G1 · · · G= .4 ⇒ 〈�G1 · · · G= .4 , �〉
�,  ` 4

0
⇒ 〈�G

1
· · · G< .4, �′〉

�,  ` 4
1
⇒ E

1
· · · �,  ` 4= ⇒ E= �′[G

1
↦→ E

1
, · · · , G

min(<,=) ↦→ E
min(<,=) , Gmin(<,=)+1

↦→ undefined, · · · , G< ↦→ undefined], [E
1
, · · · , E= ] ` 4 ⇒ E

�,  ` 4
0
(4

1
, · · · , 4= ) ⇒ E

�,  ` 4 ⇒ = 0 ≤ = < Length()
�,  ` get 4 ⇒ [=]

2.

∅, [] ` �x y.get x⇒ 〈�x y.get x, ∅〉 ∅, [] ` 2⇒ 2 ∅, [] ` 19⇒ 19 ∅, [] ` 141⇒ 141

x ∈ Domain([x ↦→ 2, y ↦→ 19])
[x ↦→ 2, y ↦→ 19], [2, 19, 141] ` x⇒ 2

0 ≤ 2 < Length([2, 19, 141])

[x ↦→ 2, y ↦→ 19], [2, 19, 141] ` get x⇒ 141

∅, [] ` (�x y.get x)(2, 19, 141) ⇒ 141

Exercise 9.15

1.

= ⇒ =

�G.4 ⇒ �G.4

41 ⇒ �G.4 42 ⇒ E2 4[G/E2] ⇒ E

41 42 ⇒ E

2.

=[G/E] = =

G′[G/E] = E if G = G′

G′[G/E] = G′ if G ≠ G′

(�G′.4)[G/E] = �G′.4 if G = G′

(�G′.4)[G/E] = �G′.4[G/E] if G ≠ G′

(41 42)[G/E] = 41[G/E] 42[G/E]
3. a) 0

b) error

4. case Fun(y, b) =>

if (y == x)

Fun(y, b)

else {

val ny = fresh(binding(b) ++ free(b) ++ free(v) + x)

Fun(ny, subst(subst(b, y, Id(ny)), x, v))

}
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Exercise 9.16

1.

� ` 41 ⇒ E1 · · · � ` 4= ⇒ E=

� ` {;1 : 41 , · · · , ;= : 4=} ⇒ 〈;1 : E1 , · · · , ;= : E=〉

� ` 4 ⇒ 〈· · · , ; : E, · · · 〉
� ` 4.; ⇒ E

� ` 4 ⇒ 〈;1 : E1 , · · · , ;= : E=〉 ; ∉ {;1 , · · · , ;=} ;8 = proto � ` E8 .; ⇒ E

� ` 4.; ⇒ E

� ` 4 ⇒ 〈;1 : E1 , · · · , ;= : E=〉 ; ∉ {;1 , · · · , ;=} proto ∉ {;1 , · · · , ;=}
� ` 4.; ⇒ undefined

� ` 41 ⇒ E1 � ` E1.; ⇒ 〈�G.4 , �′〉 � ` 42 ⇒ E2 �′[this ↦→ E1 , G ↦→ E2] ` 4 ⇒ E

� ` 41.;(42) ⇒ E

2.

∅ ` 1⇒ 1

∅ ` {x : 1} ⇒ 〈x : 1〉
∅ ` {proto : {x : 1}} ⇒ 〈proto : 〈x : 1〉〉

x ∉ {proto} proto = proto
� ` 〈x : 1〉 ⇒ 〈x : 1〉
� ` 〈x : 1〉.x⇒ 1

∅ ` {proto : {x : 1}}.x⇒ 1

3. �x.this.a

Exercise 9.17

1.

� ` = ⇒ =

G ∈ Domain(�)
� ` G ⇒ �(G)

� ` �G.4 ⇒ 〈�G.4 , �〉

� ` 41 ⇒ exc

� ` 41 + 42 ⇒ exc

� ` 41 ⇒ E � ` 42 ⇒ exc

� ` 41 + 42 ⇒ exc

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

� ` 41 ⇒ exc

� ` 41 42 ⇒ exc

� ` 41 ⇒ E � ` 42 ⇒ exc

� ` 41 42 ⇒ exc

� ` 41 ⇒ 〈�G.4 , �′〉 � ` 42 ⇒ E2 �′[G ↦→ E2] ` 4 ⇒ A

� ` 41 42 ⇒ A

� ` throw⇒ exc
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� ` 41 ⇒ E

� ` try 41 catch 42 ⇒ E

� ` 41 ⇒ exc � ` 42 ⇒ A

� ` try 41 catch 42 ⇒ A

2.

∅ ` 1⇒ 1 ∅ ` throw⇒ exc

∅ ` 1 + throw⇒ exc

∅ ` throw⇒ exc

∅ ` throw + 2⇒ exc

∅ ` try (1 + throw) catch (throw + 2) ⇒ exc

Exercise 10.1

val f�=�x� .if0 x� 0 (f� (x� − 1)) in
def f�(x�)=if0 x� 0 (f� (x� − 1)) in
f y!

1. � → �, �→ �, � → �, � → �, � → �,  → �

2. �, !

