
Introduction to Programming Languages

Jaemin Hong and Sukyoung Ryu

February 23, 2023

©2022 Jaemin Hong and Sukyoung Ryu

All rights reserved. No part of this book may be reproduced in any form by any electronic

of mechanical means (including photocopying, recording, or information storage and

retrieval) without permission in writing from the authors.

1: https:

//racket-lang.

org/people.html

Acknowledgement

The contents of this book are based on the KAIST Programming Languages course. We

thank PLT
1
since the course referred to many materials from PLT in the beginning. We

also thank every student who took the course before. We have learned many things

from the interaction with the students, and those lessons have affected various parts of

the book. In addition, we thank all the previous and current teaching assistants of the

course. They gave opinions to the course and wrote some of the exercises in the book.

Especially, Jihyeok Park highly contributed to the course, and Jihee Park helped us edit

the exercises.

We would be delighted to receive comments and corrections, which may be sent to

jaemin.hong@kaist.ac.kr. We thank in advance everyone who will contribute to the

book in the future.

https://racket-lang.org/people.html
https://racket-lang.org/people.html
https://racket-lang.org/people.html

Contents

Acknowledgement iii

Contents iv

1 Introduction 1

1.1 Exercises . 3

Scala 4

2 Introduction to Scala 5

2.1 Functional Programming . 5

2.2 Installation . 7

2.3 REPL . 8

Variables . 9

Functions . 10

Conditionals . 12

Lists . 12

Tuples . 14

Maps . 15

Classes and Objects . 15

2.4 Interpreter . 16

2.5 Compiler . 17

2.6 SBT . 18

3 Immutability 20

3.1 Advantages . 20

3.2 Recursion . 22

3.3 Tail Call Optimization . 25

3.4 Exercises . 28

4 Functions 30

4.1 First-Class Functions . 30

4.2 Anonymous Functions . 32

4.3 Closures . 34

4.4 First-Class Functions and Lists . 35

4.5 For Loops . 41

4.6 Exercises . 42

5 Pattern Matching 43

5.1 Algebraic Data Types . 43

5.2 Advantages . 46

Conciseness . 46

Exhaustivity Checking . 47

Reachability Checking . 48

5.3 Patterns in Scala . 48

Constant and Wildcard Patterns . 48

Or Patterns . 49

Nested Patterns . 50

Patterns with Binders . 50

Type Patterns . 51

Tuple Patterns . 52

Pattern Guards . 52

Patterns with Backticks . 53

5.4 Applications of Pattern Matching . 54

Variable Definitions . 54

Anonymous Functions . 55

For Loops . 55

5.5 Options . 56

Untyped Languages 61

6 Syntax and Semantics 62

6.1 Concrete Syntax . 62

6.2 Abstract Syntax . 65

6.3 Parsing . 71

6.4 Semantics . 72

6.5 Syntactic Sugar . 77

6.6 Exercises . 78

7 Identifiers 80

7.1 Identifiers . 80

7.2 Syntax . 82

7.3 Semantics . 83

7.4 Interpreter . 85

7.5 Exercises . 86

8 First-Order Functions 87

8.1 Syntax . 87

8.2 Semantics . 88

8.3 Interpreter . 90

8.4 Scope . 90

8.5 Exercises . 92

9 First-Class Functions 93

9.1 Syntax . 93

9.2 Semantics . 94

9.3 Interpreter . 97

9.4 Syntactic Sugar . 98

9.5 Exercises . 99

10 Recursion 106

10.1 Syntax . 106

10.2 Semantics . 107

10.3 Interpreter . 108

10.4 Recursion as Syntactic Sugar . 109

10.5 Exercises . 111

11 Boxes 116

11.1 Syntax . 116

11.2 Semantics . 117

11.3 Interpreter . 122

11.4 Exercises . 124

12 Mutable Variables 126

12.1 Syntax . 127

12.2 Semantics . 127

12.3 Interpreter . 129

12.4 Call-by-Reference . 130

12.5 Exercises . 133

13 Garbage Collection 136

13.1 Stack and Heap . 136

Stack . 137

Heap . 138

13.2 Memory Management . 140

Manual Memory Management . 141

Automatic Memory Management . 143

13.3 Reference Counting . 146

Pros . 149

Cons . 149

13.4 Mark-and-Sweep GC . 154

Pros . 157

Cons . 157

13.5 Copying GC . 157

Pros . 163

Cons . 163

13.6 Exercises . 164

14 Lazy Evaluation 165

14.1 Semantics . 166

14.2 Interpreter . 169

14.3 Call-by-Need . 170

14.4 Exercises . 172

15 Continuations 177

15.1 Redexes and Continuations . 179

15.2 Continuation-Passing Style . 181

15.3 Interpreter in CPS . 185

15.4 Small-Step Operational Semantics . 189

15.5 Exercises . 195

16 First-Class Continuations 197

16.1 Syntax . 197

16.2 Semantics . 198

16.3 Interpreter . 200

16.4 Use of First-Class Continuations . 201

Return . 202

Break and Continue . 202

16.5 Exercises . 203

17 First-Order Representation of Continuations 205

17.1 First-Order Representation of Continuations 205

17.2 Big-Step Semantics of KFAE . 210

17.3 Exercises . 213

18 Nameless Representation of Expressions 215

18.1 De Bruĳn Indices . 216

18.2 Evaluation of Nameless Expressions . 220

18.3 Exercises . 222

Typed Languages 223

19 Type Systems 224

19.1 Run-Time Errors . 224

19.2 Detecting Run-Time Errors . 225

19.3 Type Errors . 227

19.4 Type Checking . 228

19.5 TFAE . 231

Syntax . 231

Dynamic Semantics . 232

Interpreter . 232

Static Semantics . 233

Type Checker . 235

19.6 Extending Type Systems . 237

Local Variable Definitions . 237

Pairs . 238

19.7 Exercises . 239

20 Typing Recursive Functions 241

20.1 Syntax . 241

20.2 Dynamic Semantics . 242

20.3 Interpreter . 242

20.4 Static Semantics . 242

20.5 Type Checker . 244

20.6 Exercises . 245

21 Algebraic Data Types 247

21.1 Syntax . 249

21.2 Dynamic Semantics . 250

21.3 Interpreter . 252

21.4 Static Semantics . 254

Well-Formed Types . 254

Typing Rules . 255

21.5 Type Checker . 257

21.6 Type Soundness of TVFAE . 260

21.7 Exercises . 261

22 Parametric Polymorphism 264

22.1 Syntax . 266

22.2 Dynamic Semantics . 267

22.3 Static Semantics . 268

Well-Formed Types . 268

Typing Rules . 269

22.4 Exercises . 271

23 Subtype Polymorphism 273

23.1 Records . 273

Syntax . 273

Dynamic Semantics . 274

Static Semantics . 275

23.2 Subtype Polymorphism . 276

23.3 Subtyping of Record Types . 278

23.4 Subtyping of Function Types . 281

23.5 Top and Bottom Types . 282

23.6 Exercises . 283

24 Type Inference 289

24.1 Syntax . 290

24.2 Type Inference as Decision Problem . 290

Type Recovery . 290

Non-Algorithmic Type System . 291

24.3 Type Variables and Constraints . 293

24.4 Type Checker . 295

Collecting Constraints . 296

Solving Constraints . 298

24.5 Improving Type Checker . 302

Solving while Collecting . 302

Removing Names of Type Variables . 303

24.6 Exercises . 306

Appendix 312

A Solutions to Exercises 313

Bibliography 338

Alphabetical Index 339

Introduction 1

1.1 Exercises 3What is a programming language?

The simplest answer is “it is a language used for programming.”However,

this answer does not help us understand programming languages. We

need a better question to get a better answer.

What does a programming language consist of?

There is a good answer for this question: “in a narrow sense, a program-

ming language consists of syntax and semantics, and in a broad sense, it

additionally has a standard library and an ecosystem.”

Syntax and semantics are principal concepts to understand programming

languages. Syntax determines how a language looks like, and semantics

fills the inside. If we consider a programming language as a human,

we can say that syntax is one’s appearance, and semantics is one’s

thoughts. Programmers write programs according to syntax. Syntax

decides characters used in source code. Once programs are written,

semantics decides what each program does. Without semantics, all the

programs are useless. Programs can work as being expected only after

semantics determines the meaning of them. A programming language

with syntax and semantics is complete. Programmers using that language

can write programs with the syntax and execute the programs with the

semantics. From a theoretical perspective, syntax and semantics are all

of a programming language.

For programmers, syntax and semantics are not the only elements of

a programming language. First, the standard library of a language is

another element. The standard library provides various utilities required

by applications: data structures like lists and maps, functions handling

file and network IO, and so on. The standard library is like clothes for

humans. A human without clothes is a human; a programming language

without a standard library is a programming language. At the same time,

clothes are important to humans as they make bodies warm and protect

bodies from dangerous objects. Similarly, a standard library is important

to a programming language as it supplies diverse functionalities for

applications. Each person wears clothes different from others, and each

language puts different things from other languages in its standard

library. Some languages include many utilities in their standard libraries,

while others include much less. Some languages treat lists and maps

as built-in concepts in their semantics, while others define them with

other primitives in their standard libraries. Programmers avoid using a

language without a standard library because such a language increases

the effort to write programs.

Another important element to programmers is the ecosystem of a pro-

gramming language. The ecosystem includes everything related to the

language: developers and companies using the language, third-party

libraries written in the language, and so on. It is like a society for humans.

1 Introduction 2

If many programmers and companies use a programming language, one

can easily get help and find complementary materials by using the same

language. There will be more chances of cooperative work and employ-

ment, too. Third-party libraries also take important roles in software

development. The standard library offers only general facilities and often

lacks domain-specific features. When a required functionality cannot

be found in the standard library, a third-party library can provide the

exact functionality. For these reasons, the ecosystem of a programming

language is important to programmers.

Practically, the standard library and the ecosystem of a language are

important elements. Unlike syntax and semantics, they are not essential.

A programming language can exist even without its standard library and

ecosystem. However, developers take standard libraries and ecosystems

into account as well as syntax and semantics to choose languages they

use. From a practical perspective, a programming language consists of

syntax, semantics, a standard library, and an ecosystem.

This book is not for helping readers use a specific programming language.

It does not recommend a specific programming language, either. This

book helps readers learn new programming languages easily. You can

acquaint any programming languages once you completely read and

understand this book. Obviously, this goal cannot be achieved if the book

discusses various languages separately. It is possible only by discussing

the underlying principles of every programming language.

The principles of programming languages can be found from their

semantics. Each language seems very different from the others, but it

is actually not the case. Precisely speaking, their insides are quite the

same, while their appearances look different. They look different because

their syntax and standard libraries, which determine the appearances,

are different. However, their insides, the semantics, fundamentally share

the same mathematical principles. If you understand essential concepts

residing in the semantics of multiple languages, it is easy to understand

and learn new languages.

People who know the key principles and can separate the elements of

a language can easily learn programming languages. As an analogy,

consider a man learning how to use a computer. It is a big problem if

he cannot distinguish a keyboard from a computer. For example, he

thinks “to say hello, my right index finger presses the keyboard, my left

middle finger presses the keyboard, my right ring finger presses the

keyboard three times.” If the layout of the keyboard changes, he should

learn the whole computer again. On the other hand, if he knows that a

keyboard is just a tool to input text, he will less suffer from the change

of the keyboard layout. As he thinks “to say hello, I press H, E, L, L,

and O,” he does not need to learn the whole computer again. Of course,

he should learn the new keyboard layout, but it will be much easier. In

addition, it is straightforward to apply his knowledge to do new things.

For example, he will easily figure out “to say lol, I press L, O, and L.”

If he does not distinguish a keyboard from a computer, he cannot find

any common principles between saying hello and saying lol. Learning

programming languages is the same. People who cannot distinguish

syntax and semantics believe that they should learn the whole language

again when the syntax changes. On the other hand, people who can

1 Introduction 3

distinguish syntax and semantics know that semantics remains the same

even if syntax may vary. They know that understanding the principles of

semantics is important to learn languages. Becoming familiar with the

new syntax is all they need to use a new language fluently.

This book explains the semantics of principal concepts in programming

languages. Chapters 2, 3, 4, and 5 introduce the Scala programming

language. This book uses Scala to implement interpreters and type

checkers of languages introduced in the book. Chapter 6 explains syntax

and semantics. Then, the book finally introduces various features of

programming languages.

I Chapter 7 introduces identifiers.

I Chapters 8, 9, and 10 introduce functions.

I Chapters 11 and 12 introduce mutation.

I Chapter 13 introduces garbage collection.

I Chapter 14 introduces lazy evaluation.

I Chapters 15, 16, and 17 introduce continuations.

I Chapter 18 introduces De Bruĳn indices.

I Chapters 19 and 20 introduce basic type systems.

I Chapter 21 introduces algebraic data types.

I Chapter 22 introduces parametric polymorphism.

I Chapter 23 introduces subtype polymorphism.

I Chapter 24 introduces type inference.

Each chapter explains a feature by defining a small language providing

the feature. Those languages may seem inconvenient in practice because

they are too small. However, the simplicity will allow us to focus on the

topic of each chapter.

1.1 Exercises

Exercise 1.1 Write the name of a programming language that you have

used. What are the pros and cons of the language?

Exercise 1.2 Write the names of two programming languages you know

and compare them.

Scala

Introduction to Scala 2

2.1 Functional Programming . . . 5

2.2 Installation 7

2.3 REPL 8

Variables 9

Functions 10

Conditionals 12

Lists 12

Tuples 14

Maps 15

Classes and Objects 15

2.4 Interpreter 16

2.5 Compiler 17

2.6 SBT 18

This book uses Scala as an implementation language, and this chapter

thus introduces the Scala programming language. Scala stands for a

scalable language [OSV16]. It is a multi-paradigm language that allows

both functional and object-oriented styles. This book focuses on the

functional nature of Scala. In this chapter, we will see what functional

programming is and why this book uses functional programming. In

addition, we will install Scala and write simple programs in Scala.

2.1 Functional Programming

What is functional programming? According to Wikipedia,

It is a declarative programming paradigm in which function

definitions are trees of expressions that map values to other

values, rather than a sequence of imperative statementswhich

update the running state of the program.

According to the book Functional Programming in Scala [CB14],

Functional programming (FP) is based on a simple premise

with far-reaching implications: we construct our programs

using only pure functions—in other words, functions that

have no side effects.

The above two sentences are enough to describe functional program-

ming.

First, consider the phrase “trees of expressions that map values to other

values.” From the perspective of functional programming, a program is

a single mathematical expression and the execution of the program is

finding a value denoted by the expression. Each expression consists of

zero or more subexpressions and evaluates to a value.

Let us discuss how functional programming is different from imperative

programming with code examples.

int x = 1;

int y = 2;

if (y < 3)

x = x + 4;

else

x = x - 5;

The above code is written in C, which represents imperative languages.

Imperative programming mimics a way in which computers operate.

During the execution of a program, a state, which can be interpreted as

the memory of a computer, exists and the execution modifies the state.

The execution of the above C program has the following steps:

2 Introduction to Scala 6

1. A state that both x and y are uninitialized

2. A state that x is 1 and y is uninitialized

3. A state that x is 1 and y is 2

4. Since y < 3 is true under the state of the third step, go to the next

line.

5. A state that x is 5 and y is 2

The state keeps changes throughout the execution of the program. Each

line modifies the current state rather than resulting in some value.

let x = 1 in

let y = 2 in

if y < 3 then x + 4 else x - 5

The above code is written in OCaml, which represents functional lan-

guages. A program is an expression and the result of the execution is the

result of evaluating the expression. The execution does not require the

notion of a state. The execution of the above OCaml program has the

following steps:

1. Given the fact that x equals 1, evaluate let y = 2 in if y < 3

then x + 4 else x - 5.

2. Given the fact that x equals 1 and y equals 2, evaluate if y < 3

then x + 4 else x - 5.

3. Given the fact that x equals 1 and y equals 2, evaluating y < 3

yields true, and the next step is to evaluate x + 4.

4. Given the fact that x equals 1 and y equals 2, evaluate x + 4.

5. The result is 5.

There is no state. Each expression consists of subexpressions. The result

of an expression is determined by the results of its subexpressions.

Since the programs are simple, two programs look similar, but it is

important to understand two different perspectives of what a program

is.

Now, look at the phrase “using only pure functions.” Functional program-

ming avoids mutable variables, mutable data structures, and mutable

objects. The term mutable means being able to change. Its opposite is

immutable, which means not being able to change. States change through-

out the execution of programs. In functional programming, states do

not exist since things never change. Due to the lack of states, a function

always does the same stuff and always returns the same value for the

same arguments. Such functions are called pure functions.

In practice, especially for large-scale projects, using only immutable

things in the whole code is often inefficient. Most real-world functional

languages providemutation via language constructs like var of Scala, ref

ofOCaml, andset! andboxofRacket.However, functional programming

uses immutable things in most cases. Even without mutation, we can

still express most programs without difficulties.

As we have seen so far, immutability is the most important concept of

functional programming. Immutability allows modular programming

and eases the reasoning of programs. Because of immutability, programs

2 Introduction to Scala 7

1: https://akka.io/

2: https://spark.apache.org/

3: https://www.playframework.com/

4: https://fbinfer.com/

5: https://flow.org/

6: https://www.janestreet.com/

7: http://ocaml.org/learn/

companies.html

8: http://wiki.haskell.org/Haskell_

in_industry

9: https://codesync.global/media/

successful-companies-using-elixir-and-erlang/

10: https://docs.scala-lang.org/

overviews/jdk-compatibility/

overview.html

that have to be trustworthy or require parallel computing are good appli-

cations of functional programming. Chapter 3will discuss the advantages

of immutability in detail and how to write interesting programs without

mutation.

There are other important characteristics of functional programming as

well as immutability.Use of first-class functions andpatternmatching also

take the key roles in functional programming. Both first-class functions

and pattern matching are valuable as they help abstraction. First-class

functions allow programmers to abstract computation; pattern matching

allows programmers to abstract data. Because of the ability of abstraction,

programs whose input has complex and abstract structures like source

code are typically written in functional languages. Chapter 4 and Chapter

5 will respectively discuss first-class functions and pattern matching in

Scala.

This book implements interpreters and type checkers. They take source

code as input and process the input according to the mathematical

semantics of programming languages. It is important to reason about the

correctness of interpreters and type checkers. These properties exactly

match the strengths of functional programming. It is why this book uses

functional programming and Scala.

Before moving on to the next section, let us see how people use functional

programming in industry.

Akka
1
is a concurrent, distributed computing library written in Scala.

Many companies have been using Akka. Apache Spark,
2
a well-known

library for data processing, also is written in Scala. Play
3
is a widely-used

web framework based on Akka.

Facebook has developed Infer,
4
a static analyzer for Java, C, C++, and

Objective-C, inOCaml. Facebook and other companies includingAmazon

and Mozila use Infer to find bugs statically in their programs. Facebook

has developed also Flow,
5

a static type checker for JavaScript. Jane

Street
6
is a financial company well-known in the programming language

community and has developed its own software in OCaml. According to

the OCaml website,
7
various companies including Docker use OCaml.

Haskell Wiki
8
describes that Google, Facebook, Microsoft, Nvidia, and

many other companies use Haskell.

Erlang is a functional language for concurrent and parallel computing.

Elixir operates on the Erlang virtual machine and is used for the same

purpose as Erlang. An article from Code Sync
9
said that various compa-

nies including WhatsApp, Pinterest, and Goldman Sachs use Erlang and

Elixir.

2.2 Installation

As Scala programs are compiled to Java bytecode, which runs on the Java

Virtual Machine (JVM), you must install Java before installing Scala. Java

has various versions. Scala 2.13, which is used in this book, needs JDK

8 or higher. JDK 8 is the most recommended one. The Scala website
10

discusses compatibility issues regarding the other versions.

https://akka.io/
https://spark.apache.org/
https://www.playframework.com/
https://fbinfer.com/
https://flow.org/
https://www.janestreet.com/
http://ocaml.org/learn/companies.html
http://ocaml.org/learn/companies.html
http://wiki.haskell.org/Haskell_in_industry
http://wiki.haskell.org/Haskell_in_industry
https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://docs.scala-lang.org/overviews/jdk-compatibility/overview.html
https://docs.scala-lang.org/overviews/jdk-compatibility/overview.html
https://docs.scala-lang.org/overviews/jdk-compatibility/overview.html

2 Introduction to Scala 8

11: https://www.oracle.com/

java/technologies/javase/

javase-jdk8-downloads.html

12: https://www.scala-lang.org/

download/

13: https://www.scala-sbt.org/

download.html

The Oracle website
11

provides an installation file for JDK 8.

You can download an installation file for Scala 2.13 from the Scala web-

site.
12

Note that you need a file in the “Other resources” section at

the bottom of the page. On macOS, you may use Homebrew instead.

By installing Scala, you can use the Scala REPL, interpreter, and com-

piler. Section 2.3, Section 2.4, and Section 2.5 will discuss their usages

respectively.

Another thing to install is SBT. SBT is a build tool for Scala. An installation

file for SBT is available at the SBT website.
13

Section 2.6 will discuss the

usage of SBT.

2.3 REPL

Once you install Scala, you can launch Scala REPL by typing scala in

your command line.

$ scala

Welcome to Scala 2.13.5.

Type in expressions for evaluation. Or try :help.

scala>

The term REPL stands for read, eval, print, and loop. It is a program

that iteratively reads code from a user, evaluates the code, and prints the

result. REPL is not a place to write a program but is a good place to write

short code and see how it works.

If you input an integer to REPL, it will evaluate the integer and show the

result.

scala> 0

val res0: Int = 0

It means that the expression 0 evaluates to the value 0 and the type of 0

is Int. You can try some arithmetic expressions as well.

scala> 1 + 2

val res1: Int = 3

A boolean is true or false in Scala.

scala> true

val res2: Boolean = true

You can also use basic logical operators.

scala> true && false

val res3: Boolean = false

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.scala-lang.org/download/
https://www.scala-lang.org/download/
https://www.scala-sbt.org/download.html
https://www.scala-sbt.org/download.html

2 Introduction to Scala 9

14: https://docs.oracle.com/javase/

8/docs/api/java/lang/String.html

String literals require double quotation marks.

scala> "hello"

val res4: String = hello

Operations regarding strings can be done by calling methods.

scala> "hello".length

val res5: Int = 5

scala> "hello".substring(0, 4)

val res6: String = hell

Strings in Scala provide the same methods as those in Java.
14

The println function prints a given message into the console.

scala> println("Hello world!")

Hello world!

Note that there is no result of println("Hello world!"). Actually,

println("Hello world!") evaluates to (), which is called unit. Unit

implies that the result does not have any meaningful information. It is

similar to None in Python and undefined in JavaScript. At the same time,

functions returning unit are similar to functions whose return types are

void in C or Java. Since unit does not have meaningful information, REPL

does not show the result when it is unit.

The remainder of this section introduces basic features of Scala, such as

variables and functions, with REPL.

Variables

The syntax of a variable definition is as follows:

val [name]: [type] = [expression]

It defines a variable whose name is [name]. The result of the expression

becomes the value denoted by the variable andmust belong to the type.

scala> val x: Int = 1

val x: Int = 1

If the type of the result does not match a given type, the variable will not

be defined due to a type mismatch.

scala> val y: Boolean = 2

^

error: type mismatch;

found : Int(2)

required: Boolean

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

2 Introduction to Scala 10

You can omit the : [type] part and use the following syntax instead:

val [name] = [expression]

In this case, a type mismatch never happens, and the type of the variable

becomes the same as the type of its value. People usually omit the type

annotations of local variables.

scala> val x = 3

val x: Int = 3

Variables defined by val cannot bemutated, i.e. their values never change.

Reassignment will incur an error. We call such variables immutable

variables.

scala> x = 4

^

error: reassignment to val

Sometimes, mutable variables, i.e. variables whose values can change, are

useful. Scala provides mutable variables as well as immutable variables.

You need to use var instead of val to define mutable variables. You may

or may not write the type of a variable.

scala> var z = 5

var z: Int = 5

scala> z = 6

// mutated z

scala> z

val res8: Int = 6

To assign a new value to a mutable variable, the value must conform to

the type of the variable. Otherwise, a type mismatch will happen.

scala> z = true

^

error: type mismatch;

found : Boolean(true)

required: Int

Functions

The syntax of a function definition is as follows:

def [name]([name]: [type], ...): [type] = [expression]

2 Introduction to Scala 11

15: Vertical bars (|) at the beginning of

lines are not part of code. They have been

automatically inserted by REPL.

Many programming languages require return to specify the return value

of a function. On the other hand, functions in Scala are like functions in

mathematics: return is unnecessary. The return value of a function is the

result of the body expression, which is the expression at the right side of

= in the definition. The type annotation after each parameter specifies

the type of the parameter. The type after the parentheses is the return

type, which must be the same as the type of the return value.

scala> def add(x: Int, y: Int): Int = x + y

def add(x: Int, y: Int): Int

scala> add(3, 7)

val res9: Int = 10

The return types of functions can be omitted.

scala> def add(x: Int, y: Int) = x + y

def add(x: Int, y: Int): Int

However, parameter types cannot be omitted.

scala> def add(x, y) = x + y

^

error: ':' expected but ',' found.

Towritemultiple expressions including variable and functions definitions

in the body of a function, we put expressions separated by line breaks

inside curly braces. Each line will be evaluated in the order, and the result

of the last line will be the return value.

scala> def quadruple(x: Int): Int = {

| val y = x + x

| y + y

| }

def quadruple(x: Int): Int

Inside quadruple, the variable y is defined and used for the computation

of the return value.
15

Multiple expressions inside curly braces are collectively treated as a single

expression. We call such an expression a sequenced expression. Like

any other expressions, a sequenced expression can occur anywhere an

expression is needed. For example, it can be used to define a variable.

scala> val a = {

| val x = 1 + 1

| x + x

| }

val a: Int = 4

There are many other things related to functions: recursion, first-class

functions, closures, and anonymous functions. Chapter 3 will discuss

recursion, and Chapter 4 will discuss the other topics.

2 Introduction to Scala 12

Conditionals

A conditional expression performs computation depending on a certain

condition, i.e. a boolean value. The syntax of a conditional expression is

as follows:

if ([expression]) [expression] else [expression]

The first expression is the condition; the second expression is the true

branch; the last expression is the false branch.

scala> if (true) 1 else 2

val res10: Int = 1

A conditional expression evaluates to a value. It is more similar to the

ternary operator ? : in C than a if statement. We do not need to make a

variable mutable to initialize the variable with a conditional value.

scala> val x = if (true) 1 else 2

val x: Int = 1

On the other hand, people write code like below in languages like C.

int x;

if (true)

x = 1;

else

x = 2;

Conditional expressions in Scala are more expressive than the ternary

operator in C because we can make complex computation a single

expression with expression sequencing, which is impossible in C.

scala> if (true) {

| val x = 2

| x + x

| } else {

| val x = 3

| x * x

| }

val res11: Int = 4

Lists

A list is a collection of zero or more elements. A list maintains the order

between its elements. Lists in Scala are immutable. Once a list is created,

its elements never change. There are two ways to create a new list in

Scala:

I List([expression], ..., [expression])

I [expression] :: ... :: [expression] :: Nil

2 Introduction to Scala 13

16: It does not mutate the existing list to

prepend the new element. It creates a new

list with the element and the list.

17: The first index is 0.

18: The order between the cases can vary,

which means that the :: case may come

first.

19: the first element

20: a list consisting of all the elements

except the head

The type of a list whose elements have type T is List[T].

scala> List(1, 2, 3)

val res12: List[Int] = List(1, 2, 3)

scala> 1 :: 2 :: 3 :: Nil

val res13: List[Int] = List(1, 2, 3)

List(...) is more convenient than :: for creating a new list from scratch.

However, :: is more flexible since it can prepend a new element in front

of an existing list.
16

scala> val l = List(1, 2, 3)

val l: List[Int] = List(1, 2, 3)

scala> 0 :: l

val res14: List[Int] = List(0, 1, 2, 3)

The lengthmethod computes the length of a list; parentheses are used

to fetch the element at a specific index.
17

scala> l.length

val res15: Int = 3

scala> l(0)

val res16: Int = 1

In functional programming, accessing an arbitrary element of a list by

an index is rare. We use pattern matching in most cases. The syntax of

pattern matching for a list is as follows:
18

[expression] match {

case Nil => [expression]

case [name] :: [name] => [expression]

}

The expression in front of match is the target of pattern matching. If it is

an empty list, it matches case Nil. The expression of the Nil case will

be evaluated. Otherwise, it is a nonempty list and matches case [name]

:: [name]. The first name denotes the head
19

of the list, and the second

name denotes the tail
20

of the list. The expression of the :: case will be

evaluated.

The following function takes a list of integers as an argument and returns

the head. The return value is zero when the list is empty.

scala> def headOrZero(l: List[Int]): Int = l match {

| case Nil => 0

| case h :: t => h

| }

def headOrZero(l: List[Int]): Int

2 Introduction to Scala 14

21: The first index is 1.

scala> headOrZero(List(1, 2, 3))

val res17: Int = 1

scala> headOrZero(List())

val res18: Int = 0

Chapter 3will showuse of patternmatching for lists in recursive functions,

and Chapter 5 will discuss pattern matching in detail.

Tuples

A tuple contains two or more elements and maintains the order between

its elements. We use parentheses to create a new tuple:

([expression], ..., [expression])

The type of a tuple whose elements have types from T1 to Tn respectively

is (T1, ..., Tn). For example, the type of a tuple whose first element

is Int and second element is Boolean is (Int, Boolean).

scala> (1, true)

val res19: (Int, Boolean) = (1,true)

To fetch the i-th element of a tuple, we can use ._i.21

scala> (1, true)._1

val res20: Int = 1

Tuples look similar to lists but have important differences from lists. First,

a tuple’s elements can have different types, while a list’s elements cannot.

For example, a tuple of the type (Int, Boolean) has one integer and one

boolean, while a list of the type List[Int] can have only integers. We

say that tuples are heterogeneous, while lists are homogeneous. Second,

a list allows accessing an arbitrary index of a list, while a tuple does not.

For example, l(f()) is possible where l is a list and f returns an integer,

while there is no way to access the f()-th element of a tuple since the

return value of f is unknown before execution.

We use lists and tuples for different purposes. Lists are appropriate

when the number of elements can vary and an arbitrary index should be

accessible. For instance, a list should be used to represent a collection of

the heights of students in a certain class.

List(189, 167, 156, 170, 183)

It allows us to fetch the height of the i-th student.

On the other hand, tuples are appropriate when the number of elements

are fixed and each index has a specific meaning. For instance, a tuple

can represent the information of a single student, where the information

consists of one’s name, one’s height, and whether one has payed the

school expense or not.

2 Introduction to Scala 15

22: https://www.scala-lang.org/

api/current/scala/collection/

immutable/Map.html

("John Doe", 173, true)

We can use ._1 to find the name, ._2 to find the height, and ._3 to check

whether one has payed.

We call a length-2 tuple a pair and a length-3 tuple a triple. Also, we can

consider unit as a length-0 tuple.

Maps

A map is a collection of pairs, where each pair consists of a key and a

value. It provides the corresponding value when a key is given. Maps in

Scala are immutable as well. Below is the syntax to create a new map:

Map([expression] -> [expression], ...)

The type of a map whose keys have type T and values have type S is

Map[T, S].

scala> val m = Map(1 -> "one", 2 -> "two", 3 -> "three")

val m: Map[Int,String] = Map(1 -> one, 2 -> two, 3 -> three)

To find the value corresponding to a certain key, we use parentheses.

scala> m(2)

val res21: String = two

Maps provide various methods.
22

Classes and Objects

An object is a value with fields and methods. Fields store values, and

methods are operations related to the object. A class is a blueprint of

objects. We can easily create multiple objects of the same structure by

defining a single class. This book uses only “case” classes of Scala. Case

classes are similar to classes but more convenient, e.g. automatic support

for pretty printing and pattern matching.

The syntax of a class definition is as follows:

case class [name]([name]: [type], ...)

The first name is the name of a new class. The names inside the paren-

theses are the names of the fields of the class. A class definition must

specify the types of its fields.

scala> case class Student(name: String, height: Int)

class Student

Creating new objects is similar to a function call.

https://www.scala-lang.org/api/current/scala/collection/immutable/Map.html
https://www.scala-lang.org/api/current/scala/collection/immutable/Map.html
https://www.scala-lang.org/api/current/scala/collection/immutable/Map.html

2 Introduction to Scala 16

scala> val s = Student("John Doe", 173)

val s: Student = Student(John Doe,173)

Fields can be accessed by .[name].

scala> s.name

val res22: String = John Doe

Objects in Scala are immutable by default. If we add var to a field when

defining a class, the field becomes mutable.

scala> case class Student(name: String, var height: Int)

class Student

scala> val s = Student("John Doe", 173)

val s: Student = Student(John Doe,173)

scala> s.height = 180

// mutated s.height

scala> s.height

val res23: Int = 180

2.4 Interpreter

An interpreter is a program that takes source code as input and runs the

code. The Scala interpreter takes Scala source code as input. To use the

interpreter, we need to save source code into a file. Make a file with the

following code, and save it as Hello.scala.

println("Hello world!")

You can execute the interpreter by typing scalawith the name of a file

in your command line. Here, we need to say scala Hello.scala.

$ scala Hello.scala

Hello world!

You canwrite multiple lines in a single file. Fix Hello.scala like below.

val x = 2

println(x)

val y = x * x

println(y)

Then, execute the interpreter again.

$ scala Hello.scala

2

4

2 Introduction to Scala 17

2.5 Compiler

A compiler is a program that takes source code as input and translates

it into another language. Usually, the target language is a low-level

language like machine code or bytecode of a particular virtual machine.

The Scala compiler takes Scala source code as input and translates it into

Java bytecode. Once code is compiled, we can run the generated bytecode

with the JVM.

For compilation, we need to define the main method of a program. The

main method is the entrypoint of every program running on the JVM.

Make a file with the following code, and save it as Hello.scala.

object Hello {

def main(args: Array[String]): Unit = {

println("Hello world!")

}

}

You can make the compiler compile the code by typing scalac with the

name of the file in your command line.

$ scalac Hello.scala

After compilation, you will be able to find the Hello.class file in the

same directory. The file contains Java bytecode.

You can run the bytecode with the JVM by the scala command. In this

time, you should write only the class name.

$ scala Hello

Hello world!

You can change the behavior of a program bymodifying themainmethod.

Each time youmodify, you need to re-compile the program to re-generate

the bytecode.

Running bytecode is much more efficient than interpreting Scala source

code. You can easily notice that scala Hello takes much less than scala

Hello.scala even though their results are the same.

Scala has two sorts of errors: compile-time errors and run-time errors.

Compile-time errors occur during compilation, i.e. while running scalac.

If the compiler finds things that might go wrong at run time, it raises

errors and aborts the compilation. For example, an expression adding

an integer to a boolean results in a compile-time error because such an

addition cannot succeed at run time.

true + 1

error: type mismatch;

found : Int(1)

required: String

2 Introduction to Scala 18

true + 1

^
Compile-time error

Unfortunately, some bad behaviors cannot be detected by the compiler.

The compiler does not generate any errors for those behaviors. Such

problems will incur run-time errors during execution, i.e. while running

scala, and terminate the execution abnormally. Division by zero is one

example of run time errors.

1 / 0

java.lang.ArithmeticException: / by zero
Run-time error

2.6 SBT

SBT is a build tool for Scala. Build tools help programmers work on large

projects with many files and libraries by tracking dependencies between

files and managing libraries. There are various build tools in the world,

and SBT is the most popular one for Scala.

You can create a new Scala project by the sbt new command.

$ sbt new scala/scala-seed.g8

[info] welcome to sbt 1.4.7

[info] loading global plugins from ~/.sbt/1.0/plugins

[info] set current project to ~/ (in build file:~/)

[info] set current project to ~/ (in build file:~/)

A minimal Scala project.

name [Scala Seed Project]: hello

Template applied in ~/hello

After the creation, the directory structure is as follows:

hello
build.sbt
project

Dependencies.scala
build.properties

src
main

scala
example

Hello.scala
test

scala
example

HelloSpec.scala

The build.sbt file configures the project. It manages the version of Scala

used for the project, third-party libraries used in the project, and many

2 Introduction to Scala 19

23: https://www.scala-sbt.org/

learn.html

other things. Source files are in the src directory. Files in main are main

source files, while files in test are only for testing. You can add files into

the src/main/scala directory and edit them to write code.

An SBT console can be started by the sbt command. The current working

directory of your shell should be the base directory of the project.

$ sbt

[info] welcome to sbt 1.4.7

[info] loading global plugins from ~/.sbt/1.0/plugins

[info] loading project definition from ~/hello/project

[info] loading settings for project root from build.sbt ...

[info] set current project to hello (in build file:~/hello/)

[info] sbt server started at

local:///~/.sbt/1.0/server/d4cd702f998423203dfe/sock

[info] started sbt server

sbt:hello>

You can compile, run, and test the project by executing SBT commands

in the console.

I compile: compile the project.

I run: run the project (re-compile if necessary).

I test: test the project (re-compile if necessary).

I exit: terminate the console.

sbt:hello> compile

[info] compiling 1 Scala source to ~/hello/target/scala-2.13

| => root / Compile / compileIncremental 0s

[success] Total time: 4 s

sbt:hello> test

[info] compiling 1 Scala source to ~/hello/target/scala-2.13

[info] HelloSpec:

[info] The Hello object

[info] - should say hello

[info] Run completed in 455 milliseconds.

[info] Total number of tests run: 1

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 1, failed 0, canceled 0, ignored 0

[info] All tests passed.