Exercise 10.2

case Num(n) => Set()

case Id(x) => Set()

case Val(x, e, b) => (bindings(e) ++ bindings(b)) + x

case App(f, a) => bindings(f) ++ bindings(a)

case Fun(x, b) => bindings(b) + x

case Rec(f, x, b, e) => bindings(b) ++ bindings(e) + f + x

case Num(n) => Set()

case Id(x) => Set(x)

case Val(x, e, b) => frees(e) ++ (frees(b) - x)

case App(f, a) => frees(f) ++ frees(a)

case Fun(x, b) => frees(b) - x

case Rec(f, x, b, e) => (frees(b) - f - x) ++ (frees(e) - f)

Exercise 10.3

1. Does not terminate

2. 49

Exercise 10.4

if0 0 0 (0 0)

Exercise 10.5

� ` 1 ⇒ 1

� ` 41 ⇒ E1 � ` 42 ⇒ E2

� ` 41 ∧ 42 ⇒ E1 ∧ E2

� ` 4 ⇒ E

� ` ¬4 ⇒ ¬E
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� ` 41 ⇒ true � ` 42 ⇒ E2

� ` if 41 42 43 ⇒ E2

� ` 41 ⇒ false � ` 43 ⇒ E3

� ` if 41 42 43 ⇒ E3

Exercise 10.6

1.

� ` 1 ⇒ 1

� ` 41 ⇒ E1 E1 ≠ false � ` 42 ⇒ E2

� ` if 41 42 43 ⇒ E2

� ` 41 ⇒ false � ` 43 ⇒ E3

� ` if 41 42 43 ⇒ E3

� ` 41 ⇒ false

� ` and 41 42 ⇒ false

� ` 41 ⇒ E1 E1 ≠ false � ` 42 ⇒ E2

� ` and 41 42 ⇒ E2

� ` 41 ⇒ E1 E1 ≠ false

� ` or 41 42 ⇒ E1

� ` 41 ⇒ false � ` 42 ⇒ E2

� ` or 41 42 ⇒ E2

2.

∅ ` false⇒ false ∅ ` 2⇒ 2

∅ ` or false 2⇒ 2

2 ≠ false
∅ ` false⇒ false

∅ ` and false 2⇒ false

∅ ` if (or false 2) (and false 2) 1⇒ false

Exercise 10.7

Change val g=y y in to val g=�x.y y x in .

Exercise 10.8

Change val f=z (�v.if0 v 0 (v + f (v − 1))) in to val f=z (�f.�v.if0 v 0 (v + f (v − 1))) in .

Exercise 10.9

val f�=(
val x�=�y� .(

val f�=�v� .y� y� v� in
�v� .if0 v� 0 (v + f! (v" − 1))
) in
x# x$
) in
f% 10

1. �→ �, �→ �, � → �, � → � ,  → � , !→ �, " → � , # → �, $ → �, % → �

2. No shadowing
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3. 4 = val f=�v.y y v in �v.if0 v 0 (v + f (v − 1))
〈�v.if0 v 0 (v + f (v − 1)), [y ↦→ 〈�y.4 , ∅〉, f ↦→ 〈�v.y y v, [y ↦→ 〈�y.4 , ∅〉]〉]〉

Exercise 10.10

An argument to zmust be a function whose fixed point is a recursive function to be constructed. For example,

to make the sum function with z, its argument must be a function that returns sum when sum is given.

Exercise 10.11

val z=(�b.
val fx=(�fy.

val f=�x.(fy fy).1 x in
val g=�x.(fy fy).2 x in
b (f, g)
) in
fx fx

) in
val f=z �f.(�n.if0 n true (f.2 (n − 1)),�n.if0 n false (f.1 (n − 1))) in
val even=f.1 in
val odd=f.2 in
(even 10, odd 10)

Exercise 11.1

expr env sto res

(�x.(�y.x:=8; !y) x) box 7 ∅ ∅ (8, [01 ↦→ 8])
�x.(�y.x:=8; !y) x ∅ ∅ (〈�x.(�y.x:=8; !y) x, ∅〉, ∅)

box 7 ∅ ∅ (01 , [01 ↦→ 7])
7 ∅ ∅ (7, ∅)

(�y.x:=8; !y) x [x ↦→ 01] [01 ↦→ 7] (8, [01 ↦→ 8])
�y.x:=8; !y [x ↦→ 01] [01 ↦→ 7] (〈�y.x:=8; !y, [x ↦→ 01]〉, [01 ↦→ 7])

x [x ↦→ 01] [01 ↦→ 7] (01 , [01 ↦→ 7])
x:=8; !y [x ↦→ 01 , y ↦→ 01] [01 ↦→ 7] (8, [01 ↦→ 8])
x:=8 [x ↦→ 01 , y ↦→ 01] [01 ↦→ 7] (8, [01 ↦→ 8])

8 [x ↦→ 01 , y ↦→ 01] [01 ↦→ 7] (8, [01 ↦→ 7])
!y [x ↦→ 01 , y ↦→ 01] [01 ↦→ 8] (8, [01 ↦→ 8])
y [x ↦→ 01 , y ↦→ 01] [01 ↦→ 8] (01 , [01 ↦→ 8])

Exercise 11.2

App(Fun(fresh(free(r)), desugar(r)), desugar(l))

Exercise 11.3

val z=�b.(
val a=box �x.y in
val f=(b �x.!a x) in
a:=f;

f

) in
val f=z (�f.�v.if0 v 0 (v + f (v − 1))) in
f 10

Exercise 12.1
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expr env sto

(�x.x) ((�x.x) 1) ∅ ∅
�x.x ∅ ∅
(�x.x) 1 ∅ ∅
�x.x ∅ ∅

1 ∅ ∅
x [x ↦→ 01] [01 ↦→ 1]
x [x ↦→ 02] [01 ↦→ 1, 02 ↦→ 1]

Exercise 12.2

1. CBR

2. [n ↦→ 01 , f ↦→ 02 , x ↦→ 04],
[01 ↦→ 42, 02 ↦→ 〈�g.g n, [n ↦→ 01]〉, 03 ↦→ 〈�x.x + 8, [n ↦→ 01 , f ↦→ 02]〉, 04 ↦→ 42]

3. [n ↦→ 01 , f ↦→ 02 , x ↦→ 01],
[01 ↦→ 42, 02 ↦→ 〈�g.g n, [n ↦→ 01]〉, 03 ↦→ 〈�x.x + 8, [n ↦→ 01 , f ↦→ 02]〉]

Exercise 12.3

1. val (RecV(fields), rs) = interp(r, env, fs)

interp(b, fenv + (x -> fields(f)), rs)

2. 2, [01 ↦→ 2, 02 ↦→ {z:01}, 03 ↦→ 〈�y.y:=2, [x ↦→ 02]〉]
3. 1, [01 ↦→ 1, 02 ↦→ {z:01}, 03 ↦→ 〈�y.y:=2, [x ↦→ 02]〉, 04 ↦→ 2]

Exercise 12.4

1.

�, " ` 4 ⇒ 0, "1 0 ∈ Domain("1)
�, " ` ∗4 ⇒ "1(0), "1

G ∈ Domain(�)
�, " ` &G ⇒ �(G), "

�, " ` 42 ⇒ E, "1 �, "1 ` 41 ⇒ 0, "2

�, " ` ∗41:=42 ⇒ E, "2[0 ↦→ E]
2. case Deref(p) =>

val (pv, ps) = interp(p, env, sto)

val PtrV(a) = pv

(ps(a), ps)

case Ref(x) => (PtrV(env(x)), sto)

case Assign(p, e) =>

val (ev, es) = interp(e, env, sto)

val (pv, ps) = interp(p, env, es)

val PtrV(a) = pv

(ev, ps + (a -> ev))

Exercise 12.5

1.

� ` skip⇒ �

� ` 4 ⇒ E

� ` G:=4 ⇒ �[G ↦→ E]

� ` 4 ⇒ 0 � ` 21 ⇒ �1

� ` if0 4 21 22 ⇒ �1
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� ` 4 ⇒ E E ≠ 0 � ` 22 ⇒ �2

� ` if0 4 21 22 ⇒ �2

� ` 4 ⇒ 0 � ` 2 ⇒ �1 �1 ` while0 4 2 ⇒ �2

� ` while0 4 2 ⇒ �2

� ` 4 ⇒ E E ≠ 0

� ` while0 4 2 ⇒ �

� ` 21 ⇒ �1 �1 ` 22 ⇒ �2

� ` 21; 22 ⇒ �2

2.

∅ ` 0⇒ 0

∅ ` x:=0⇒ [x ↦→ 0]

x ∈ Domain([x ↦→ 0])
[x ↦→ 0] ` x⇒ 0

[x ↦→ 0] ` skip⇒ [x ↦→ 0]

[x ↦→ 0] ` if0 x skip x:=1;⇒ [x ↦→ 0]
∅ ` x:=0; if0 x skip x:=1⇒ [x ↦→ 0]

Exercise 13.1

I Stack: 13

I From space:
1 2 2 3 7 99 19 99 16 10 99 13 5

0 1 2 3 4 5 6 7 8 9 10 11 12

I To space:
3 16 5 4 19 13 1 4 0 0 0 0 0

13 14 15 16 17 18 19 20 21 22 23 24 25

Exercise 14.1

I Call-by-name

expr env

(�x.x + x) (1 + 2) ∅
�x.x + x ∅
x + x [x ↦→ (1 + 2, ∅)]
x [x ↦→ (1 + 2, ∅)]

1 + 2 ∅
1 ∅
2 ∅
x [x ↦→ (1 + 2, ∅)]

1 + 2 ∅
1 ∅
2 ∅

I Call-by-need

expr env

(�x.x + x) (1 + 2) ∅
�x.x + x ∅
x + x [x ↦→ (1 + 2, ∅, ·)]
x [x ↦→ (1 + 2, ∅, ·)]

1 + 2 ∅
1 ∅
2 ∅
x [x ↦→ (1 + 2, ∅, 3)]

Exercise 14.2

1. CBV: error, CBN: error

2. CBV: error, CBN: 10

3. CBV: error, CBN: error

4. CBV: error, CBN: (1 + �x.x, ∅)
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5. CBV: error, CBN: 3

6. CBV: error, CBN: error

7. CBV: error, CBN: 8

8. CBV: 〈�x.((�y.42) (9 2)), ∅〉, CBN: 〈�x.((�y.42) (9 2)), ∅〉
9. CBV: error, CBN: error

10. CBV: error, CBN: 15

Exercise 14.3

1. error

2. 12

3. error

4. error

Exercise 14.4

(�y.(�x.x + 0) y) 0

Exercise 14.5

case Val(x, e, b) =>

interp(b, env + (x -> ExprV(e, env)))

case If0(c, t, f) =>

interp(if (strict(interp(c, env)) == NumV(0)) t else f, env)