[success] Total time: 2 s

sbt:hello> run

[info] running example.Hello

hello

[success] Total time: 0 s

sbt:hello> exit

[info] shutting down sbt server

To learn SBT more, refer to the SBT website.
23

https://www.scala-sbt.org/learn.html
https://www.scala-sbt.org/learn.html

Immutability 3

3.1 Advantages 20

3.2 Recursion 22

3.3 Tail Call Optimization 25

3.4 Exercises 28

Immutability means not changing. Immutable variables never change

their values after initialization; immutable data structures never change

their elements once created. The opposite of immutability is mutability.

While imperative programming uses numerous mutable variables, data

structures, and objects, functional programming leverages the power of

immutable varibles, data structures, and objects. This chapter explains

why immutability is important and valuable. Also, we will see how to

program without mutation.

3.1 Advantages

The book Programming in Scala [OSV16] discusses four strengths of

immutability:

First, immutable objects are often easier to reason about than

mutable ones, because they do not have complex state spaces

that change over time. Second, you can pass immutable

objects around quite freely, whereas you may need to make

defensive copies of mutable objects before passing them to

other code. Third, there is noway for two threads concurrently

accessing an immutable to corrupt its state once it has been

properly constructed, because no thread can change the state

of an immutable. Fourth, immutable objects make safe hash

table keys. If a mutable object is mutated after it is placed

into a HashSet, for example, that object may not be found the

next time you look into the HashSet.

We will focus on the first two advantages: easier reasoning and no need

for defensive copies.

First, let us see why immutability makes things easy to reason about.

val x = 1

...

f(x)

At the first line of the code, x is 1. Since x is immutable, there is no doubt

that x is still 1 when x is passed as an argument for f at the last line of

the code.

var x = 1

...

f(x)

On the other hand, if x is a mutable variable, one should read every line

of code in the middle to find the value of x at the time when the function

call happens.

3 Immutability 21

When x is mutable, without tracking every modification of x throughout

the code, the value of x at the last line is unknown. It hampers program-

mers from understanding the code and possibly leads to more bugs.

The program with immutable x does not suffer from such problems.

Remembering only one line of the code is enough to track the value of

x.

Mutable data structures cause similar problems.

val x = List(1, 2)

...

f(x)

...

x

As List is immutable, x is a list always containing 1 and 2.

import scala.collection.mutable.ListBuffer

val x = ListBuffer(1, 2)

...

f(x)

...

x

On the other hand, ListBuffer is a mutable data structure in the Scala

standard library. It is possible to add an item to or remove an item

from the list referred by x. Programmers cannot be certain about the

content of x unless they read all the lines in between. Besides, a function

f also is able to change the content of x. If one writes a program with a

wrong assumption that f does not modify x, then the program might be

buggy.

Mutable global variables make code much harder to understand than

mutable local variables.

def f(x: Int) = g(x, y)

The return value of function f depends on the value of a global variable

y. If y is mutable, f is not a pure function and expecting the behavior of

f is nontrivial. y can be declared in any arbitrary file and all files are able

to change the value of y. In the worst case, an external library defines y

and source code modifying y is not available for reading.

The examples are small and seem artificial, but immutability greatly

improves maintainability and readability of code in practice, especially

for large projects.

Now, let us see why immutability free us frommaking defensive copies.

val x = ListBuffer(1, 2)

...

f(x)

...

x

3 Immutability 22

1: In general, a definition that refers to

itself is a recursive definition. There can

be recursive variables, recursive types, and

so on.

Since ListBuffer creates mutable lists, there is no guarantee that the

content of x is not changed by f. If it is necessary to prevent modification,

copying x is essential.

val x = ListBuffer(1, 2)

val y = x.clone

...

f(y)

...

x

In cases that x has many elements and the code is executed multiple

times, copying x increases the execution time significantly.

In the code, using the clonemethod is enough to copy the list because

the list contains only integers. However, to pass lists containing mutable

objects safely to functions, defining additional methods for deep copy is

inevitable.

Immutability has several clear advantages. Immutability is an important

concept in functional programming. Functional programs use immutable

variables and data structures in most cases. If you write a large program

whose logic is complex and correctness is important, you should adopt

the functional paradigm. However, mind that immutability is not the

silver bullet for every program. For example, implementing algorithms

in a functional style is usually inefficient. It would be better to use

mutable data structures like arrays, mutable variables, and loops to

implement algorithms. They make programs much more efficient and

faster. Choosing a programming proper paradigm for the purpose of a

program is the key to write good code.

3.2 Recursion

Repeating the same computation multiple times is a common pattern in

programming. Loops allow concise code expressing such cases. However,

if everything is immutable, going back to the beginnings of loops does not

change any states. Therefore, it is impossible to apply the same operation

on different values for each iteration or to terminate the loops. As a

consequence, loops are useless in functional programming. Functional

programs use recursive functions instead of loops to rerun computation.

A recursive function is a function that calls itself.
1
Todomore computation,

the function calls itself with proper arguments. Otherwise, it terminates

the computation by returning some value.

The below factorial function calculates the factorial of a given integer.

For simplicity, we do not consider when the input is negative. The

following implementation uses an imperative style:

def factorial(n: Int) = {

var i = 1, res = 1

while (i <= n) {

res *= i

i += 1

3 Immutability 23

}

res

}

We can implement the same function in a functional style with recur-

sion.

def factorial(n: Int): Int =

if (n <= 0)

1

else

n * factorial(n - 1)

Note that recursive functions always require explicit return types in Scala,

unlike non-recursive functions, whose return types can be omitted.

The recursive version is preferred over the imperative version since its

correctness is easily verified.

To check the correctness of the imperative factorial function, one should

find a loop invariant, which is a proposition that is always true at the loop

head. The loop invariant of this case is ((i − 1)! = res) ∧ (i ≤ n + 1).
By using this invariant, we can conclude that i = n + 1 and, therefore,

res = (i − 1)! = n! at the last line of the function, which implies that

it correctly implements factorial. It is nontrivial to find a proper loop

invariant and show that the loop invariant holds at the beginning of each

iteration.

On the other hand, recursive functions usually reveal their mathemat-

ical definitions more clearly than functions using loops. Consider the

following mathematical definition of factorial:

=! =

{
1 if = = 0

= × (= − 1)! otherwise

You can see that the implementation of the factorial function using

recursion is identical to the mathematical definition of factorial. It is

almost trivial to show that the recursive factorial function is correct.

Recursion allows concise and intuitive descriptions of mathematical

functions. In many cases, functions with recursion is much easier to be

verified formally or informally than functions with loops.

Recursive functions are also good at treating recursive data structures like

lists. A list is recursive since a nonempty list consists of a head element

and a tail list, which means that a nonempty list has another list as its

component. Writing some functions regarding lists helps understanding

and practicing recursion.

The following function takes a list as an argument and returns a list

whose elements are one larger than the elements of the given list.

def inc1(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h + 1 :: inc1(t)

}

3 Immutability 24

When a given list is empty, the function returns the empty list. Otherwise,

the return value is a list whose head is one larger than the head of the

given list and tail has elements that are one larger than the elements of

the tail of the given list.

Similarly, square takes a list of integers as an argument and returns a list

whose elements are the squares of the elements of the given list.

def square(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h * h :: square(t)

}

The following function takes a list of integers as an argument and returns

a list whose elements are odd integers.

def odd(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (h % 2 != 0)

h :: odd(t)

else

odd(t)

}

For a nonempty list, the function checks whether the head is odd or not.

If the head is odd, the resulting list contains the head, and its tail has

only odd integers. Otherwise, the head is removed.

Similarly, positive takes a list of integers as an argument and returns a

list whose elements are positive.

def positive(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (h > 0)

h :: positive(t)

else

positive(t)

}

The following function calculates the sum of the elements of a given

list.

def sum(l: List[Int]): Int = l match {

case Nil => 0

case h :: t => h + sum(t)

}

The sum of elements in the empty list is zero as there are no elements.

When a list is nonempty, the sum of its elements can be calculated by

adding the value of the head to the sum of its tail’s elements.

Similarly, product calculates the product of the elements of a given list.

3 Immutability 25

def product(l: List[Int]): Int = l match {

case Nil => 1

case h :: t => h * product(t)

}

Recursion has some disadvantages: overheads of function calls and

stack overflow. Most modern CPUs have enough computing power to

ignore function call overheads. However, loops are still more ideal than

recursive functions in performance-critical programs. Stack overflow

happens when a stack lacks space due to repetitive function calls. It is

a critical problem since it causes immediate termination of execution

without yielding meaningful output. Moreover, programs like web

servers do not finish their execution, and their stacks will eventually

overflow. To prevent stack overflow, many functional languages provide

tail call optimization. The following section explains tail call optimization

in detail.

3.3 Tail Call Optimization

If the last action of a function is a function call, then the call is a tail call.

When a tail call happens, the callee does every computation, and thus

the local variables of the caller have no need to remain after the call. The

stack frame of the caller can be destroyed. Most functional languages

exploit this fact to optimize tail calls. This optimization is called tail call
optimization. At compile time, compilers check whether calls are tail calls.

If a call is a tail call, the compilers generate code that eliminates the stack

frame of the caller before the call. They do not optimize non-tail function

calls because the local variables of the callers can be used after the callees

return. If every function call in a program is a tail call, the stack never

grows so that the program is safe from stack overflow.

def factorial(n: Int): Int =

if (n <= 0)

1

else

n * factorial(n - 1)

The previous factorial function multiplies n and the return value of the

recursive factorial(n - 1) call. The multiplication is the last action.

The recursive call is not a tail call. The stack frame of the caller must

remain. The following process computes factorial(3):

I factorial(3)

I 3 * factorial(2)

I 3 * (2 * factorial(1))

I 3 * (2 * (1 * factorial(0)))

I 3 * (2 * (1 * 1))

I 3 * (2 * 1)

I 3 * 2

I 6

At most four stack frames coexist. For a large argument, a stack grows

again and again and finally overflows.

3 Immutability 26

factorial(10000)

java.lang.StackOverflowError

at .factorial
Run-time error

To implement the function with a tail call, instead of multiplying n

and factorial(n - 1), the function has to pass both n and n - 1 as

arguments and make the callee multiply n and (n - 1)!. This strategy
can be interpreted as passing an intermediate result.

I factorial(3)

I factorial(2, intermediate result = 3)

I factorial(1, intermediate result = 3 * 2)

I factorial(1, intermediate result = 6)

I factorial(0, intermediate result = 6 * 1)

I factorial(0, intermediate result = 6)

I 6

There is no need to return to the caller. The below code shows the

factorial function with a tail call. The function needs one more param-

eter that takes an intermediate result as an argument. factorial(n, i)

computes n! × i.

def factorial(n: Int, inter: Int): Int =

if (n <= 0)

inter

else

factorial(n - 1, inter * n)

The function uses a tail call. More precisely, the function is tail-recursive.

Its last action is calling itself. Unlike most functional languages, Scala

cannot optimize general tail calls. Scala optimizes only tail-recursive

calls. The Scala compiler generates Java bytecode, which is executed by

the JVM. The JVM does not allow bytecode to jump to the beginning

of another function. In the JVM, functions can only either return or

call functions. Therefore, the Scala compiler cannot generate optimized

code by removing the stack frame of a caller. Instead, they transform

tail-recursive calls into loops. The factorial function is compiled to the

following bytecode:

public int factorial(int, int);

Code:

0: iload_1

1: iconst_0

2: if_icmpgt 9

5: iload_2

6: goto 20

9: iload_1

10: iconst_1

11: isub

12: iload_2

13: iload_1

14: imul

15: istore_2

3 Immutability 27

2: invokevirtual is a function call in-

struction.

16: istore_1

17: goto 0

20: ireturn

We can check that there is no function call at all.
2
The function just jumps

to instructions inside the function. Due to the tail call optimization, the

function never incurs stack overflow.

Even with tail recursion, the result is still incorrect because of integer

overflow.

assert(factorial(10000, 1) == 0) // weird result

The BigInt type resolves integer overflow.

def factorial(n: BigInt, inter: BigInt): BigInt =

if (n <= 0)

inter

else

factorial(n - 1, inter * n)

assert(factorial(10000, 1) > 0)

The optimization of the Scala compiler not only prevents stack overflow

but also removes the overheads of function calls. The downside is that

mutually recursive functions using tail calls lie beyond the scope of

the optimization. Mutual recursion is recursion involving two or more

definitions. The following functions can cause stack overflow in Scala

even though they use tail calls because they are not tail-recursive:

def even(n: Int): Boolean = if (n <= 0) true else odd(n - 1)

def odd(n: Int): Boolean = if (n == 1) true else even(n - 1)

In Scala, programmers can ask the compiler to check whether functions

are tail-recursivewith annotations. The annotationsprevent programmers

from making functions non-tail-recursive by mistakes.

import scala.annotation.tailrec

@tailrec def factorial(n: BigInt, inter: BigInt): BigInt =

if (n <= 0)

inter

else

factorial(n - 1, inter * n)

A non-tail-recursive function with the tailrec annotation results in a

compile-time error.

@tailrec def factorial(n: Int): Int =

if (n <= 0)

1

else

n * factorial(n - 1)

3 Immutability 28

^

error:

could not optimize @tailrec annotated method factorial:

it contains a recursive call not in tail position
Compile-time error

The annotation does not affect the behavior of the resulting bytecode.

Regardless of the existence of the annotation, the compiler always opti-

mizes tail-recursive functions. Still, using the annotations is desirable to

prevent mistakes.

Calling the tail-recursive version of factorial needs the unnecessary

second argument. The below code defines a new factorial function

with one parameter and uses the tail-recursive one as a local function

inside the function.

def factorial(n: BigInt): BigInt = {

@tailrec def aux(n: BigInt, inter: BigInt): BigInt =

if (n <= 0)

inter

else

aux(n - 1, inter * n)

aux(n, 1)

}

Some functions treating lists also can be rewritten in a tail-recursive way.

Below is a tail-recursive version of sum.

def sum(l: List[Int]): Int = {

@tailrec def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, inter + h)

}

aux(l, 0)

}

aux(l, n) calculates n plus the sum of l’s elements.

Similarly, product can be implemented in a tail-recursive way.

def product(l: List[Int]): Int = {

@tailrec def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, inter * h)

}

aux(l, 1)

}

3.4 Exercises

Exercise 3.1 Consider the following definition of Student:

case class Student(name: String, height: Int)

3 Immutability 29

Implement a function names:

def names(l: List[Student]): List[String] = ???

that takes a list of students as an argument and returns a list containing

the names of the students.

Exercise 3.2 Consider the same definition of Student. Implement a

function tall:

def tall(l: List[Student]): List[Student] = ???

that takes a list of students as an argument and returns a list of students

whose heights are greater than 170.

Exercise 3.3 Implement a function length:

def length(l: List[Int]): Int = ???

that takes a list of integers as an argument and returns the length of the

list.

Note that there is a built-in method l.length, but try to implement by

yourself with recursion.

Exercise 3.4 Implement a function append:

def append(l: List[Int], n: Int): List[Int] = ???

that takes a list of integers and an integer as arguments and returns a list

obtained by appending the integer at the end of the list. Then, compare

the time complexity of appending a new element to that of prepending a

new element by ::, which is $(1).

Note that there is a built-in method l.appended(n), but try to implement

by yourself with recursion.

Functions 4

4.1 First-Class Functions 30

4.2 Anonymous Functions 32

4.3 Closures 34

4.4 First-Class Functions and Lists35

4.5 For Loops 41

4.6 Exercises 42

This section focuses on use of functions in functional programming. In

functional programming, functions are first-class. First-class functions

allow programmers to abstract complex computation easily. This section

explains what first-class functions are. In addition, anonymous functions

and closures, which are related to first-class functions, will be introduced.

To show the power of first-class functions, we will re-implement the

functions in Chapter 3 (inc1, square, etc.) with first-class functions.

4.1 First-Class Functions

An entity in a programming language is first-class if it satisfies the

following conditions:

I It can be an argument of a function call.

I It can be a return value of a function.

I A variable can refer to it.

Anything that is first-class can be used as a value. Functions are highly

important and treated as values in functional languages. Functions that

are first-class are called first-class functions.

Some people use the term higher-order functions. Higher-order functions
are functions that are not first-order, where first-order functions neither

take functions as arguments nor return functions. Therefore, higher-order

functions can take functions as arguments and return functions. Strictly

speaking, they are different from first-class functions because first-class

functions are functions that can be passed as arguments or returned

from functions. However, any languages that support first-class functions

support higher-order functions and vice versa. The reason is obvious:

to pass first-class functions as arguments, there should be higher-order

functions, and to pass functions to higher-order functions, there should

be first-class functions. Consequently, in most contexts, people do not

distinguish first-class functions and higher-order functions, and you can

consider first-class functions and higher-order functions as exchangeable

terms.

Now, let us see how we can use first-class functions in Scala with some

code examples.

def f(x: Int): Int = x

def g(h: Int => Int): Int = h(0)

assert(g(f) == 0)

The function g has one parameter h. The type of h is Int => Int. An

argument passed to g is a function that receives one integer and returns

an integer. In Scala, => expresses the types of functions. Functionswithout

4 Functions 31

parameters have types of the form () => [return type]. [parameter

type] => [return type] is the type of a function with a single param-

eter. Parentheses are required to express the types of functions with two

or more parameters: ([parameter type], ...) => [return type].

The function f has one integer parameter and returns an integer, i.e. its

type is Int => Int. Thus, it can be an argument for g. Evaluating g(f)

equals evaluating f(0), which results in 0.

def f(y: Int): Int => Int = {

def g(x: Int): Int = x

g

}

assert(f(0)(0) == 0)

The function f returns the function g. Since the return type of f is Int

=> Int, its return value must be a function that takes an integer as an

argument and returns an integer. g satisfies the condition. f(0) is the

same as g and therefore is a function. f(0)(0) equals g(0), which returns

0.

val h0 = f(0)

assert(h0(0) == 0)

A variable can refer to f(0). h0 refers to the return value of f(0) and

has type Int => Int. Calling variables referring to function values is

possible. h0(0) is a valid expression and results in 0.

val h1 = f

^

error: missing argument list for method f

Unapplied methods are only converted to functions

when a function type is expected.

You can make this conversion explicit

by writing `f _` or `f(_)` instead of `f`.
Compile-time error

On the other hand, defining a variable referring to f results in a compile

error. In Scala, a function defined by def is not a value per se. Since f is

the name of a function but not a variable referring to a value, h1 cannot

refer to the value of f. As the above error message implies, underscores

convert function names into function values.

val h1 = f _

assert(h1(0)(0) == 0)

Compiling the above code succeeds. The type of h1 is Int => (Int

=> Int). Int => Int => Int denotes the same type because => is a

right-associative type operator. h1(0)(0) is valid and yields 0.

4 Functions 32

Actually, above expressions except val h1 = f use function names as

values successfully. The Scala compiler transforms function names into

function values when they occur where function types are expected.