Exercise 14.6

case class PairV(f: Value, s: Value) extends Value

case Pair(f, s) => PairV(ExprV(f, env), ExprV(s, env))

case Fst(e) =>

val PairV(v, _) = strict(interp(e, env))

v

case Snd(e) =>

val PairV(_, v) = strict(interp(e, env))

v

Exercise 14.7

case class ConsV(h: Value, t: Value) extends Value

case Nil => NilV

case Cons(h, t) => ConsV(ExprV(h, env), ExprV(t, env))

case Head(e) =>

val ConsV(h, _) = strict(interp(e, env))

strict(h)

case Tail(e) =>

val ConsV(_, t) = strict(interp(e, env))

val v = strict(t)

if (isList(v)) v else error()

Exercise 14.8

1.

= ⇓ =

〈�G.4 , �〉 ⇓ 〈�G.4 , �〉
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� ` 4 ⇒ E

delay(4 , �) ⇓ E

� ` 4 ⇒ E′ E′ ⇓ E
lazy(4 , �) ⇓ E

2.

� ` delay 4 ⇒ delay(4 , �)

� ` lazy 4 ⇒ lazy(4 , �)

� ` 4 ⇒ E′ E′ ⇓ E
� ` force 4 ⇒ E

Exercise 15.1

case ExprV(e, env) =>

interp(e, env, v => strict(v, k))

case Add(l, r) =>

interp(l, env, v1 =>

interp(r, env, v2 =>

strict(v1, n =>

strict(v2, m => {

val NumV(l) = n

val NumV(r) = m

k(NumV(l + r))

}))))

case App(f, a) =>

interp(f, env, v =>

strict(v, fv => {

val CloV(x, b, fenv) = fv

interp(b, fenv + (x -> ExprV(a, env)), k)

}))

Exercise 16.1

1. 3

2. 6

3. Error

4. 5

5. Does not terminate

Exercise 16.2

(vcc x in x) �y.y
vcc x in x
x

�y.y
�y.y
y

Exercise 16.3

� = [x ↦→ 〈∅ ` 8 :: (+) :: �,�〉]
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∅ ` (vcc x in 42 + (x 2)) + 8 :: � | | �
→ ∅ ` vcc x in 42 + (x 2) :: ∅ ` 8 :: (+) :: � | | �
→ � ` 42 + (x 2) :: ∅ ` 8 :: (+) :: � | | �
→ � ` 42 :: � ` (x 2) :: (+) :: ∅ ` 8 :: (+) :: � | | �
→ � ` (x 2) :: (+) :: ∅ ` 8 :: (+) :: � | | 42 :: �
→ � ` x :: � ` 2 :: (@) :: (+) :: ∅ ` 8 :: (+) :: � | | 42 :: �
→ � ` 2 :: (@) :: (+) :: ∅ ` 8 :: (+) :: � | | 〈∅ ` 8 :: (+) :: �,�〉 :: 42 :: �
→ (@) :: (+) :: ∅ ` 8 :: (+) :: � | | 2 :: 〈∅ ` 8 :: (+) :: �,�〉 :: 42 :: �
→ ∅ ` 8 :: (+) :: � | | 2 :: �
→ (+) :: � | | 8 :: 2 :: �
→ � | | 10 :: �

Exercise 16.4

case Num(n) => k(NumV(n), sto)

case Id(x) => k(sto(env(x)), sto)

case Fun(x, b) => k(CloV(x, b, env), sto)

case App(f, a) =>

interp(f, env, sto, (fv, fs) =>

interp(a, env, fs, (av, as) => fv match {

case CloV(x, b, fenv) =>

val addr = malloc(as)

interp(b, fenv + (x -> addr), as + (addr -> av), k)

case ContV(k) => k(av, as)

})

)

case Set(x, e) =>

interp(e, env, sto, (v, s) =>

k(v, s + (env(x) -> v))

)

case Vcc(x, b) =>

val addr = malloc(sto)

interp(b, env + (x -> addr), sto + (addr -> ContV(k)), k)

Exercise 17.1

case class ValSecondK(x: String, b: Expr, env: Env, k: Cont) extends Cont

case class If0SecondK(t: Expr, f: Expr, env: Env, k: Cont) extends Cont

case ValSecondK(x, b, env, k) => interp(b, env + (x -> v), k)

case If0SecondK(t, f, env, k) => interp(if (v == NumV(0)) t else f, env, k)

case Val(x, e, b) => interp(e, env, ValSecondK(x, b, env, k))

case If0(c, t, f) => interp(c, env, If0SecondK(t, f, env, k))