Therefore, enforcing the type of h1 to be a function type corrects the code

without the underscore. The following code works well:

val h1: Int => Int => Int = f

When programmers use function names as values, they usually place the

names where function types are expected. In these cases, underscores

and explicit type annotations are unnecessary. Code rarely becomes

problematic and needs underscores or type annotations like the above to

enforce the transformations.

How does the compiler create function values from function names?

If the parameter type of function f is Int, the corresponding function

value is (x: Int) => f(x). The transformation is called eta expansion.
(x: Int) => f(x) is a function value without a name and does the same

thing as f. The following section covers functions without names.

4.2 Anonymous Functions

In functional programming, functions often appear only once as an argu-

ment or a return value. Naming functions used only once is unnecessary.

The meaning of a function value is how it behave. While the parameters

and body of a function decide its behavior, its name does not affect

the behavior. Naturally, functional languages provide syntax to define

functions without giving them names. Such functions are anonymous
functions.

The syntax of an anonymous function in Scala is as follows:

([parameter name]: [parameter type], ...) => [expression]

Like functions declared by def, anonymous functions can be arguments,

return values, or values referred by variables. Directly calling them is

possible as well.

def g(h: Int => Int): Int = h(0)

g((x: Int) => x)

def f(): Int => Int = (x: Int) => x

f()(0)

val h = (x: Int) => x

h(0)

((x: Int) => x)(0)

The code does similar things to the previous code but uses anonymous

functions.

4 Functions 33

Anonymous functions need explicit parameter types as named functions

do. However, annotating every parameter type is verbose and inconve-

nient. The Scala compiler infers the types of parameterswhen anonymous

functions occur where the compiler expects function types.

def g(h: Int => Int): Int = h(0)

g(x => x)

Since g has a parameter of type Int => Int, the compiler expects x =>

x to have the type Int => Int. It infers the type of x as Int.

val h: Int => Int = x => x

h has an explicit type annotation. Int => Int is the expected type of x

=> x. The compiler infers the type of x as Int.

val h = x => x

^

error: missing parameter type
Compile-time error

Unlike previous one, this code is problematic. Since there is no informa-

tion to infer the type of x in x => x, the compiler generates an error.

Most cases using anonymous functions are arguments for function

calls. Those functions do not require explicit parameter types. However,

beginners might not be sure about whether parameter types can be

omitted or not. Specifying parameter types is safe when you are not

sure.

Scala provides one more syntax for anonymous functions: syntax using

underscores. Underscores help programmers to create anonymous func-

tions in a concise and intuitive way. Underscores can be used only when

certain conditions are satisfied. Every parameter must occur exactly once

in the body of a function in the order. Moreover, the function must not

be an identity function like (x: Int) => x. In functions satisfying the

conditions, underscores can replace parameters in the body. Otherwise,

it is impossible to use underscores to create anonymous functions.

def g0(h: Int => Int): Int = h(0)

g0(_ + 1)

def g1(h: (Int, Int) => Int): Int = h(0, 0)

g1(_ + _)

The compiler transforms _ + 1 into x => x + 1. Similarly, _ + _ be-

comes (x, y) => x + y. The compiler automatically creates parameters

as many as underscores and substitutes the underscores with the param-

eters. The mechanism clearly shows why the aforementioned conditions

exist.

val h0 = (_: Int) + 1

val h1 = (_: Int) + (_: Int)

4 Functions 34

1: Actually, there is noneed towriteg(f(_-

)) because it is equal to g(f).

Underscores can have explicit types. Programmers should supply pa-

rameter types to succeed compiling when the compiler cannot infer

them.

The transformation happens for the shortest expression containing under-

scores. Expressing anonymous functions with underscores is sometimes

tricky.

def f(x: Int): Int = x

def g1(h: Int => Int): Int = h(0)

g1(f(_))

As intended, f(_) becomes x => f(x), whose type is Int => Int.1

g1(f(_ + 1))

^

error: missing parameter type for expanded function

((<x$1: error>) => x$1.$plus(1))
Compile-time error

On the other hand, f(_ + 1) becomes f(x => x + 1) but not x => f(x

+ 1). As f takes an integer, not a function, it results in a compile-time

error.

def g2(h: (Int, Int) => Int): Int = h(0, 0)

g2(f(_) + _)

f(_) + _ becomes (x, y) => f(x) + y, whose type is (Int, Int) =>

Int, and the compilation succeeds.

g2(f(_ + 1) + _)

^

error: missing parameter type for expanded function

((<x$2: error>) => f(((<x$1: error>) => x$1.$plus(1)))

.<$plus: error>(x$2))
Compile-time error

f(_ + 1) + _ becomes y => f(x => x + 1) + y but not (x, y) =>

f(x + 1) + y.

Like type inference of parameter types, novices may not be sure about

how anonymous functions with underscores are transformed. It is rec-

ommended to use normal anonymous functions without underscores for

those who are not confident about the mechanism of underscores.

4.3 Closures

Closures are function values that capture environments, which store the

values of existing variables, when they are defined. The bodies of closures

may have variables not defined in themselves, and the environments

store the values of those variables.

4 Functions 35

def makeAdder(x: Int): Int => Int = {

def adder(y: Int): Int = x + y

adder

}

The definition of adder, def adder(y: Int): Int = x + y, does not

define but uses x. However, the code is correct.

val add1 = makeAdder(1)

assert(add1(2) == 3)

val add2 = makeAdder(2)

assert(add2(2) == 4)

add1 and add2 refer to the same adder function, but the former returns

an integer one larger than an argument, and the latter returns an integer

two larger than an argument. The results of add1(2) and add2(2) are

3 and 4, respectively. It is possible because the closures capture the

environments when they are created. add1 refers to a thing like (adder,

x = 1) instead of just adder. Similarly, add2 is actually (adder, x = 2).

Since the environment of add1 stores the fact that x is 1, add1(2) results

in 3. Under the environment of add2, x denotes 2, and thus x + y is 4

when y is 2.

4.4 First-Class Functions and Lists

This section shows how first-class functions allow generalization of the

functions defined in Chapter 3.

def inc1(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h + 1 :: inc1(t)

}

def square(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h * h :: square(t)

}

inc1 increases every element of a given list by one, and square squares

every element. The two functions are remarkably similar. To make the

similarity clearer, let us rename the functions to g.

def g(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h + 1 :: g(t)

}

def g(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t => h * h :: g(t)

}

4 Functions 36

The only difference is the left operand of :: in the third line: h + 1

versus h * h. By adding one parameter, the functions become entirely

identical.

def g(l: List[Int], f: Int => Int): List[Int] = l match {

case Nil => Nil

case h :: t => f(h) :: g(t, f)

}

g(l, h => h + 1)

def g(l: List[Int], f: Int => Int): List[Int] = l match {

case Nil => Nil

case h :: t => f(h) :: g(t, f)

}

g(l, h => h * h)

This function is called map. The returned list has elements obtained by

mapping a given function to the elements of a given list.

def map(l: List[Int], f: Int => Int): List[Int] = l match {

case Nil => Nil

case h :: t => f(h) :: map(t, f)

}

inc1 and square can be redefined with map.

def inc1(l: List[Int]): List[Int] = map(l, h => h + 1)

def square(l: List[Int]): List[Int] = map(l, h => h * h)

An underscore makes inc1 conciser.

def inc1(l: List[Int]): List[Int] = map(l, _ + 1)

Let us compare odd and positive.

def odd(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (h % 2 != 0)

h :: odd(t)

else

odd(t)

}

def positive(l: List[Int]): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (h > 0)

h :: positive(t)

else

positive(t)

}

4 Functions 37

They look similar. They can become identical by renaming and adding

parameters.

def filter(l: List[Int], f: Int => Boolean): List[Int] = l match {

case Nil => Nil

case h :: t =>

if (f(h))

h :: filter(t, f)

else

filter(t, f)

}

The function is called filter because it filters unwanted elements out

from a given list.

odd and positive can be redefined with filter.

def odd(l: List[Int]): List[Int] =

filter(l, h => h % 2 != 0)

def positive(l: List[Int]): List[Int] =

filter(l, h => h > 0)

Underscores make the functions conciser.

def odd(l: List[Int]): List[Int] = filter(l, _ % 2 != 0)

def positive(l: List[Int]): List[Int] = filter(l, _ > 0)

Let us compare sum and productwithout tail recursion.

def sum(l: List[Int]): Int = l match {

case Nil => 0

case h :: t => h + sum(t)

}

def product(l: List[Int]): Int = l match {

case Nil => 1

case h :: t => h * product(t)

}

After renaming the names to g, two differences exist: 0 versus 1 and

h + g(t) versus h * g(t). By adding two parameters, an initial value

and a function taking h and g(t) as arguments, the functions become

identical.

def foldRight(

l: List[Int],

n: Int,

f: (Int, Int) => Int

): Int = l match {

case Nil => n

case h :: t => f(h, foldRight(t, n, f))

}

4 Functions 38

This function is called foldRight since it appends an initial value at the

right side of a list and folds the list from the right side with a given

function.

sum and product can be redefined with foldRight.

def sum(l: List[Int]): Int =

foldRight(l, 0, (h, gt) => h + gt)

def product(l: List[Int]): Int =

foldRight(l, 1, (h, gt) => h * gt)

They may use underscores for conciseness.

def sum(l: List[Int]): Int = foldRight(l, 0, _ + _)

def product(l: List[Int]): Int = foldRight(l, 1, _ * _)

The following equations give an intuitive interpretation of foldRight:

foldRight(List(a, b, .., y, z), n, f)

= f(a, f(b, .. f(y, f(z, n)) ..))

foldRight(List(1, 2, 3), 0, add)

= add(1, add(2, add(3, 0)))

foldRight(List(1, 2, 3), 1, mul)

= mul(1, mul(2, mul(3, 1)))

Let us compare tail-recursive sum and product.

def sum(l: List[Int]): Int = {

def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, inter + h)

}

aux(l, 0)

}

def product(l: List[Int]): Int = {

def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, inter * h)

}

aux(l, 1)

}

After renaming, there are two differences: inter + h versus inter * h

and 0 versus 1. Similarly, adding two parameters makes the functions

identical.

def foldLeft(

l: List[Int],

n: Int,

4 Functions 39

f: (Int, Int) => Int

): Int = {

def aux(l: List[Int], inter: Int): Int = l match {

case Nil => inter

case h :: t => aux(t, f(inter, h))

}

aux(l, n)

}

This function is calledfoldLeft. Its semantics is different fromfoldRight.

While foldRight appends an initial value at the right side and folds a

list from the right side, foldLeft prepends an initial value at the left

side and folds a list from the left side. The following equations give an

intuitive interpretation:

foldLeft(List(a, b, .., y, z), n, f)

= f(f(.. f(f(n, a), b), .. , y), z)

foldLeft(List(1, 2, 3), 0, add)

= add(add(add(0, 1), 2), 3)

foldLeft(List(1, 2, 3), 1, mul)

= mul(mul(mul(1, 1), 2), 3)

The order traversing a list does not affect the results of sum and product.

Both foldRight and foldLeft can express the functions.

def sum(l: List[Int]): Int = foldLeft(l, 0, _ + _)

def product(l: List[Int]): Int = foldLeft(l, 1, _ * _)

On the other hand, the order is important for some functions. Consider a

function that takes a list of digits as arguments and returns the decimal

number obtained by concatenating the digits. foldLeft is the easiest

way to implement this function.

def digitToDecimal(l: List[Int]) =

foldLeft(l, 0, _ * 10 + _)

foldLeft(List(1, 2, 3), 0, f)

= f(f(f(0, 1), 2), 3)

= ((0 * 10 + 1) * 10 + 2) * 10 + 3

= (1 * 10 + 2) * 10 + 3

= 12 * 10 + 3

= 123

Using foldRightwith the same argumentswill yield completely different

result.

def digitToDecimal(l: List[Int]) =

foldRight(l, 0, _ * 10 + _)

foldRight(List(1, 2, 3), 0, f)

4 Functions 40

2: https://www.scala-lang.org/

api/current/scala/collection/

immutable/List.html

= f(1, f(2, f(3, 0)))

= 1 * 10 + (2 * 10 + (3 * 10 + 0))

= 1 * 10 + (2 * 10 + 30)

= 1 * 10 + 50

= 60

map, filter, foldRight, and foldLeft are powerful functions. The four

functions offer concise implementation for many procedures dealing

with lists. Since they are so useful, the Scala standard library provides

map, filter, foldRight, and foldLeft as the methods of the List class.

You do not need to implement map, filter, foldRight, and foldLeft

by yourself.

map(l, f) can be rewritten to l.map(f) by using the map method in-

stead.

def inc1(l: List[Int]): List[Int] = l.map(_ + 1)

def square(l: List[Int]): List[Int] = l.map(h => h * h)

filter(l, f) can be rewritten to l.filter(f) by using the filter

method instead.

def odd(l: List[Int]): List[Int] = l.filter(_ % 2 != 0)

def positive(l: List[Int]): List[Int] = l.filter(_ > 0)

foldRight(l, n, f) can be rewritten to l.foldRight(n)(f) by using

the foldRightmethod instead.

def sum(l: List[Int]): Int = l.foldRight(0)(_ + _)

def product(l: List[Int]): Int = l.foldRight(1)(_ * _)

foldLeft(l, n, f) can be rewritten to l.foldLeft(n)(f) by using the

foldLeftmethod instead.

def sum(l: List[Int]): Int = l.foldLeft(0)(_ + _)

def product(l: List[Int]): Int = l.foldLeft(1)(_ * _)

def digitToDecimal(l: List[Int]) = l.foldLeft(0)(_ * 10 + _)

The methods in the standard library are polymorphic, i.e. they can take

arguments of various types. For example, our map function takes only a

list of integers. To use map for a list of students, we need to define a new

version of map. However, the mapmethod in the standard library can take

lists of any types as arguments.

case class Student(name: String, height: Int)

def heights(l: List[Student]): List[Int] = l.map(_.height)

The standard library provides many other useful methods for lists.
2

https://www.scala-lang.org/api/current/scala/collection/immutable/List.html
https://www.scala-lang.org/api/current/scala/collection/immutable/List.html
https://www.scala-lang.org/api/current/scala/collection/immutable/List.html

4 Functions 41

4.5 For Loops

Scala has for loops. In Scala, a for loop is an expression, which evaluates

to a value. For expressions are highly expressive. Unlike while, which

work with mutable variables or objects, for of Scala helps programmers

to write code in a functional and readable way.

The syntax of a for expression is as follows:

for ([name] <- [expression])

yield [expression]

The first expression should result in a collection. Its result is a collection

containing the result of evaluating the second expression at each iteration.

Therefore, for expressions can replace use of the mapmethod.

val l = for (n <- List(0, 1, 2)) yield n * n

assert(l == List(0, 1, 4))

For expressions can appear at any places expecting expressions.

def square(l: List[Int]): List[Int] =

for (n <- l)

yield n * n

In Scala, for is just syntactic sugar. Instead of giving specific semantics

to for, syntactic rules transform code using for into the code using

methods of collections and anonymous functions. The above function

becomes the following function, which uses map, by the transformation:

def square(l: List[Int]): List[Int] =

l.map(n => n * n)

For this reason, for expressions are powerful. Any user-defined types can

appear in for expressions if the types define map.

For expressions can replace use of the filtermethod as well.

def positive(l: List[Int]): List[Int] =

for (n <- l if n > 0)

yield n

Elements not satisfying a given condition will be omitted during itera-

tion.

In addition, combination of map and filter can be expressed with a

for loop concisely. Consider a function that takes a list of students and

returns a list of the names of students whose height is greater than 170.

The function can be implemented with map and filter like below.

def tall(l: List[Student]): List[String] =

l.filter(_.height > 170).map(_.name)

4 Functions 42

We can use a for expression instead.

def tall(l: List[Student]): List[String] =

for (s <- l if s.height > 170)

yield s.name

4.6 Exercises

Exercise 4.1 Implement a function incBy:

def incBy(l: List[Int], n: Int): List[Int] = ???

that takes a list of integers and an integer as arguments and increases

every element of the list by the given integer. Use the mapmethod.

Exercise 4.2 Implement a function gt:

def gt(l: List[Int], n: Int): List[Int] = ???

that takes a list of integers and an integer as arguments and filters

elements less than or equal to the given integer out from the list. Use the

filtermethod.

Exercise 4.3 Implement a function append:

def append(l: List[Int], n: Int): List[Int] = ???

that takes a list of integers and an integer as arguments and returns a

list obtained by appending the integer at the end of the list. Use the

foldRightmethod.

Exercise 4.4 Implement a function reverse:

def reverse(l: List[Int]): List[Int] = ???

that takes a list of integers and returns a list obtained by reversing the

order between the elements. Use the foldLeftmethod.

Pattern Matching 5

5.1 Algebraic Data Types 43

5.2 Advantages 46

Conciseness 46

Exhaustivity Checking 47

Reachability Checking . . . 48

5.3 Patterns in Scala 48

Constant and Wildcard Pat-

terns 48

Or Patterns 49

Nested Patterns 50

Patterns with Binders 50

Type Patterns 51

Tuple Patterns 52

Pattern Guards 52

Patterns with Backticks . . . 53

5.4 Applications of Pattern Match-

ing 54

Variable Definitions 54

Anonymous Functions 55

For Loops 55

5.5 Options 56

This section explains pattern matching of Scala. Pattern matching is one

of the key features of functional programming. It helps programmers

handle complex, but structured data. We have already used a simple

form of pattern matching for lists. This section discusses the benefits of

pattern matching and various patterns available in Scala. In addition,

it will introduce the option type, which is widely-used in functional

programming.

5.1 Algebraic Data Types

It is common to include values of various shapes in a single type.

A natural number is

I zero or

I the successor of a natural number.

A list is

I the empty list or

I a pair of an element and a list.

A binary tree is

I the empty tree or

I a tree containing a root element and two child trees.

An arithmetic expression is

I a number,

I the sum of two arithmetic expressions, or

I the difference of two arithmetic expressions.

An expression of the lambda calculus is

I a variable,

I a function, which is a pair of a variable and an expression, or

I a function application, which is a pair of two expressions.

As the examples show, in computer science, a single type often includes

values of various shapes.Algebraic data types (ADT) express such types. An

ADT is the sum type of product types. That is why it is called “algebraic.”

A product type is a type whose every element is an enumeration of values

of types in the same specific order. Tuple types are typical product types.

A sum type, whose another name is a tagged union type, has values of
multiple types as its values. Unlike a union type, each component of a

sum type has a tag to be distinguished from other components. In an

ADT, one form of values that can be distinguished from the other forms

is called a variant.

5 Pattern Matching 44

For example, an arithmetic expression, which has three variants, is

I a number,

I the sum of two arithmetic expressions, or

I the difference of two arithmetic expressions.

Therefore, we can define the AE type, which is the type of an arithmetic

expression, as the sum type of

I the Int type tagged with Num,

I the AE * AE type tagged with Add, and

I the AE * AE type tagged with Sub,

where AE * AE denotes the product type of AE and AE.