Exercise 17.2

case class PairSecondK(s: Expr, env: Env, k: Cont) extends Cont

case class DoPairK(fv: Value, k: Cont) extends Cont

case class DoFstK(k: Cont) extends Cont

case class DoSndK(k: Cont) extends Cont

case PairSecondK(s, env, k) => interp(s, env, DoPairK(v, k))

case DoPairK(fv, k) => continue(k, PairV(fv, v))

case DoFstK(k) =>

val PairV(fv, _) = v
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continue(k, fv)

case DoSndK(k) =>

val PairV(_, sv) = v

continue(k, sv)

case Pair(f, s) => interp(f, env, PairSecondK(s, env, k))

case Fst(p) => interp(p, env, DoFstK(k))

case Snd(p) => interp(p, env, DoSndK(k))

Exercise 18.1

(�.�.�.(0 − 2) + 1) 42 0 10

Exercise 18.2

�x.�y.�z.z y z

Exercise 19.1

1 + x

Exercise 19.2

Γ ` nil[�] : list �

Γ ` 41 : � Γ ` 42 : list �

Γ ` cons 41 42 : list �

Γ ` 4 : list �

Γ ` head 4 : �

Γ ` 4 : list �

Γ ` tail 4 : list �

Exercise 19.3

1.

Γ ` 4 : �

Γ ` box 4 : box �

Γ ` 4 : box �

Γ `!4 : �

Γ ` 41 : box � Γ ` 42 : �

Γ ` 41:=42 : �

Γ ` 41 : �1 Γ ` 42 : �2

Γ ` 41; 42 : �2
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2. Γ1 = [x : box num], Γ2 = Γ1[y : num]

∅ ` 3 : num

∅ ` box 3 : box num

x ∈ Domain(Γ
1
)

Γ
1
` x : box num

Γ
1
`!x : num

Γ
1
` 7 : num

Γ
1
`!x + 7 : num

x ∈ Domain(Γ
2
)

Γ
2
` x : box num

Γ
2
` 8 : num

Γ
2
` x:=8 : num

y ∈ Domain(Γ
2
)

Γ
2
` y : num

x ∈ Domain(Γ
2
)

Γ
2
` x : box num

Γ
2
`!x : num

Γ
2
` y+!x : num

Γ
2
` x:=8; y+!x : num

Γ
1
` val y=!x + 7 in x:=8; y+!x : num

∅ ` val x=box 3 in val y=!x + 7 in x:=8; y+!x : num

Exercise 19.4

1.

G ∈ Domain(Γ) Γ ` 4 : Γ(G)
Γ ` G:=4 : Γ(G)

2.

Γ ` 4 : �∗
Γ ` ∗4 : �

G ∈ Domain(Γ)
Γ ` &G : Γ(G)∗

Γ ` 41 : �∗ Γ ` 42 : �

Γ ` ∗41:=42 : �

Exercise 20.1

def f(x:num):num→ num=f x in f 0

Exercise 20.2

1.

Γ ` = : num

Γ ` 1 : bool

G ∈ Domain(Γ)
Γ ` G : Γ(G)

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 + 42 : num

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 < 42 : bool

2.

Γ ` skip : Γ

G ∉ Domain(Γ) Γ ` 4 : �

Γ ` G:=4 : Γ[G : �]

G ∈ Domain(Γ) Γ ` 4 : Γ(G)
Γ ` G:=4 : Γ

Γ ` 4 : bool Γ ` 21 : Γ1 Γ ` 22 : Γ1

Γ ` if 4 21 22 : Γ1
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Γ ` 4 : bool Γ ` 2 : Γ1

Γ ` while 4 2 : Γ

Γ ` 21 : Γ1 Γ1 ` 22 : Γ2

Γ ` 21; 22 : Γ2

Exercise 21.1

1. 10

2. 10

Exercise 21.2

type A = X@A + Y@num in 0

Exercise 21.3

type X = A@Y + B@num in
(

type Y = C@num + D@num in
�x:X.x match
A(y) → y match
C(z) → 0,

D(z) → 0,

B(y) → 0

) (
type Y = E@num + F@num in
A (E 0)
)
Exercise 21.4

Color

Γ ` 4 : C C ∈ Domain(Γ)
Γ(C) = G1@�1 + G2@�2 Γ′ = Γ[G1 : �1 → C , G2 : �2 → C] Γ′[G3 : �1] ` 41 : � Γ′[G4 : �2] ` 42 : �

Γ ` 4 match G1(G3) → 41 , G2(G4) → 42 : �

Exercise 21.5

1.

Γ ` �1 · · · Γ ` �= Γ ` �
Γ ` (�1 , · · · , �=) → �

2.

Γ ` �1 · · · Γ ` �= Γ[G1 : �1 , · · · , G= : �=] ` 4 : �

Γ ` �(G1:�1 , · · · , G= :�=).4 : (�1 , · · · , �=) → �

Γ ` 4 : (�1 , · · · , �=) → � Γ ` 41 : �1 · · · Γ ` 4= : �=

Γ ` 4(41 , · · · , 4=) : �

Γ′ = Γ[C = G1@(�11 , · · · , �1<1
) + · · · + G=@(�=1 , · · · , �=<= ), G1 : (�11 , · · · , �1<1

) → C , · · · , G= : (�=1 , · · · , �=<= ) → C]
Γ′ ` �11 · · · Γ′ ` �=<= Γ′ ` 4 : �

Γ ` type C = G1@(�11 , · · · , �1<1
) + · · · + G=@(�=1 , · · · , �=<= ) in 4 : �
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Γ ` 4 : C C ∈ Domain(Γ) Γ(C) = G1@(�11 , · · · , �1<1
) + · · · + G=@(�=1 , · · · , �=<= )

Γ[G11 : �11 , · · · , G1<1
: �1<1

] ` 41 : � · · · Γ[G=1 : �=1 , · · · , G=<= : �=<= ] ` 4= : �

Γ ` 4 match G1(G11 , · · · , G1<1
) → 41 , · · · , G=(G=1 , · · · , G=<= ) → 4= : �

3. Γ = [Fruit = Apple@()+Banana@((Fruit) → num, Fruit)+Cherry@(num), Apple : () → Fruit, Banana :

((Fruit) → num, Fruit) → Fruit, Cherry : (num) → Fruit]
Γ′ = Γ[f : (Fruit) → num, x : Fruit]
4′ = Apple() match Apple() → 42, Banana(f, x) → f(x), Cherry(x) → x

4 = type Fruit = Apple@() + Banana@((Fruit) → num, Fruit) + Cherry@(num) in 4′

) :

Apple ∈ Domain(Γ)
Γ ` Apple : () → Fruit

Γ ` Apple() : Fruit
Fruit ∈ Domain(Γ) Γ(Fruit) = Apple@() + Banana@((Fruit) → num, Fruit) + Cherry@(num)

Γ ` 42 : num

f ∈ Domain(Γ′)
Γ′ ` f : (Fruit) → num

x ∈ Domain(Γ′)
Γ′ ` x : Fruit

Γ′ ` f(x) : num

x ∈ Domain(Γ[x : num])
Γ[x : num] ` x : num

Γ ` 4′ : num

Γ = Γ

Fruit ∈ Domain(Γ)
Γ ` Fruit

Γ ` num

Γ ` (Fruit) → num

Fruit ∈ Domain(Γ)
Γ ` Fruit

Γ ` num )

∅ ` 4 : num

Exercise 21.6

type X = toX@(X→ X);
val fromX : X→ (X→ X) = �x:X.x match toX(f) → f;

val f : X = toX (�x:X.((fromX x) x));
(fromX f) f

Exercise 22.1

1. Γ1 = [f : ∀.→ ]
Γ2 = [, x : ]

 ∈ Domain([])
[] ` 

 ∈ Domain([])
[] ` 

[] ` → 

∅ ` ∀.→ 

f ∈ Domain(Γ
1
)

Γ
1
` f : ∀.→ 

Γ
1
` f[num] : num→ num

Γ
1
` 10 : num

Γ
1
` f[num] 10 : num

∅ ` �f:∀.→ .f[num] 10 : (∀.→ ) → num

 ∈ Domain([])
[] ` 

x ∈ Domain(Γ
2
)

Γ
2
` x : 

[] ` �x:.x : → 

∅ ` Λ.�x:.x : ∀.→ 

∅ ` (�f:∀.→ .f[num] 10) (Λ.�x:.x) : num

2. Γ1 = [, �]
Γ2 = Γ1[f : → �]
Γ3 = Γ2[x : ]
Γ4 = [y : num]

) :

 ∈ Domain(Γ
1
)

Γ
1
` 

� ∈ Domain(Γ
1
)

Γ
1
` �

Γ
1
` → �

 ∈ Domain(Γ
2
)

Γ
2
` 

f ∈ Domain(Γ
3
)

Γ
3
` f : → �

x ∈ Domain(Γ
3
)

Γ
3
` x : 

Γ
3
` f x : �

Γ
2
` �x:.f x : → �

Γ
1
` �f:→ �.�x:.f x : (→ �) → (→ �)

[] ` Λ�.�f:→ �.�x:.f x : ∀�.(→ �) → (→ �)
∅ ` Λ.Λ�.�f:→ �.�x:.f x : ∀.∀�.(→ �) → (→ �)

∅ ` (Λ.Λ�.�f:→ �.�x:.f x)[num] : ∀�.(num→ �) → (num→ �)
∅ ` (Λ.Λ�.�f:→ �.�x:.f x)[num][num] : (num→ num) → (num→ num)

)

∅ ` num
Γ

4
` 17 : num

y ∈ Domain(Γ
4
)

Γ
4
` y : num

Γ
4
` 17 − y : num

∅ ` �y:num.17 − y : num→ num

∅ ` (Λ.Λ�.�f:→ �.�x:.f x)[num][num] (�y:num.17 − y) : num→ num
∅ ` 9 : num

∅ ` (Λ.Λ�.�f:→ �.�x:.f x)[num][num] (�y:num.17 − y) 9 : num

Exercise 22.2

case class ArrowT(p: Type, r: Type) extends Type
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case class ForallT(t: Type) extends Type

case class VarT(i: Int) extends Type

case NumT => Nameless.NumT

case ArrowT(p, r) =>

Nameless.ArrowT(transform(p, ctx), transform(r, ctx))

case ForallT(a, t) =>

Nameless.ForallT(transform(t, a :: ctx))

case VarT(a) =>

Nameless.VarT(locate(a, ctx))

Exercise 22.3

1.