ADTs are common in functional languages. Most functional languages

allow users to define new ADTs. The following OCaml code defines

arithmetic expressions:

type ae =

| Num of int

| Add of ae * ae

| Sub of ae * ae

Scala does not provide a direct way to define ADTs. Instead, Scala

provides traits and classes, which are more general mechanisms to define

new types, and programmers can express ADTs with traits and classes.

A new type can be defined as a trait. The syntax of a trait definition is as

follows:

trait [name]

It defines a type whose name is [name]. The following code defines the

AE type, which is the type of arithmetic expressions:

sealed trait AE

The sealed modifier prevents AE being extended outside the file that

defines AE.Wewill get back to this pointwhenwe discuss the exhaustivity

checking of pattern matching.

Once a type is defined as a trait, the type can be used just like any other

types. For example, we can define an identity function for arithmetic

expressions.

def identity(ae: AE): AE = ae

However, traits do not have ability to construct new values. It means that

there is no way to create a value of the type AE yet. We need to define the

variants of AE as case classes by extending AE.

case class Num(value: Int) extends AE

case class Add(left: AE, right: AE) extends AE

case class Sub(left: AE, right: AE) extends AE

5 Pattern Matching 45

As you have seen in Chapter 2, we can easily create values of case

classes.

val n = Num(10)

val m = Num(5)

val e1 = Add(n, m)

val e2 = Sub(e1, Num(3))

Like traits, case classes also define types. The name of each class is the

name of the defined type. Every instance of a class belongs to the type

corresponding to the class.

val n: Num = Num(10)

val m: Num = Num(5)

val e1: Add = Add(n, m)

val e2: Sub = Sub(e1, Num(3))

In addition, because of the extends keyword, Num, Add, and Sub are

subtypes of AE. It means that any value of the types Num, Add, or Sub is

also a value of the type AE.

val n: AE = Num(10)

val m: AE = Num(5)

val e1: AE = Add(n, m)

val e2: AE = Sub(e1, Num(3))

We know that we can access the fields of objects with their names.

val n: Num = Num(10)

n.value

However, we cannot access the fields of an object when its type becomes

AE.

val m: AE = Num(10)

m.value

^

error: value value is not a member of AE
Compile-time error

The reason is that m can be Add or Sub, which do not have the field value,

as AE consists of not only Num but also Add and Sub. The compiler thinks

that mmay not have the field value and considers m.value as an unsafe

expression, which should be rejected.

The best way to use ADTs is pattern matching. The following function

evaluates a given arithmetic expression and returns the number denoted

by the arithmetic expression.

def eval(e: AE): Int = e match {

case Num(n) => n

case Add(l, r) => eval(l) + eval(r)

5 Pattern Matching 46

1: We will not see what [+A] and Nothing

are here. You can understand the over-

all ADT structure without knowing those

concepts.

case Sub(l, r) => eval(l) - eval(r)

}

assert(eval(Sub(Add(Num(3), Num(7)), Num(5))) == 5)

When e is Num(n), eval simply returns n. When e is Add(l, r), eval

respectively evaluates l and r, which are arithmetic expressions. eval

returns the sum of the results of l and r. The Sub(l, r) case is similar.

eval returns the difference of the results of l and r.

The list type is another good example of an ADT. The Scala standard

library defines lists similar to the following code:

sealed trait List[+A]

case object Nil extends List[Nothing]

case class ::[A](head: A, tail: List[A]) extends List[A]

This code omits some details but clearly shows the high-level idea to

define lists.
1
A list is either the empty list or a nonempty list, which is a

pair of its head and tail. Nil is defined as a case object, not a case class,

since there is only one empty list. Every empty list is identical. We use a

case object to express this idea. Nil is created only once during entire

execution, and every Nil is identitcal. The name :: looks a bit weird,

but it is for readability of pattern matching. Scala allows writing class

names as infix operators in patterns. It means that both case ::(h, t)

=> and case h :: t => are allowed. Due to the class name ::, we can

write case h :: t => in pattern matching.

5.2 Advantages

Conciseness

Without pattern matching, handling ADTs becomes a complicated job.

We need to use dynamic type tests to distinguish variants and type

casting to access the fields of values.

Below is evalwithout pattern matching:

def eval(e: AE): Int =

if (e.isInstanceOf[Num])

e.asInstanceOf[Num].value

else if (e.isInstanceOf[Add]) {

val e0 = e.asInstanceOf[Add]

eval(e0.left) + eval(e0.right)

} else {

val e0 = e.asInstanceOf[Sub]

eval(e0.left) - eval(e0.right)

}

e.isInstanceOf[Num] tests whether e is an instance of class Num. If

it is true, eval should return the value of the field value of e. How-

ever, value cannot be directly accessed since e’s type is AE. Because

5 Pattern Matching 47

e.isInstanceOf[Num] is true, we are sure that e’s actual type is Num. In

this case, we can inform this knowledge to the compiler with type casting.

e.asInstanceOf[Num] does not change the value denoted by e but lets

the compiler know that the programmer guarantees the type of e to be

Num. Therefore, the compiler considers e.asInstanceOf[Num] to belong

Num and allows accessing the field value. These type tests and casting

processes should be done for the other variants, Add and Sub, too.

The code is long and complicated despite its simple functionality. Dy-

namic type tests and explicit type casting occupy most of the code, while

real computation requires short code. Besides, such code is error-prone.

For example, programmers may write code like below by mistake:

else if (e.isInstanceOf[Add]) {

val e0 = e.asInstanceOf[Sub]

eval(e0.left) + eval(e0.right)

}

While the condition checks whether e is an instance of Add, e becomes

casted to Sub. Such codewill trigger an error at run time and terminate the

execution abnormally. It is easy to check whether eval is correct because

it is short. However, complex types and computation will increase the

possibility of mistakes.

Pattern matching gives us a much better solution. Pattern matching hides

type tests and casting and makes code concise. At the same time, pattern

matching removes the possibility of mistakes.

Exhaustivity Checking

Pattern matching checks the exhaustivity of patterns. At run time, a

match error occurs when a given value matches none of given patterns.

def eval(e: AE): Int = e match {

case Add(l, r) => eval(l) + eval(r)

case Sub(l, r) => eval(l) - eval(r)

}

The function lacks the Num pattern.

eval(Num(3))

scala.MatchError: Num(3) (of class Num)
Run-time error

An argument of type Num results in a match error at run time.

Fortunately, we can easily avoid suchmistakes. The Scala compiler checks

whether patterns are exhaustive and warns if they are not.

def eval(e: AE): Int = e match {

case Add(l, r) => eval(l) + eval(r)

case Sub(l, r) => eval(l) - eval(r)

}

5 Pattern Matching 48

^

warning: match may not be exhaustive.

It would fail on the following input: Num(_)
Compile-time warning

The compiler warns programmers about that the patterns are not exhaus-

tive. Moreover, it precisely informs which patterns are missing to help

debugging. Exhaustivity checking is beneficial for complex programs.

It helps programmers make error-free programs and thus is a crucial

strength of pattern matching.

For exhaustivity checking, the sealed modifier of traits is necessary.

Without sealed, a trait can be extended outside the file that defines

it. The unit of compilation is a single file, so it is impossible to find

all the variants by scanning a single file when a trait is not sealed.

Exhaustivity checking during pattern matching will be impossible. The

sealed keyword resolves the problem. Since sealed traits cannot be

extended further, it is enough to check only the file that defines a sealed

trait to find every variant of the trait. It is why we use sealed traits to

define ADTs.

Reachability Checking

Like switch-case, pattern matching compares a value to patterns se-

quentially from top to bottom and selects the first matching pattern.

If there are duplicated patterns, the latter will not be reachable. The

compiler warns programmers when they find unreachable patterns to

prevent such code.

def eval(e: AE): Int = e match {

case Num(n) => 0

case Add(l, r) => eval(l) + eval(r)

case Num(n) => n

case Sub(l, r) => eval(l) - eval(r)

}

case Num(n) => n

^

warning: unreachable code
Compile-time warning

When code is simple and short, it is easy to check whether there are un-

reachable patterns. However, in complex code, programmers often insert

unreachable patterns by mistake and make critical bugs. Reachability

checking of the compiler is an important feature to prevent such bugs.

5.3 Patterns in Scala

Constant and Wildcard Patterns

switch-case statements divide a given value into multiple cases in

imperative languages. Patternmatching is a general form of switch-case.

5 Pattern Matching 49

The following code is an example using a switch-case statement in

Java:

String grade(int score) {

switch (score / 10) {

case 10: return "A";

case 9: return "A";

case 8: return "B";

case 7: return "C";

case 6: return "D";

default: return "F";

}

}

Constant and wildcard patterns exist in Scala. Constant patterns are

literals like integers and strings. A constant pattern matches a given

value if a value denoted by the pattern equals the given value. The

underscore denotes the wildcard pattern, which matches every value,

and is equivalent to default of switch-case. The following function

rewrites the previous function with pattern matching:

def grade(score: Int): String =

(score / 10) match {

case 10 => "A"

case 9 => "A"

case 8 => "B"

case 7 => "C"

case 6 => "D"

case _ => "F"

}

assert(grade(85) == "B")

Or Patterns

switch-case statements use the fall-through semantics; if break does

not exist, after executing code corresponding to a case, the flow of the

execution moves to code corresponding to the next case. Since the results

of cases 10 and 9 are identical, the function can use fall-through.

String grade(int score) {

switch (score / 10) {

case 10:

case 9: return "A";

case 8: return "B";

case 7: return "C";

case 6: return "D";

default: return "F";

}

}

In contrast, pattern matching disallows fall-through. Instead, or patterns

give a way to write the same expression only once for multiple patterns.

5 Pattern Matching 50

The syntax of an or pattern is [pattern] | [pattern] | ..., which

is a sequence of multiple patterns with vertical bars in between. A | B

matches values that match A or B.

def grade(score: Int): String =

(score / 10) match {

case 10 | 9 => "A"

case 8 => "B"

case 7 => "C"

case 6 => "D"

case _ => "F"

}

assert(grade(100) == "A")

Nested Patterns

Nested patterns are patterns containing patterns. The optimizeAdd

function optimizes a given arithmetic expression by eliminating additions

of zeros.

def optimizeAdd(e: AE): AE = e match {

case Num(_) => e

case Add(Num(0), r) => optimizeAdd(r)

case Add(l, Num(0)) => optimizeAdd(l)

case Add(l, r) => Add(optimizeAdd(l), optimizeAdd(r))

case Sub(l, r) => Sub(optimizeAdd(l), optimizeAdd(r))

}

Nested patterns help programmers treat values with complex structures

easily.

Patterns with Binders

Assume that we have one more variant of AE:

case class Abs(e: AE) extends AE

It denotes the absolute value of an operand. Optimizing an arithmetic

expression decorated by two consecutive Abs operators results in the

arithmetic expression with only one Abs operator.

def optimizeAbs(e: AE): AE = e match {

case Num(_) => e

case Add(l, r) => Add(optimizeAbs(l), optimizeAbs(r))

case Sub(l, r) => Sub(optimizeAbs(l), optimizeAbs(r))

case Abs(Abs(e0)) => optimizeAbs(Abs(e0))

case Abs(e0) => Abs(optimizeAbs(e0))

}

5 Pattern Matching 51

2: Every type is a subtype of Any, i.e. every

value belongs to Any.

A flaw of the implementation is that a value matching Abs(e0) cannot

be an argument of optimizeAbs directly, and constructing a new Abs

instance containing a value matching e0 is essential. The @ symbol makes

code efficient by binding a value matching to a pattern to a variable.

Pattern [variable] @ [pattern] makes the variable refer to a value

matching the pattern.

def optimizeAbs(e: AE): AE = e match {

case Num(_) => e

case Add(l, r) => Add(optimizeAbs(l), optimizeAbs(r))

case Sub(l, r) => Sub(optimizeAbs(l), optimizeAbs(r))

case Abs(e0 @ Abs(_)) => optimizeAbs(e0)

case Abs(e0) => Abs(optimizeAbs(e0))

}

Type Patterns

In optimizeAbs, the first Num(_) pattern does no more than checking

whether a value belongs to type Num. A type pattern helps to rewrite the

function. Type patterns are in the form of [name]: [type]. If a value

belongs to the type, it matches the pattern, and the variable refers to the

value. The wildcard pattern can substitute the name if the variable is

unnecessary.

def optimizeAbs(e: AE): AE = e match {

case _: Num => e

case Add(l, r) => Add(optimizeAbs(l), optimizeAbs(r))

case Sub(l, r) => Sub(optimizeAbs(l), optimizeAbs(r))

case Abs(e0 @ Abs(_)) => optimizeAbs(e0)

case Abs(e0) => Abs(optimizeAbs(e0))

}

Type patterns are useful for dynamic type checking. The following

function takes any value as an argument and check whether it is a string

or not.
2

def show(x: Any): String = x match {

case s: String => s + " is a string"

case _ => "not a string"

}

assert(show("1") == "1 is a string")

assert(show(1) == "not a string")

Note that type patterns cannot check type arguments of polymorphic

types. Using type patterns against polymorphic types is dangerous.

def show(x: Any): String = x match {

case _: List[String] => "a list of strings"

case _ => "not a list of strings"

}

5 Pattern Matching 52

^

warning: non-variable type argument String in type pattern

List[String] is unchecked since it is eliminated by erasure
Compile-time warning

val l: List[Int] = List(1, 2, 3)

assert(show(l) == "a list of strings") // weird result

Although the type of the argument is List[Int], it matches the first

pattern. As the warnings imply, the JVM uses type erasure semantics,

and type arguments are unavailable at run time.

Tuple Patterns

The syntax of a tuple pattern is ([pattern], ..., [pattern]). It

matches a tuple whose elements respectively match the internal pat-

terns.

The following function uses tuple patterns to check whether two lists are

identical:

def equal(l0: List[Int], l1: List[Int]): Boolean =

(l0, l1) match {

case (h0 :: t0, h1 :: t1) =>

h0 == h1 && equal(t0, t1)

case (Nil, Nil) => true

case _ => false

}

Pattern Guards

A binary search tree is

I the empty tree or

I a tree containing an integral root element and two child trees.

sealed trait Tree

case object Empty extends Tree

case class Node(root: Int, left: Tree, right: Tree) extends Tree

The function add takes a tree and an integer as arguments and returns a

tree obtained by adding the integer to the tree. If the integer is an element

of the given tree, the tree itself is the return value.

def add(t: Tree, n: Int): Tree =

t match {

case Empty => Node(n, Empty, Empty)

case Node(m, t0, t1) =>

if (n < m)

Node(m, add(t0, n), t1)

else if (n > m)

5 Pattern Matching 53

Node(m, t0, add(t1, n))

else

t

}

An expression corresponding to the second pattern uses if-else. Pattern

guards allow adding constraints to patterns. A pattern in the form of

[pattern] if [expression]matches a value if the value matches the

pattern, and the expression results in true. The following version of add

uses pattern guards:

def add(t: Tree, n: Int): Tree =

t match {

case Empty => Node(n, Empty, Empty)

case Node(m, t0, t1) if n < m =>

Node(m, add(t0, n), t1)

case Node(m, t0, t1) if n > m =>

Node(m, t0, add(t1, n))

case _ => t

}

Guarded patterns may be inexhaustive and need care.

def add(t: Tree, n: Int): Tree =

t match {

case Empty => Node(n, Empty, Empty)

case Node(m, t0, t1) if n < m =>

Node(m, add(t0, n), t1)

case Node(m, t0, t1) if n > m =>

Node(m, t0, add(t1, n))

}

The patterns in the above code is not exhaustive, but the compiler does

not warn programmers about the inexhaustivity.

Patterns with Backticks

The function remove takes a tree and an integer as arguments and returns

a tree obtained by removing the integer from the tree. If the integer is not

an element of the tree, the given tree itself is the return value. removeMin

is a helper function used by remove. It returns the pair of the smallest

element of a given tree and a tree obtained by removing the element

from the tree.

def removeMin(t: Tree): (Int, Tree) = {

t match {

case Node(n, Empty, t1) =>

(n, t1)

case Node(n, t0: Node, t1) =>

val (min, t2) = removeMin(t0)

(min, Node(n, t2, t1))

}

5 Pattern Matching 54

}

def remove(t: Tree, n: Int): Tree = {

t match {

case Empty =>

Empty

case Node(m, t0, Empty) if n == m =>

t0

case Node(m, t0, t1: Node) if n == m =>

val res = removeMin(t1)

val min = res._1

val t2 = res._2

Node(min, t0, t2)

case Node(m, t0, t1) if n < m =>

Node(m, remove(t0, n), t1)

case Node(m, t0, t1) if n > m =>

Node(m, t0, remove(t1, n))

}

}

Node(`n`, t0, Empty) can replace case Node(m, t0, Empty) if n

== m. The pattern Node(n, t0, Empty) defines a new variable n and

makes n refer to the root element; it does not check whether the root

element equals n. However, backticks prohibit defining a new variable

and allow to compare the root element to n in the scope.

def remove(t: BinTree, n: Int): BinTree = {

t match {

case Empty =>

Empty

case Node(`n`, t0, Empty) =>

t0

case Node(`n`, t0, t1: Node) =>

val res = removeMin(t1)

val min = res._1

val t2 = res._2

Node(min, t0, t2)

case Node(m, t0, t1) if n < m =>

Node(m, remove(t0, n), t1)

case Node(m, t0, t1) if n > m =>

Node(m, t0, remove(t1, n))

}

}

5.4 Applications of Pattern Matching

Variable Definitions

It is possible to define variables with pattern matching.

val (n, m) = (1, 2)

5 Pattern Matching 55

assert(n == 1 && m == 2)

val (a, b, c) = ("a", "b", "c")

assert(a == "a" && b == "b" && c == "c")

val h :: t = List(1, 2, 3, 4)

assert(h == 1 && t == List(2, 3, 4))

val Add(l, r) = Add(Num(1), Num(2))

assert(l == Num(1) && r == Num(2))

Pattern matching helps programmers declare variables concisely, but

a match error occurs when the pattern does not match the right-hand-

side value. It is desirable to use pattern matching only when there is a

guarantee that the match succeeds. Since a tuple pattern always matches

a tuple value of the same length, tuple patterns are widely used for

variable definitions.

Anonymous Functions

The function toSum takes a list of pairs of two integers as arguments and

returns a list whose elements are the sums of the integers in the pairs.

def toSum(l: List[(Int, Int)]): List[Int] =

l.map(p => p match {

case (n, m) => n + m

})

val l = List((0, 1), (2, 3), (3, 4))

assert(toSum(l) == List(1, 5, 7))

The anonymous function directly uses parameter p as the target of the

pattern matching. Scala allows simplification of x => x match { ... }

to { ... }. Therefore, we can use an enumeration of patterns as an

anonymous function.

def toSum(l: List[(Int, Int)]): List[Int] =

l.map({ case (n, m) => n + m })

For Loops

toSum can use a for expression instead of map.

def toSum(l: List[(Int, Int)]): List[Int] =

for (p <- l)

yield p match { case (n, m) => n + m }

For expressions directly support pattern matching.

def toSum(l: List[(Int, Int)]): List[Int] =

for ((n, m) <- l)

yield n + m

5 Pattern Matching 56

The code is readable and concise.