Γ′ = Γ[C = []G1@�1 + G2@�2 , G1 : ∀.�1 → C[], G2 : ∀.�2 → C[]]
C ∉ Domain(Γ) Γ′[] ` �1 Γ′[] ` �2 Γ′ ` 4 : � Γ ` �

Γ ` type C[] = G1@�1 + G2@�2 in 4 : �

C ∈ Domain(Γ) Γ(C) = []G1@�1 + G2@�2

Γ ` 4 : C[�] Γ[G3 : �1[← �]] ` 41 : �′ Γ[G4 : �2[← �]] ` 42 : �′

Γ ` 4 match G1(G3) → 41 , G2(G4) → 42 : �′

2.

C ∈ Domain(Γ) Γ ` �
Γ ` C[�]

3. ∀.option[] → → 

Exercise 23.1

1. Not well-typed

2.

∅ ` 1 : num ∅ ` {} : {}

∅ ` 2 : num

∅ ` {a = 2} : {a : num}
{a : num} <: {}

∅ ` {a = 2} : {}
∅ ` if0 1 {} {a = 2} : {}

Exercise 23.2

(�x:num→ num.x 1) 1

Exercise 23.3

case (_, TopT) => true

case (BottomT, _) => true

case (NumT, NumT) => true

case (ArrowT(p1, r1), ArrowT(p2, r2)) =>

subtype(p2, p1) && subtype(r1, r2)

case (RecordT(fs1), RecordT(fs2)) =>

fs2.forall{

case (x, t2) => fs1.get(x) match {

case None => false

case Some(t1) => subtype(t1, t2)

}

}

Exercise 23.4

case Add(l, r) =>
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val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

if (!subtype(lt, NumT)) error()

if (!subtype(rt, NumT)) error()

NumT

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

ft match {

case NumT => error()

case ArrowT(pt, rt) =>

if (!subtype(at, pt)) error()

rt

case TopT => error()

case BottomT => BottomT

}

Exercise 23.5

case (BottomT, t) => t

case (t, BottomT) => t

case (NumT, NumT) => NumT

case (ArrowT(p1, r1), ArrowT(p2, r2)) =>

ArrowT(glb(p1, p2), lub(r1, r2))

case (RecordT(fs1), RecordT(fs2)) =>

val fs = fs1.keySet & fs2.keySet

RecordT(fs.map(x => x -> lub(fs1(x), fs2(x))).toMap)

case (TopT, t) => t

case (t, TopT) => t

case (NumT, NumT) => NumT

case (ArrowT(p1, r1), ArrowT(p2, r2)) =>

ArrowT(lub(p1, p2), glb(r1, r2))

case (RecordT(fs1), RecordT(fs2)) =>

val fs = fs1.keySet | fs2.keySet

RecordT(fs.map(x =>

x -> glb(fs1.getOrElse(x, TopT), fs2.getOrElse(x, TopT))

).toMap)

case If0(c, t, f) =>

val ct = typeCheck(c, tenv)

val tt = typeCheck(t, tenv)

val ft = typeCheck(f, tenv)

if (subtype(ct, NumT)) lub(tt, ft) else error()

Exercise 23.6

�1 <: �2 �2 <: �1

box �1 <: box �2

Exercise 23.7

1.

�1 <: �2

list �1 <: list �2
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2.

�1 <: �2 �2 <: �1

list �1 <: list �2

Exercise 23.8

1.

Γ[G : �→ bottom] ` 4 : �

Γ ` (vcc G in 4):� : �

2.

x ∈ Domain(Γ)
Γ ` x : num→ bottom

Γ ` 1 : num

Γ ` x 1 : bottom
bottom <: num→ num

Γ ` x 1 : num→ num
Γ ` 42 : num

Γ ` (x 1) 42 : num

∅ ` (vcc x in (x 1) 42):num : num

Γ = [x : num→ bottom]

Exercise 23.9

1.

�1 <: �3

�1 ∧ �2 <: �3

�2 <: �3

�1 ∧ �2 <: �3

2.

�3 <: �1 �3 <: �2

�3 <: �1 ∧ �2

3.

�2 <: �2

�1 ∧ �2 <: �2

�1 <: �1

�1 ∧ �2 <: �1

�1 ∧ �2 <: �2 ∧ �1

Exercise 23.10

1.

�1 <: �3 �2 <: �3

(�1 ∨ �2) <: �3

2.

�3 <: �1

�3 <: (�1 ∨ �2)

�3 <: �2

�3 <: (�1 ∨ �2)
3.

�1 <: �1

�1 <: (�1 ∨ (�2 ∨ �3))

�2 <: �2

�2 <: (�2 ∨ �3)
�2 <: (�1 ∨ (�2 ∨ �3))

(�1 ∨ �2) <: (�1 ∨ (�2 ∨ �3))

�3 <: �3

�3 <: (�2 ∨ �3)
�3 <: (�1 ∨ (�2 ∨ �3))

((�1 ∨ �2) ∨ �3) <: (�1 ∨ (�2 ∨ �3))