5.5 Options

The option type is a widely-used ADT. It represents a value whose

existence is optional. This section introduces the option type and explains

the usage of options.

Consider the function get, which takes a list and integer n as arguments

and returns the nth element of the list. It is problematic when n is negative

or exceeds the length of the list. Throwing exceptions is a widely used

solution in imperative languages. In Scala, throw [expression] throws

an exception. For convenience, we define the function error, which

throws an exception, like below and use it throughout the book.

def error(msg: String) = throw new Exception(msg)

def get(l: List[Int], n: Int): Int =

if (n < 0)

error("index out of bounds")

else l match {

case Nil =>

error("index out of bounds")

case h :: t =>

if (n == 0)

h

else

get(t, n - 1)

}

Throwing an exception is a simple and effective solution. However,

exceptions have two problems. First, exceptions should be handled by

exception handlers.

try {

get(List(1, 2), 2)

} catch {

case e: Exception =>

// prints "index out of bounds"

println(e.getMessage)

}

If an exception is not handled properly, it will eventually cause a run-time

error and terminate the execution.

get(List(1, 2), 2)

java.lang.Exception: index out of bounds
Run-time error

The Scala compiler does not check whether exceptions are handled

properly. It means that there will not be any compile-time error even if

there is a possibility of unhandled exceptions.

5 Pattern Matching 57

3: https://en.wikipedia.org/wiki/

Null_pointer#History

Another problem of exceptions is that exception handling is not local.

When an exception is thrown, the control flow suddenly jumps to the

position of the nearest exception handler. Non-local transition of the

control flow usually hinders programmers from understanding code.

Therefore, implementing getwithout exceptions is desirable.

The first attempt is to use null. null is a value that denotes that it does

not refer to any existing object. We can try to make get return nullwhen

a given index is invalid.

def get(l: List[Int], n: Int): Int =

if (n < 0)

null

else l match {

case Nil => null

case h :: t =>

if (n == 0)

h

else

get(t, n - 1)

}

null

^

error: an expression of type Null is ineligible

for implicit conversion

case Nil => null

^

error: an expression of type Null is ineligible

for implicit conversion
Run-time error

Unfortunately, null is not an element of Int in Scala. The compiler

rejects the code. Even with the assumption that we can treat null as Int,

using null is a bad solution. Dereferencing null causes a run-time error,

which is the well-known NullPointerException. The compiler does not

check whether null is dereferenced. Therefore, using null is nothing

better than using exceptions. Use of null has been criticized enormously

because null is extremely error-prone. Even Tony Hoare, the inventor of

null, said that inventing nullwas a terrible mistake:

I call it my billion-dollar mistake. It was the invention of the

null reference in 1965.
3

The second attempt is to use a particular error-indicating value, e.g. -1.

def get(l: List[Int], n: Int): Int =

if (n < 0)

-1

else l match {

case Nil =>

-1

case h :: t =>

if (n == 0)

h

https://en.wikipedia.org/wiki/Null_pointer#History
https://en.wikipedia.org/wiki/Null_pointer#History

5 Pattern Matching 58

4: Wewill not seewhat [+A] and Nothing

are here. You can understand the overall

ADT structurewithout knowing those con-

cepts.

else

get(t, n - 1)

}

The strategy has an obvious problem. The caller cannot distinguish two

situations:

I The list contains -1.

I The index is invalid.

Default values can be successful solutions for certain purposes but do

not fit get.

Instead of using a fixed particular value in get, the caller can specify the

default value.

def getOrElse(l: List[Int], n: Int, default: Int): Int =

if (n < 0)

default

else l match {

case Nil =>

default

case h :: t =>

if (n == 0)

h

else

getOrElse(t, n - 1, default)

}

It works well when an appropriate default value exists. However, when

checking failures is per se important, the new strategy is as bad as the

previous strategy. There is no way to distinguish an element and the

default value.

Functional languages provide the option type to handle erroneous situa-

tions safely. As the name implies, it represents an optional existence of a

value. The Scala standard library defines the option type like below.
4

sealed trait Option[+A]

case object None extends Option[Nothing]

case class Some[A](value: A) extends Option[A]

An option that may have a value of type T has type Option[T]. An option

is either None or Some. None is a value that does not denote any value

and similar to null. It indicates a problematic situation. Like Nil, it is

defined as a case object because every None is identical. Some constructs

a value that denotes that a value exists. It is similar to a reference to a

real object and indicates that computation has succeeded.

The following code defines getOption, which returns an option.

def getOption(l: List[Int], n: Int): Option[Int] =

if (n < 0)

None

else l match {

5 Pattern Matching 59

case Nil =>

None

case h :: t =>

if (n == 0)

Some(h)

else

getOption(t, n - 1)

}

assert(getOption(List(1, 2), 0) == Some(1))

assert(getOption(List(1, 2), 2) == None)

For an invalid index, the return value is None. The caller can notice

that the operation has failed by None. Otherwise, the function packs an

element inside Some to make the return value.

The Scala standard library uses options in many places. Various methods

return options. For example, headOption of a list returns None when the

list is empty. Otherwise, Some containing the head of the list is returned.

assert(List().headOption == None)

assert(List(1).headOption == Some(1))

Also, get of a map returns None when the map does not have a given

key. Otherwise, Some containing the value corresponding to the key is

returned.

val m = Map(1 -> "one", 2 -> "two")

assert(m.get(0) == None)

assert(m.get(1) == Some("one"))

Pattern matching allows programmers to deal with options by distin-

guishing the None and Some cases. In addition, like the methods of lists,

options also provide methods to abstract common patterns. We are going

to see two methods: map and flatMap.

map can be used when we want to apply some computation only when

the previous computation has succeeded. map takes a single argument,

which must be a function. opt.map(f) results in None when opt is None.

If opt is Some(v), then opt.map(f) evaluates to Some(f(v)).

As an example, let us consider a map containing students. Names are the

keys, and students are the values. We want to find a student by a name

and get one’s height only when the student exists. It can be implemented

with map.

def getHeight(

m: Map[String, Student],

name: String

): Option[Int] =

m.get(name).map(_.height)

If m.get(name) is None, then m.get(name).map(_.height) also is None.

Otherwise,m.get(name) shouldbeSome(student), andm.get(name).map(_-

.height)will result in Some(student.height).

5 Pattern Matching 60

5: https://www.scala-lang.org/api/

current/scala/Option.html

In summary, map is useful when the computation consists of two steps,

and the first step can fail.

flatMap is similar to map but a bit different. It is useful when the com-

putation consists of two steps, and both steps can fail. flatMap takes

a single argument, which must be a function that returns an option.

opt.flatMap(f) results in None when opt is None. If opt is Some(v),

then opt.flatMap(f) evaluates to f(v).

Let us consider a list of names and a map like before. When the list is

nonempty, we will find a student with the first name in the list from the

map. It is a typical application of flatMap.

def getStudent(

l: List[String],

m: Map[String, Student]

): Option[Student] =

l.headOption.flatMap(m.get)

The standard library provides many other useful methods for options.
5

https://www.scala-lang.org/api/current/scala/Option.html
https://www.scala-lang.org/api/current/scala/Option.html

Untyped Languages

Syntax and Semantics 6

6.1 Concrete Syntax 62

6.2 Abstract Syntax 65

6.3 Parsing 71

6.4 Semantics 72

6.5 Syntactic Sugar 77

6.6 Exercises 78

This chapter is about syntax and semantics.

Syntax of a programming language decides the appearance of the lan-

guage. Syntax consists of concrete syntax and abstract syntax. While

concrete syntax describes programs as strings, abstract syntax describes

the structures of programs as trees. Parsing is the process bridging the

gap between concrete syntax and abstract syntax. A string is transformed

to a tree by parsing. This chapter explains concrete syntax, abstract syntax,

and parsing.

Semantics of a programming langauge determines the behavior of each

program. This chapter explains how we can define the semantics of a

language. In addition, we will see what syntactic sugar is.

6.1 Concrete Syntax

People write programs with strings. Some strings are valid programs,

while other strings are not. For example, consider the following code:

println()

It is a valid Scala program. On the other hand, the following code is not

a valid Scala program.

println(

Concrete syntax determines whether a certain string is a program or not.

According to the concrete syntax of Scala, println() is a program, but

println(is not because the closing parenthesis is missing. Without

concrete syntax, programmers cannot know whether a given string is

a program or not. Concrete syntax is one of the essential elements of a

programming language. This section defines concrete syntax formally

and explains how concrete syntax can be specified.

The first thing to do is to define strings since programs are represented

as strings. A string is a finite sequence of characters. The definition of

a character varies in programming languages. In some languages, a

character is limited to those expressed by the ASCII code. In other cases,

every Unicode symbol is considered as a character. As we want to deal

with general programming languages, we do not fix the characters to be

a specific set. Instead, we assume that a set of characters is given and do

not care about which characters exactly exist in the set. From now on, �

is the set of every character:

� = the set of every character = {2 | 2 is a character}

6 Syntax and Semantics 63

Now, a character is an element of �.

Once characters are defined, we can define strings with the definition of

characters. (is the set of every string:

(= the set of every string = {"21 · · · 2=" | 21 , · · · , 2= ∈ �}

A string is an element of (, which is a sequence of zero or more characters.

For example, if ’a’, ’b’ ∈ �, then "aba" ∈ (.

The definition of strings differs from the definition of programs because

some strings are not programs. As we have seen already, "println()" is

a program, but "println(" is not although both are strings.

Defining concrete syntax is to define which strings are programs. There-

fore, we can say that concrete syntax determines the set of every program.

Let % be the set of every program.

% = the set of every program = {? | ? is a program}

A program is an element of %. Then, % has only one restriction: % should

be a subset of (as every program is a string.

% ⊆ (

The concrete syntax of each language defines its own % as a subset

of (. Each language has different % from each other. For instance,

"println()" ∈ % and "println(" ∉ %, where % is defined by the

concrete syntax of Scala. At the same time, there can be a language whose

% does not have "println()" as an element.

To define the concrete syntax of a language, we need to define the set %.

The problem is that % is usually an infinite set. There are infinitely many

programs in each language. Defining an infinite set is difficult because

we cannot enumerate every element of an infinite set. We need a way to

define infinite sets to define concrete syntax.

Themost popularway to define concrete syntax is Backus-Naur form (BNF).

It defines a set of strings in an intuitive way. It provides a constructive

definition, i.e. it lets us know how we can construct an element of the

set. To define concrete syntax with BNF, we need to discuss the concepts

used in BNF first.

BNF has three concepts: terminals, nonterminals, and expressions. A

terminal is a string. For example, "0" and "ab" are terminals. A non-
terminal is a name between a pair of angle brackets and denotes a set

of strings. For instance, <digit> is a nonterminal and may denote the

set {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}. An expression is an

enumeration of one or more terminals/nonterminals. Therefore, all of

the following are expressions:

I "abc" (a single terminal)

I "0" "1" (multiple terminals)

I <digit> (a single nonterminal)

I <digit> <number> (multiple nonterminals)

6 Syntax and Semantics 64

I "-" <number> (a single terminal and a single nonterminal)

An expression also denotes a set of strings. The set denoted by an

expression is the concatenation of strings denoted by its components. For

example, in the expression "0" "1", "0" denotes "0", and "1" denotes

"1". Therefore, "0" "1" denotes the set {"01"}. If <digit> denotes the

set {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}, then "0" <digit>

denotes {"00", "01", "02", "03", "04", "05", "06", "07", "08", "09"}.

Now, let us see how we can define a new set from scratch. BNF allows us

to define the set denoted by a nonterminal with the following form:

[nonterminal] ::= [expression] | [expression] | ...

The vertical bars in the right hand side separate distinct expressions.

The expressions define the set denoted by the nonterminal. The union

of the sets denoted by the expressions equals the set denoted by the

nonterminal. For example, the followingdefinitionmakes <digit>denote

{"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}:

<digit> ::= "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9"

Fromnowon,we are going to define the concrete syntax of a tiny language

named AE to show example usage of BNF. AE stands for arithmetic

expressions. Its features is limited to addition and subtraction of decimal

integers.

AE programs should be able to express decimal integers. Thus, the

following strings should be programs of AE:

I "0"

I "1"

I "-10"

I "42"

At the same time, programs should be able to express addition and

subtraction. Thus, the following strings also should be programs:

I "0+1"

I "-2-1"

I "1+-3+42"

I "4-3+2-1"

First, we can define the set of every string that represents a decimal

integer in BNF. It can be done with the following definitions:

<digit> ::= "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9"

<nat> ::= <digit> | <digit> <nat>

<number> ::= <nat> | "-" <nat>

We know that <digit> denotes {"0", "1", "2", "3", "4", "5", "6", "7",
"8", "9"}. Since <digit> is one way to construct an element of <nat>,

every string denoted by <digit> is also a string of <nat>. Hence, {"0",

6 Syntax and Semantics 65

1: This book considers zero as a natural

number.

"1", "2", "3", "4", "5", "6", "7", "8", "9"} is a subset of the set denoted

by <nat>. At the same time, <digit> <nat> is the other way to construct

an element. We can make a new element of <nat> by selecting strings

from <digit> and <nat>, respectively. For example, <digit> can denote

"1", and <nat> can denote "0". Therefore, "10" is an element of <nat>.

By repeating this process, we can construct infinitely many strings, e.g.

"110" by concatenating "1" and "10", "1110" by concatenating "1" and

"110", and so on. In the end, we can conclude that <nat> denotes the set

of every string that consists of the characters from ’0’ to ’9’, i.e. every

string that represents a decimal natural number.
1

Finding the set denoted by <number> is easier. Since <nat> is one way to

construct an element of <number>, the set denoted by <nat> is a subset

of the set denoted by <number>. The expression "-" <nat> is the other

way to construct an element. It implies that if we concatenate "-" and

a string denoted by <nat>, we can get a new element of <number>. In

conclusion, <number> denotes the set of every string that represents a

decimal integer.

It is enough to add only addition and subtraction to complete the

definition of the concrete syntax.

<expr> ::= <number> | <expr> "+" <expr> | <expr> "-" <expr>

In a similar way, we can figure out which set is denoted by <expr>. The

set includes every string that represents arithmetic expression consisting

of decimal integers, addition, and subtraction. We can say that <expr>

defines % of AE, and the concrete syntax of AE is defined now.

6.2 Abstract Syntax

Defining syntax solely with concrete syntax has problems from both

language users’ and language designers’ perspectives.

Programmers usually learn multiple languages. Languages considerably

vary in their concrete syntax. Consider a function that takes two integers

as arguments and returns the sum of the integers. We can implement the

function in four different languages like below.

I Python

def add(n, m):

return n + m

I JavaScript

function add(n, m) {

return n + m;

}

I Racket

(define (add n m) (+ n m))

I OCaml

6 Syntax and Semantics 66

let add n m = n + m

They look so different even though they define the same function. The

keyword to define a function is def in Python, function in JavaScript,

define in Racket, and let in OCaml. It is not the only difference. Python

and JavaScript need parentheses and commas for parameters, while

Racket and OCaml do not. JavaScript puts function bodies inside curly

braces. Racket treats + as a prefix operator, while the others treat +

as an infix operator. These differences are the differences between the

concrete syntax of each language. Various forms of concrete syntax hinder

programmers from learning multiple languages easily.

However, their structures are quite the same. In every language, a function

definition consists of a name, parameters, and a body expression. The

above example defines a function whose name is add, parameters are n

and m, and body is an expression that adds n and m. In every language in

the example, an addition expression consists of two operands. The body

expression uses n and m as the operands of the addition.

Thus, programmers should focus on the structures of programs, rather

than strings per se, to learn multiple languages easily. The structures

remain the same even when the strings vary.

At the same time, concrete syntax cares about tediousdetails that language

designers want to ignore. For example, both "2+1" and "02+001" are AE

programs. They are different strings but represent the same arithmetic

expression: 2 + 1. When the designers of AE define logic to evaluate

arithmetic expressions, distinction between 2 + 1 and 2 − 1 is important,

but distinction between "2+1" and "02+001" is completely unnecessary.

The designers want to focus only on the structures of programs but not

strings.

For both programmers and designers, concrete syntax is problematic

because it describes only strings and does not give good abstraction

of structures even though people want to focus on the structures. Of

course, we cannot discard the notion of concrete syntax. Everyone write

programs as strings, and concrete syntax is essential for that step. At the

same time, we need a way to describe the structures of programs without

being affected by differences in strings. To meet the need, we introduce

another notion of syntax: abstract syntax. Concrete syntax and abstract

syntax are complementary. They collectively construct the syntax of a

language.

Abstract syntax describes the structure of a program as a tree. A pro-

gram consists of multiple components. Each component consists of

subcomponents again. Trees formally express such recursive structures.

A component can be represented as a tree whose root describes the sort

of a component and children are the trees representing the subcompo-

nents.

As an example, let us express the function add as a tree. The function

definition has four components: the name add, the first parameter n,

the second parameter m, and the body expression. The following tree

represents the function definition:

6 Syntax and Semantics 67

FunDef

add n m

The root of the tree is the symbol FunDef, which explains that this tree

represents a function definition. The tree has four children: add, n, m, and

the body expression. We do not know how to draw the tree representing

the body expression yet.

The body expression is an addition expression. It has two components:

the operands of the addition.

FunDef

add n m Add

The root of the tree is Add as the expression is addition. It has two

children: the operand expressions.

The first operand expression consists of a single component: n.

FunDef

add n m Add

Name

n

The root of the tree is Name, since the expression is just a name. The only

child is n.

The second operand expression can be similarly represented as a tree.

FunDef

add n m Add

Name

n

Name

m

6 Syntax and Semantics 68

The above tree represents the structure of the function definition. It is

independent of its underlying programming language. The tree can be

a Python function definition and a JavaScript function definition at the

same time. By expressing programswith trees, we can ignore unnecessary

details in strings and focus on the structures of programs.

As abstract syntax treats programs as trees, defining the abstract syntax

of a language is to define the set of every tree that represents a program.

Let us define the abstract syntax of AE. In AE, every natural number is

a program. A natural number program has only one component: the

natural number itself. Therefore, the following fact is true, where �

denotes the set of every program:

If = ∈ ℤ, then

Num

=

∈ �.

Addition of two arithmetic expressions is also a program. Such a program

has two components: the left and right operands. Each operand is an

arithmetic expression and thus a program. Therefore, the following fact

is true:

If 41 , 42 ∈ �, then
Add

41 42

∈ �.

Subtraction is similar.

If 41 , 42 ∈ �, then
Sub

41 42

∈ �.

By collecting all the above facts, we can define the abstract syntax of AE

as the smallest set � satisfying the following conditions.