A Solutions to Exercises 300

Exercise 23.11

Γ(C1) = G1@�1 + · · · + G=@�=
Γ(C2) = G1@�′

1
+ · · · + G=@�′= + G=+1@�′=+1

+ · · · + G=+<@�′=+< Γ ` �1 <: �′
1

· · · Γ ` �= <: �′=

Γ ` C1 <: C2

Exercise 23.12

Γ ` = : num ↑ bottom
Γ ` 41 : num ↑ � Γ ` 42 : num ↑ �

Γ ` 41 + 42 : num ↑ �

G ∈ Domain(Γ)
Γ ` G : Γ(G) ↑ bottom

Γ[G : �1] ` 4 : �2 ↑ �3

Γ ` �G:�1.4 : (�1 → �2/↑ �3) ↑ bottom

Γ ` 41 : (�1 → �2/↑ �3) ↑ �3 Γ ` 42 : �1 ↑ �3

Γ ` 41 42 : �2 ↑ �3

Γ ` 4 : � ↑ �
Γ ` throw 4 : bottom ↑ �

Γ ` 41 : �1 ↑ �2 Γ ` 42 : (�2 → �1/↑ �3) ↑ �3

Γ ` try 41 catch 42 : �1 ↑ �3

Exercise 24.1

1. case (PairT(l1, r1), PairT(l2, r2)) =>

unify(l1, l2)

unify(r1, r2)

case PairT(l, r) =>

occurs(t1, l) || occurs(t1, r)

case Pair(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

PairT(lt, rt)

case Fst(e) =>

val et = typeCheck(e, tenv)

val ft = VarT(None)

val st = VarT(None)

unify(PairT(ft, st), et)

ft

case Snd(e) =>

val et = typeCheck(e, tenv)

val ft = VarT(None)

val st = VarT(None)

unify(PairT(ft, st), et)

st

2. ArrowT(VarT(Some(PairT(VarT(Some(NumT)), VarT(None)))), NumT)

Exercise 24.2
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case (BoxT(t3), BoxT(t4)) =>

unify(t3, t4)

case BoxT(t) =>

occurs(t1, t)

case NewBox(e) =>

val et = typeCheck(e, tenv)

BoxT(et)

case OpenBox(b) =>

val bt = typeCheck(b, tenv)

val t = VarT(None)

unify(bt, BoxT(t))

t

case SetBox(b, e) =>

val bt = typeCheck(b, tenv)

val et = typeCheck(e, tenv)

unify(bt, BoxT(et))

et

Exercise 24.3

case (ListT(t3), ListT(t4)) =>

unify(t3, t4)

case ListT(t) =>

occurs(t1, t)

case Nil =>

val t = VarT(None)

ListT(t)

case Cons(h, t) =>

val ht = typeCheck(h, tenv)

val tt = typeCheck(t, tenv)

unify(ListT(ht), tt)

tt

case Head(e) =>

val et = typeCheck(e, tenv)

val t = VarT(None)

unify(et, ListT(t))

t

case Tail(e) =>

val et = typeCheck(e, tenv)

val t = VarT(None)

unify(et, ListT(t))

et

Exercise 24.4

case (OptionT(t3), OptionT(t4)) =>

unify(t3, t4)

case OptionT(t) =>

occurs(t1, t)
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case NoneE =>

OptionT(VarT(None))

case SomeE(e) =>

OptionT(typeCheck(e, tenv))

case Match(e, e1, x, e2) =>

val et = typeCheck(e, tenv)

val t = VarT(None)

unify(OptionT(t), et)

val nt = typeCheck(e1, tenv)

val st = typeCheck(e2, tenv + (x -> t))

unify(nt, st)

nt

Exercise 24.5

1.

erase(=) = =

erase(41 + 42) = erase(41) + erase(42)
erase(41 − 42) = erase(41) − erase(42)

erase(G) = G

erase(�G:�.4) = �G.erase(4)
erase(41 42) = erase(41) erase(42)
erase(Λ.4) = erase(4)
erase(4[�]) = erase(4)

2. a) (�x.x) 1
b) (�x.�y.y) 1 2

3. a) �x:∀.→ .(x[num→ num]) (�x:num.x) (x[num] 1)
b) (�x:∀.→ .�y:num.(x[num→ num]) (x[num]) y) (Λ.�x:.x) 1
c) (�x:∀.→ .(x[num→ num]) (x[num]) 1) Λ.�y:.y

Exercise 24.6

1.

x ∈ Domain(Γ
1
) num→ num � num→ num

Γ
1
` x : num→ num

Γ
1
` 42 : num

Γ
1
` x 42 : num

∅ ` �x.x 42 : (num→ num) → num

y ∈ Domain(Γ
2
) num � num

Γ
2
` y : num

∅ ` �y.y : num→ num

∅ ` (�x.x 42) �y.y : num

Γ1 = [x : num→ num], Γ2 = [y : num]
2. Not well-typed

3.

y ∈ Domain(Γ
1
)  � 

Γ
1
` y : 

∅ ` �y.y : → 

FTV(→ ) \ FTV(∅) = {}
→  ≺∅ ∀.→ 

x ∈ Domain(Γ
2
) ∀.→  � num→ num

Γ
2
` x : num→ num

Γ
2
` 42 : num

Γ
2
` x 42 : num

x ∈ Domain(Γ
2
) ∀.→  � bool→ bool

Γ
2
` x : bool→ bool

Γ
2
` true : bool

Γ
2
` x true : bool

Γ
2
` x 42; x true : bool

∅ ` val x=�y.y in x 42; x true : bool

Γ1 = [y : ], Γ2 = [x : ∀.→ ]
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