If = ∈ ℤ, then

Num

=

∈ �.

If 41 , 42 ∈ �, then
Add

41 42

∈ �.

6 Syntax and Semantics 69

If 41 , 42 ∈ �, then
Sub

41 42

∈ �.

For example, the following tree represents an AE program:

Add

Sub

Num

5

Num

1

Num

3

We call a tree that is an element of the set defined by abstract syntax an

abstract syntax tree (AST).

Abstract syntax can be easily implemented with ADTs in Scala. The

following code implements the abstract syntax of AE:

sealed trait AE

case class Num(value: Int) extends AE

case class Add(left: AE, right: AE) extends AE

case class Sub(left: AE, right: AE) extends AE

Num(=) corresponds to

Num

=

Add(41, 42) corresponds to

Add

41 42

Sub(41, 42) corresponds to

Sub

41 42

6 Syntax and Semantics 70

ThepreviousASTcanbewritten asAdd(Sub(Num(5), Num(1)), Num(3))

in Scala.

It is inconvenient to draw a tree every time we need to express a program.

For this reason, people usually use notations that look like code to

represent trees. For example, we can simply write = instead of drawing

a tree whose root is Num and only child is = when it is clear that =

denotes an AST from the context. Similarly, we can use 41 + 42 and 41 − 42
instead of trees that represent addition and subtraction, respectively.

Note that + and − in the notations are not the mathematical addition

and subtraction operators. They are just parts of the notations and do

not have any meaning.

We can define the abstract syntax of AE again by using the above notations.

� is the smallest set satisfying the following conditions:

I If = ∈ ℤ, then = ∈ �.
I If 41 , 42 ∈ �, then 41 + 42 ∈ �.
I If 41 , 42 ∈ �, then 41 − 42 ∈ �.

Even though the notations themselves do not look like trees at all, they

still represent ASTs. Also, symbols like + and − do not have any meaning.

It is extremely important to keep these points in your mind. Otherwise,

you will mix abstract syntax using notations up with concrete syntax in

the end.

Notations are just notations. You can define different notations and use

them. For example, one may use ADD 41 42 instead of 41 + 42 to represent

addition. You can freely choose notations, but once you define them, you

should consistently use them not to make other people confused.

To make the definition of abstract syntax more concise, we adopt BNF to

the definition of abstract syntax. We can re-define the abstract syntax of

AEwith BNF:

4 ::= = | 4 + 4 | 4 − 4

We call each symbol that denotes a particular element in abstract syntax

a metavariable. It is calledmetavariable because it is a variable at a meta-

level, not the level of the defined programming language. For example, 4

is a metavariable that ranges over programs, and = is a metavariable that

ranges over integers.

We often use parentheses to express elements of abstract syntax without

ambiguity. For instance, 3 − 1 + 2 can be interpreted in two ways:

Add

Sub

Num

3

Num

1

Num

2

or

Sub

Num

3

Add

Num

1

Num

2

6 Syntax and Semantics 71

If we write (3 − 1) + 2, it is clear that it denotes the former. Otherwise,

we write 3 − (1 + 2) to denote the latter.

6.3 Parsing

Concrete syntax considers programs as strings, while abstract syntax

considers programs as trees. Parsing bridges this gap. Parsing is a process
of transforming a string following concrete syntax into an AST. A parser

is a program that parses input. We can consider a parser as a partial

function from ((the set of every string) to � (the set of every AST).

parse : (↦→ �

Partial functions

A partial function from a set � to a set � is a function from a subset (

of � to �. (is called the domain of definition, or just domain in short,

of the partial function. While �→ � is a set of functions from � to �,

� ↦→ � is a set of partial functions from � to �.

Let 5 be a partial function from � to �. Then, there can be 0 ∈ � such

that 5 (0) is undefined. From a programmers’ perspective, 5 can be

interpreted as a function from � to Option[�], where None means

that the image is undefined and Some(1)means that the image is 1.

The result of parse is undefined when an input does not belong to % (the

set of every program). That is why parse is a partial function. When an

input belongs to %, parse results in its corresponding AST.

Consider the parser of AE. The results of parse are undefined for the

following strings as they are not AE programs:

I 1+

I 2*4

I 0++3

On the other hand, below is an example of when parse succeeds.

parse("-1+002") =

Add

Num

−1

Num

2

= −1 + 2

This book does not discuss implementation of parsers.

6 Syntax and Semantics 72

6.4 Semantics

Syntax is an essential element of a programming language. It allows

us to know which strings are programs and what the structures of

programs are. However, syntax does not explain execution of programs.

Programmers write programs to execute them. They should know what

will happen when their programs are executed. Therefore, we need

semantics in addition to syntax. Semantics is the other essential element

of a programming language. It defines the behaviors of programs.

Let us define the semantics of AE. Semantics is defined based on abstract

syntax. The structure of a program determines its behavior. Since abstract

syntax represents the structure, it is natural to use abstract syntax for

semantics. The semantics of AE defines the semantics of each AE program,

where the semantics of a program means things that happen when the

program is executed. When an AE program is executed, it does one thing:

outputs the result of the evaluation of the arithmetic expression. For

example, 0 + 1 should result in 1 if the semantics is defined correctly.

Note that + in 0+ 1 does not mean addition, and we cannot say anything

about the result of 0 + 1 until the semantics is defined. To make AE a

reasonable language, we must define the semantics of AE so that 0 + 1

results in 1.

There are infinitely many programs. We cannot define the semantics of

each program separately. We need to utilize the structures of programs

defined by the abstract syntax. According to the abstract syntax, programs

can split into three groups: =, 41+42, and 41−42. By defining the semantics

of each group once, we can complete the semantics of infinitely many

programs in a finite method.

The simplest case is =. = is an expression consisting of an integer. An

integer evaluates to itself. We represent this semantics as the following

rule:

Rule Num

= evaulates to =.

We can conclude the following facts by using Rule Num.

I 1 evaulates to 1.

I 5 evaulates to 5.

The next case is 41 + 42. As 41 is an arithmetic expression, it results in

some integer. Let =1 be the integer. Similarly, 42 also results in some

integer. Let =2 be the integer. Then, the result of 41 + 42 is the sum of =1

and =2. In this chapter, we use +
ℤ
instead of + to denote mathematical

addition. It will help you distinguish mathematical addition from +
used for the abstract syntax. Once you become familiar with syntax and

semantics, you can easily distinguish them by checking the context even

if both are denoted by +. From the next chapter, we will use + for both

abstract syntax and mathematical addition. The following rule defines

the semantics of 41 + 42.

Rule Add

If 41 evaluates to =1, and 42 evaluates to =2,

6 Syntax and Semantics 73

then 41 + 42 evaluates to =1 +ℤ
=2.

We can define the semantics of 41− 42 in a similar way. Like+
ℤ
, we use−

ℤ

for mathematical subtraction in this chapter. The following rule defines

the semantics of 41 − 42.

Rule Sub

If 41 evaluates to =1, and 42 evaluates to =2,

then 41 − 42 evaluates to =1 −ℤ
=2.

These three rules are all of the semantics of AE.We nowknow the behavior

of every AE program. For example, consider (3 − 1) + 2. The following

steps show why (3 − 1) + 2 evaluates to 4.

1. (By Rule Num) 3 evaluates to 3.

2. (By Rule Num) 1 evaluates to 1.

3. (By Rule Sub) If 3 evaluates to 3 and 1 evaluates to 1, then 3 − 1

evaluates to 2.

4. (By 1, 2, and 3) 3 − 1 evaluates to 2.

5. (By Rule Num) 2 evaluates to 2.

6. (By Rule Add) If 3 − 1 evaluates to 2 and 2 evaluates to 2, then

(3 − 1) + 2 evaluates to 4.

7. (By 4, 5, and 6) (3 − 1) + 2 evaluates to 4.

Now, let us define the semantics of AE in a more mathematical way. The

semantics defines the result of the execution of each program. Here, the

result is an integer. We can say that semantics outputs an integer when a

program is given. Thus, the semantics can be considered as a function

from a program to an integer.

eval : �→ ℤ

For each 4 ∈ �, there should exist a unique integer eval(4). It is obviously
true in AE. Every arithmetic expression evaluates to a unique integer.

However, defining semantics as a function is a bad choice in other

languages. Some programs do not produce any results. Nonterminating

programs are such examples. Programs that incur run-time errors also

belong to this category. You will see programs with run-time errors

in the next chapter. Moreover, there is a program whose result is not

unique. We call such programs nondeterministic programs. For example,

the behavior of a concurrent program with multiple threads depends

on how the threads are interleaved during execution. If the threads are

interleaved differently, the result may change. Programs without results

and nondeterministic programs prevent us from defining semantics as

a function. We should define semantics as a relation. Even though the

semantics of AE can be defined as a function, we define the semantics

as a relation to make the discussion of this chapter easily extendable to

other languages.

We define the semantics of AE as⇒, a binary relation over � and ℤ.

6 Syntax and Semantics 74

Binary relations

A binary relation over sets � and � is a subset of � × �, where

� × � = {(0, 1) | 0 ∈ � ∧ 1 ∈ �}.

Let ' be a binary relation over � and �. Then, ' ⊆ � × �. For 0 ∈ �
and 1 ∈ �, we write 0 ' 1 when (0, 1) ∈ '. For example, < is a binary

relation over ℤ and ℤ, and we can write 1 < 2 instead of (1, 2) ∈<.

⇒⊆ � ×ℤ

(4 , =) ∈⇒, i.e. 4 ⇒ = implies that 4 evaluates to =.

Let us define the semantics again with mathematical concepts.

Rule Num

= ⇒ =.

Rule Add

If 41 ⇒ =1 and 42 ⇒ =2,

then 41 + 42 ⇒ =1 +ℤ
=2.

Rule Sub

If 41 ⇒ =1 and 42 ⇒ =2,

then 41 − 42 ⇒ =1 −ℤ
=2.

We use one more mathematical concept: inference rules. An inference
rule is a rule to prove a new proposition from given propositions. An

inference rule has the following form:

premise
1

premise
2

· · · premise=
conclusion

It consists of a horizontal line, propositions above the line, and a proposi-

tion below the line. We call the propositions above the line premises and
the proposition below the line a conclusion. The rule means that if every

premise is true, then also the conclusion is true. A single inference rule

can have zero or more premises. A rule without premises implies that its

conclusion is always true. When a rule does not have any premises, we

can omit the horizontal line.

Let us define the semantics of AEwith inference rules.

= ⇒ = [Num]

41 ⇒ =1 42 ⇒ =2

41 + 42 ⇒ =1 +ℤ
=2

[Add]

41 ⇒ =1 42 ⇒ =2

41 − 42 ⇒ =1 −ℤ
=2

[Sub]

6 Syntax and Semantics 75

As you can see, the rules are much clearer and more concise than the

rules written in a natural language.

We can prove (3 − 1) + 2⇒ 4 with the rules. We usually draw a proof

tree when we prove a proposition with inference rules. A proof tree is a
tree whose root is the proposition to be proven. Each node of the tree is a

proposition, and the children nodes of a node are evidences supporting

that the proposition of the node is true. Unlike most trees in computer

science, we place the root of a proof tree at the bottom. Every node is

placed below its children.

The following proof tree proves 3⇒ 3.

3⇒ 3

The tree has only the root node because Rule Num does not have any

premises.

Similarly, the following proof tree proves 1⇒ 1.

1⇒ 1

We draw the following proof tree with Rule Sub and the above trees to

prove 3 − 1⇒ 2.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

By using Rule Num again, we prove 2⇒ 2.

2⇒ 2

Finally, we get the proof tree of (3 − 1) + 2⇒ 4.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

To explain what proof trees are, we have drawn the proof tree from its

leaf nodes. However, we usually draw a proof tree from the root node.

We start by drawing a horizontal line and writing the program we want

to evaluate.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

Then, we find which inference rule can be applied. In this case, we can

use Rule Add since the program is addition.

6 Syntax and Semantics 76

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

We need to evaluate 3 − 1 and 2 respectively. Let us focus on 3 − 1 first.

Since 3 − 1 is subtraction, we use Rule Sub.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

We can conclude that 3⇒ 3 from Rule Num.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

Similarly, 1⇒ 1.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

By subtracting 1 from 3, we get 2.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

We use Rule Num again and get 2⇒ 2.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

Finally, we can complete the proof tree and prove (3 − 1) + 2⇒ 4.

3⇒ 3 1⇒ 1

3 − 1⇒ 2

2⇒ 2

(3 − 1) + 2⇒ 4

Sometimes, we call a proof tree proving the result of a program a

evaluation derivation since the tree explains how the result of the program

is derived.

The way of defining semantics we have seen so far is big-step operational
semantics. It is called “operational” because it focuses onwhich operations

6 Syntax and Semantics 77

happen during execution and “big-step” because it finds the result of

a program by taking a single big step. There are other ways to define

semantics: denotational semantics and small-step operational semantics.

Most part of this book uses big-step operational semantics. However,

it will use small-step operational semantics to deal with continuations

later.

An interpreter is a program that takes a program as input and evaluates

the program. We can easily implement an interpreter of AE according to

its semantics. The interpreter consists of a single function that takes an

AST as an argument and returns an integer.

def interp(e: AE): Int = e match {

case Num(n) => n

case Add(l, r) => interp(l) + interp(r)

case Sub(l, r) => interp(l) - interp(r)

}

6.5 Syntactic Sugar

Syntactic sugar adds a new feature to a language by defining syntactic

transformation rules instead of changing the semantics. Syntactic sugar

is widely used in real-world programming languages because it allows

languages to provide useful features without increasing the burden of

the language designers too much.

Suppose that we want to add integer negation to AE. It can be done by

modifying both syntax and semantics of AE. First, we fix the concrete

syntax to add integer negation.

<expr> ::= <number> | <expr> "+" <expr>

| <expr> "-" <expr> | "-" "(" <expr> ")"

Similarly, we fix the abstract syntax, too.

4 ::= = | 4 + 4 | 4 − 4 | − 4

The parser should be changed accordingly. For example, -(03+4) is

parsed to −(3 + 4).

Finally, we add a new rule to the semantics to handle the −4 case.

Rule Neg

If 4 evaluates to =,

then −4 evaluates to −
ℤ
=.

Note that −
ℤ
denotes mathematical negation.

We can express the same thing as an inference rule.

4 ⇒ =

−4 ⇒ −
ℤ
=

Neg

6 Syntax and Semantics 78

2: https://www.scala-lang.

org/files/archive/spec/

2.13/06-expressions.html#

for-comprehensions-and-for-loops

It requires considerable amount ofworkasweneed tofix every component

of the language.

Another way to add integer negation to AE is to add it as syntactic sugar.

It is enough to modify the concrete syntax and the parser. The change

in the concrete syntax is the same as before. Now, we fix the parser to

parse "-" "(" expr ")" to 0 − 4 when expr is parsed to 4. For example,

-(03+4) is parsed to 0 − (3 + 4). Since 0 −
ℤ
= = −

ℤ
= for any integer =,

we are done. It is the power of syntactic sugar. Language designers can

easily add new features by syntactically transforming them to existing

features. The procedure removing syntactic sugar by transformation is

called desugaring.

We can find various examples of syntactic sugar in real-world languages.

For instance, for loops in Scala are supported as syntactic sugar.

A for comprehension for (? <- 4) yield 4′ is translated
to 4.map { case ? => 4′ }.2

In addition, macros in languages like C, Scala, LISP, and Rust can be

considered as user-defined syntactic sugar.

6.6 Exercises

Exercise 6.1 Consider the following concrete syntax:

<expr> ::= <num>

| "{" "+" <expr> <expr> "}"

| "{" "*" <expr> <expr> "}"

| "{" "let" "{" <id> <expr> "}" <expr> "}"

| <id>

Describe whether each of the following is expr and why. <id> consists

of one or more latin alphabets (a-z, A-Z), and <num> consists of one or

more digits (0-9). Assume that it is allowed to add whitespaces among

terminals freely.

1. {let {x 5} {+ 8 {* x 2 3}}}

2. {with {x 0} {with {x 7}}}

3. {let {3 5} {+ 8 {- x 2}}}

4. {let {3 y} {+ 8 {* x 2}}}

5. {let {x y} {+ 8 {* x 2}}}

Exercise 6.2 Consider the following concrete syntax:

<ice-cream> ::= "sprinkles" "on" <ice-cream>

| "cherry" "on" <ice-cream>

| "scoop" "of" <flavor> "on" <ice-cream>

| "sugar-cone"

| "waffle-cone"

<flavor> ::= "vanilla"

| "lettuce"

Assume that it is allowed to add whitespaces among terminals freely.

Describe whether each of the following is <ice-cream> and why.

https://www.scala-lang.org/files/archive/spec/2.13/06-expressions.html#for-comprehensions-and-for-loops
https://www.scala-lang.org/files/archive/spec/2.13/06-expressions.html#for-comprehensions-and-for-loops
https://www.scala-lang.org/files/archive/spec/2.13/06-expressions.html#for-comprehensions-and-for-loops
https://www.scala-lang.org/files/archive/spec/2.13/06-expressions.html#for-comprehensions-and-for-loops

6 Syntax and Semantics 79

1. sprinkles

2. sugar-cone

3. vanilla

4. scoop of vanilla on waffle-cone

5. sprinkles on lettuce on waffle-cone

6. scoop of vanilla on sprinkles on waffle-cone

7. cherry on scoop of lettuce on scoop of vanilla on sugar-cone

Exercise 6.3 Consider the following concrete syntax:

espresso ∈ <coffee>
41 ∈ <milk> 42 ∈ <coffee>

41 "on" 42 ∈ <coffee>

41 ∈ <coffee> 42 ∈ <milk>
41 "on" 42 ∈ <coffee>

41 ∈ <flavor> 42 ∈ <coffee>
41 "on" 42 ∈ <coffee>

"milk-foam" ∈ <milk> "steamed-milk" ∈ <milk>

"caramel" ∈ <flavor> "cinnamon" ∈ <flavor>

"cocoa-powder" ∈ <flavor> "chocolate-syrup" ∈ <flavor>

Assume that it is allowed to add whitespaces among terminals freely.

Describe whether each of the following is <coffee> and why.

1. caramel latte macchiato

2. espresso

3. steamed-milk on caramel on milk-foam on espresso

4. chocolate-syrup on cocoa-powder on cinnamon on milk-foam

on steamed-milk on espresso

5. steamed-milk on espresso on chocolate-syrup

6. cocoa-powder on milk-foam on steamed-milk on espresso

Identifiers 7

7.1 Identifiers 80

7.2 Syntax 82

7.3 Semantics 83

7.4 Interpreter 85

7.5 Exercises 86

Variables are one of the basic concepts of programming languages. A

variable relates a name to a value.We use the value of a variable bywriting

the name of the variable. For example, the following Scala program prints

3.

val x = 3

println(x)

The program defines a variable whose name is x and value is 3. At the

second line, the name x denotes the value 3.

We call the names of variables identifiers. An identifier is a name related

to a certain entity in a program. Not only the names of variables are

identifiers; there are various kinds of identifiers:

I Function names, which are related to functions

I Parameter names, which are related to the values of arguments

I Field names, which are related to values of fields

I Method names, which are related to methods

I Class names, which are related to classes

This chapter introduces identifiers. Identifiers in programs can split

into three groups: binding occurrences, bound occurrences, and free

identifiers. We will see what they are. This chapter discusses identifiers

based on the use of variables in programs. We will define VAE by

extending AE of Chapter 6with variables. Variables of VAE are immutable.

We will deal with mutable variables in Chapter 12. In VAE, the names

of variables are the only identifiers. However, as you have seen already,

real-world programming languages have many kinds of identifiers.

7.1 Identifiers

Identifiers name entities like variables and functions. Let us discuss

notions related to identifiers with the following Scala program:

f(0)

def f(x: Int): Int = {

val y = 2

x + y

}

f(1)

x - z

In this program, f, x, y, and z are identifiers. Strictly speaking, Int also

is an identifier, but we ignore it because we do not want to take types

into account here.

7 Identifiers 81

A single identifier can occur multiple times in a program. For instance, f

occurs three times in the program: line 1, line 2, and line 6. We can classify

occurrences of identifiers into three categories: binding occurrences,

bound occurrences, and free identifiers.

An occurrence of an identifier is called a binding occurrence if the identifier
occurs to be defined. A binding occurrence relates the identifier to a

particular entity. The program has three binding occurrences:

I f at line 2

It relates f to a function.

I x at line 2

It relates x to the value of an argument given to f.

I y at line 3

It relates y to the value 2.

Every binding occurrence has its own scope. The scope of a binding

occurrence means a code region where the indentifier defined by the

binding occurrence is alive, i.e. usable. The scope of each identifier in the

program is as follows:

I f

A function can be used in its body (as Scala allows recursive

function definitions) and at the lines below its definition. The scope

of f is from line 3 to line 7.

I x

A parameter of a function can be used only in the function body.

The scope of x is line 3 and line 4.

I y

A variable can be used at the lines below its definition. The scope

of y is line 4.

An occurrence of an identifier is called a bound occurrence if the identifier
occurs to use the entity related to itself. Since an identifier becomes

related to an entity by its binding occurrence, any bound occurrences

must reside in the scope of the binding occurrence. The program has

three bound occurrences:

I f at line 6

It denotes the function defined at line 2.

I x at line 4

It denotes the value of an argument passed to f.

I y at line 4

It denotes the value 2.

An occurrence of an identifier is called a free identifier if it is neither binding
nor bound. A free identifier neither introduces a new name nor uses a

name defined already. It is not in the scope of any binding occurrence of

the same identifier. The program has three free identifiers:

I f at line 1

It is outside the scope of f.

I x at line 7

It is outside the scope of x.

I z at line 7

The program never defines z.

7 Identifiers 82

We call a free identifier a free variable when it is the name of a variable.

Therefore, both x and z at line 7 are free variables.

Now, consider a binding occurrence that resides in the scope of a binding

occurrence of the same identifier. For example, the following program

has two binding occurrences of x, and the second binding occurrence is

in the scope of the first binding occurrence.

def f(x: Int): Int = {

def g(x: Int): Int =

x

g(x)

}

In this case, shadowing happens. Shadowingmeans that the innermost

binding occurrence shadows, i.e. temporarily invalidates, the outer

binding occurrences of the same name. Therefore, x at line 2 shadows

x at line 1. x at line 3 belongs to the scope of both binding occurrences

simultaenously. It denotes the value of an argument given to g, not f,

because of shadowing. On the other hand, x at line 4 denotes the value of

an argument given to f since it belongs to the scope of only x at line 1.

7.2 Syntax

Let us define the abstract syntax of VAE. We do not consider concrete

syntax anymore. Therefore, the term syntax will be used to mean abstract

syntax. Also, from now on, we use the term expressions rather than

programs when we discuss languages like VAE. For example, we say that

1+ 2 is an expression of AE, and 1 and 2 are the subexpressions of 1+ 2.

Recall the example at the beginning of the chapter:

val x = 3

println(x)

To add variables to AE, we need two kinds of expressions. The first kind is

expressions defining a variable, i.e. binding an identifier. In the example,

val x = 3; println(x) is such an expression. It defines the variable x

and starts the scope of x so that x can be used in println(x). We can

conclude that an expression defining a variable consists of three parts:

the name of the variable, an expression determining the value of the

variable, and an expression that can use the variable. These parts are

x, 3, and println(x), respectively, in the example. The second kind is

expressions using a variable, i.e. a bound occurrence. In the example, x at

the second line is such an expression. It uses the variable x to denote the

value 3. Based on this observation, we can define the syntax of VAE.

First, we need to add a new syntactic element: identifiers. The metavari-

able G ranges over identifiers. Let Id be the set of every identifier.

G ∈ Id

We do not care what Id really is.

7 Identifiers 83

1: We omit the common part to AE.

2: A finite partial function is a partial func-

tion whose domain is a finite set.

The syntax of VAE is as follows:
1

4 ::= · · · | val G=4 in 4 | G

I val G=41 in 42
It defines a newvariablewhose name is G. Therefore, the occurrence

of G is a binding occurrence. 41 decides the value denoted by the

variable. The scope of the variable includes 42 but excludes 41.

I G

It uses a variable; it is either a bound occurrence of G or a free

identifier. If it belongs to the scope of a binding occurrence of

the same name, then it is a bound occurrence and denotes the

value associated with the identifier. Otherwise, it is a free identifier,

which denotes nothing.

7.3 Semantics

To define the semantics of VAE, we need an additional semantic element

that stores the values denoted by variables. Without such an element, we

cannot know the value of eachvariable.We call the element an environment.
An environment is a finite partial function.

2
The metavariable � ranges

over environments.

Env = Id
fin↦→ ℤ

� ∈ Env

For example, consider an environment �. If �(x) = 1, the value of a

variable named x is 1. An environment is a partial function because it

does not have the values related to free identifiers. If a variable named

y is free in �, then �(y) is undefined. In addition, it is finite since every

program defines only finitely many identifiers.

Every expression in VAE can evaluate to an integer only under some

environment. The reason is obvious: without environments, there is no

way to find the values of variables, and thus environments are essential

to evaluation.

The following rule defines the semantics of G:

Rule Id

If G is in the domain of �,
then G evaluates to �(G) under �.

If G is an element of the domain of �, G is a bound occurrence. The

environment gives us the value denoted by G, which is �(G). Then, the
result is �(G). Otherwise, G is not in the domain and is a free identifier. In

that case, we cannot evaluate G. The evaluation terminates immediately.

It can be interpreted as a run-time error.

Formally, the semantics of VAE is a ternary relation over Env, �, and ℤ

since it must take environments into account.

7 Identifiers 84

3: Domain(�) denotes the domain of �.

⇒⊆ Env × � ×ℤ

(�, 4 , =) ∈⇒ is true if and only if 4 evaluates to = under �. We write

� ` 4 ⇒ = instead of (�, 4 , =) ∈⇒. Intuitively, � and 4 are inputs, and =

is the corresponding output.

Rule Id can be formulated as the following inference rule:
3

G ∈ Domain(�)
� ` G ⇒ �(G)

[Id]

When a variable is defined, the value of the variable is added to the

environment. We write �[G ↦→ =] to denote an environment obtained

by adding the fact that G denotes = to �. Then, the following property

holds:

�[G ↦→ =](G′) =
{
= if G = G′

�(G′) if G ≠ G′

The following rule defines the semantics of val G=41 in 42:

Rule Val

If 41 evaluates to =1 under �, and 42 evaluates to =2 under �[G ↦→ =1],
then val G=41 in 42 evaluates to =2 under �.

To evaluate val G=41 in 42, we need to determine the value of G first. It can

be done by evaluating 41. Since the scope of G excludes 41, the evaluation

proceeds under �, which is a given environment. The result of 41 is the

value of G, and this information must be added to the environment. By

adding the fact to �, we get �[G ↦→ =1]. As 42 is the scope of G, 42 is

evaluated under �[G ↦→ =1]. The result of 42 is the final result.

This semantics naturally explains shadowing. Let G already be in the

domain of �. Suppose that �(G) = =. However, 42 is evaluated under

�[G ↦→ =1], and �[G ↦→ =1](G) = =1. When G is used in 42, its value is =1,

not =. Therefore, we can say that the innermost definition of G is used

for the evaluation of 42. This behavior exactly matches the concept of

shadowing explained before.

Rule Val can be expressed as the following inference rule:

� ` 41 ⇒ =1 �[G ↦→ =1] ` 42 ⇒ =2

� ` val G=41 in 42 ⇒ =2

[Val]

The remaining cases are =, 41 + 42, and 41 − 42. Rules for those cases are
basically identical to the rules of AE. However, we need to additionally

take environments into account.

Rule Num

= evaluates to = under �.

7 Identifiers 85

Rule Add

If 41 evaluates to =1 under �, and 42 evaluates to =2 under �,
then 41 + 42 evaluates to =1 + =2 under �.

Rule Sub

If 41 evaluates to =1 under �, and 42 evaluates to =2 under �,
then 41 − 42 evaluates to =1 − =2 under �.

Integers, addition, and subtraction never update environments. An

integer evaluates to itself. Addition and subtraction evaluates their

subexpressions under the same environment.

We can express the rules in a natural language as the following inference

rules:

� ` = ⇒ = [Num]

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

[Add]

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 − 42 ⇒ =1 − =2

[Sub]

The following proof tree proves that val x=1 in x + x evaluates to 2 under

the empty environment. Note that [G1 ↦→ =1 , · · · , G< ↦→ =<] denotes
an environment whose domain includes from G1 to G< and each G8 is

mapped to =8 .

∅ ` 1⇒ 1

x ∈ Domain([x ↦→ 1])
[x ↦→ 1] ` x⇒ 1

x ∈ Domain([x ↦→ 1])
[x ↦→ 1] ` x⇒ 1

[x ↦→ 1] ` x + x⇒ 2

∅ ` val x=1 in x + x⇒ 2

7.4 Interpreter

The following Scala code implements the abstract syntax of VAE:

sealed trait Expr

case class Num(n: Int) extends Expr

case class Add(l: Expr, r: Expr) extends Expr

case class Sub(l: Expr, r: Expr) extends Expr

case class Val(x: String, i: Expr, b: Expr) extends Expr

case class Id(x: String) extends Expr

An identifier is an arbitrary string. Val(G, 41, 42) corresponds to

val G=41 in 42; Id(G) corresponds to G.

We use a map to represent an environment. The type of an environment

is Map[String, Int].

7 Identifiers 86

type Env = Map[String, Int]

We can add a pair of a key and a value to a map with the + operator. For

example, where m is Map(1 -> "one"), m + (2 -> "two") is the same

as Map(1 -> "one", 2 -> "two").

def interp(e: Expr, env: Env): Int = e match {

case Num(n) => n

case Add(l, r) => interp(l, env) + interp(r, env)

case Sub(l, r) => interp(l, env) - interp(r, env)

case Val(x, i, b) => interp(b, env + (x -> interp(i, env)))

case Id(x) => env(x)

}

Since the structure of the code is almost identical to the semantics rules,

there is nothing much to explain. In the Id case, when x is a key in env,

the corresponding value becomes the result of interp. Otherwise, an

exception is thrown, and the execution terminates without producing

any results.

7.5 Exercises

Exercise 7.1 For each of the following expression:

I val x=(val x=3 in 5 − x) in 1 + x
I val x=3 in val y=5 in 1 + x
I val x=3 in val x=5 in 1 + x

1. Draw arrows from each bound occurrence to its binding occurrence.

2. Draw dotted arrows from each shadowing variable to its shadowed

variable.

Exercise 7.2 This exercise asks you to implement the shadowing func-

tion, which takes a VAE expression as an argument and returns the

set of every identifier that becomes shadowed at least once in the ex-

pression. For example, shadowing(4) equals Set("x") where 4 denotes

val x=y in val x=1 in z. The shadowing function calls the helper func-

tion, which tracks the set of every identifier defined already to detect

shadowing.

Complete the following implementation:

def shadowing(e: Expr): Set[String] = helper(e, Set())

def helper(e: Expr, env: Set[String]): Set[String] =

e match {

case Num(n) => ???

case Add(l, r) => ???

case Id(x) => ???

case Val(x, e, b) => ???

}

First-Order Functions 8

8.1 Syntax 87

8.2 Semantics 88

8.3 Interpreter 90

8.4 Scope 90

8.5 Exercises 92

A function is one of the most important concepts in programming

languages. It is the key feature of functional languages, as the term

functional implies. Even in imperative languages, functions are important

and widely-used. This chapter focuses on first-order functions. First-order
functions are functions that cannot take or return functions. They are

much restrictive than first-class functions but still very useful.

Consider the following Scala program:

def twice(x: Int): Int = x + x

println(twice(3) + twice(5))

It defines a function, twice. The function takes one argument and returns

twice of the argument. The program can call the function whenever we

want. twice(3) passes 3 as an argument to twice. Its result is 6, which

is twice of 3. Similarly, twice(5) results in 10. Therefore, the program

prints 16.

This chapter defines F1VAE by adding first-order functions to VAE. Every
function in F1VAE is top-level. It means that a function definition cannot

be a part of an expression. We assume that a F1VAE program is a single

expression that is evaluated under an environment and a list of function

definitions. This design prevents us from exploring interesting topics

like closures but enables us to focus on the semantics of function calls.

The next chapter will introduce first-class functions and closures, which

make functions more expressive.

8.1 Syntax

We can figure out the components of a function definition from the above

example. If we ignore the type annotations, the definition consists of three

parts: twice, x, and x + x. twice is the name of the function; x is the

parameter of the function; x + x is the body of the function. Therefore,

we can define the syntax of a function definition as follows:

3 ::= def G(G)=4

The metavariable 3 ranges over function definitions. Let FunDef denote
the set of every function definition. A function definition def G1(G2)=4
defines a function whose name is G1, parameter is G2, and body is 4. Both

G1 and G2 are binding occurrences. The scope of G1 is the entire program;

the scope of G2 is 4. In many real-world languages, a function has zero or

more parameters. However, our syntax restricts a function to have one

and only one parameter. We adopt this design to make the semantics

8 First-Order Functions 88

1: We omit the common part to VAE.

simple. Once you understand a function with a single parameter, you

can easily extend the concept to a function with multiple parameters.

Using a function is to call the function. If we never call a function, the

function is useless. We need to add a new kind of expression to the

language: the function call expression. The following is the syntax of

F1VAE: 1

4 ::= · · · | G(4)

G(4) is the function call expression. It calls a function named G. 4 deter-

mines the value of the argument of the call. Here, G is a bound occurrence.

A function call always has only one argument since every function in

F1VAE has only one parameter.

8.2 Semantics

Like thatwehave introduced environments to store the values of variables,

we need a new semantic element that associates functions with their

names. Let us call it a function environment, which is a finite partial

function from identifiers to function definitions.

FEnv = Id
fin↦→ FunDef

Λ ∈ FEnv

The metavariable Λ ranges over function environments.

Evaluation of an expression requires not only an environment but also a

function environment to handle function calls properly. Therefore, the

semantics is a relation over Env, FEnv, �, and ℤ.

⇒⊆ Env × FEnv × � ×ℤ

(�,Λ, 4 , =) ∈⇒ is true if and only if 4 evaluates to = under � and Λ. We

write �,Λ ` 4 ⇒ = instead of (�,Λ, 4 , =) ∈⇒.

The following rule describes the semantics of function calls:

Rule Call

If

G is in the domain of Λ,

Λ(G) is def G(G′)=4′,
4 evaluates to =′ under � and Λ, and

4′ evaluates to = under [G′ ↦→ =′] and Λ,
then

G(4) evaluates to = under � and Λ.

To evaluate G(4), we need to evaluate 4 first to decide the value of the

argument. Then, we search for a function from the function environment

with a given function name, G. G must be in the domain of the function

environment. Otherwise, G is a free identifier, and a run-time error

8 First-Order Functions 89

happens.When G is in the domain, we can get the corresponding function

definition. The function definition gives us the name of the parameter and

the body. Since every function is top-level, the body of each function does

not belong to the scope of any local variables. It can use no more than its

own parameter. Thus, the body should be evaluated under [G′ ↦→ =′], not
�[G′ ↦→ =′]. At the same time, since function calls do not affect function

environments, the same function environment is used for the evaluation

of the body. The result of the body is the result of the function call.

We can formulate the semantics as the following inference rule:

�,Λ ` 4 ⇒ =′

G ∈ Domain(Λ) Λ(G) = def G(G′)=4′ [G′ ↦→ =′],Λ ` 4′⇒ =

�,Λ ` G(4) ⇒ =
[Call]

The other rules should be revised to consider function environments. No

expression modifies a function environment.

Rule Num

= evaluates to = under � and Λ.

Rule Add

If 41 evaluates to =1 under � and Λ, and 42 evaluates to =2 under � and Λ,

then 41 + 42 evaluates to =1 + =2 under � and Λ.

Rule Sub

If 41 evaluates to =1 under � and Λ, and 42 evaluates to =2 under � and Λ,

then 41 − 42 evaluates to =1 − =2 under � and Λ.

Rule Val

If 41 evaluates to =1 under � and Λ, and 42 evaluates to =2 under �[G ↦→
=1] and Λ,
then val G=41 in 42 evaluates to =2 under � and Λ.

Rule Id

If G is in the domain of �,
then G evaluates to �(G) under � and Λ.

We can fix the inference rules in a similar way.

�,Λ ` = ⇒ = [Num]

�,Λ ` 41 ⇒ =1 �,Λ ` 42 ⇒ =2

�,Λ ` 41 + 42 ⇒ =1 + =2

[Add]

�,Λ ` 41 ⇒ =1 �,Λ ` 42 ⇒ =2

�,Λ ` 41 − 42 ⇒ =1 − =2

[Sub]

8 First-Order Functions 90

2: We omit the common part to VAE.

�,Λ ` 41 ⇒ =1 �[G ↦→ =1],Λ ` 42 ⇒ =2

�,Λ ` val G=41 in 42 ⇒ =2

[Val]

G ∈ Domain(�)
�,Λ ` G ⇒ �(G)

[Id]

8.3 Interpreter

The following Scala code expresses the abstract syntax of F1VAE: 2

case class FunDef(f: String, x: String, b: Expr)

sealed trait Expr

...

case class Call(f: String, a: Expr) extends Expr

Just like environments, function environments can be expressed as maps.

The type of a function environment is Map[String, FunDef] as it maps

an identifier to a function definition.

type FEnv = Map[String, FunDef]

The following function evaluates a given expression under a given

environment and a given function environment.

def interp(e: Expr, env: Env, fEnv: FEnv): Int = e match {

case Num(n) => n

case Add(l, r) =>

interp(l, env, fEnv) + interp(r, env, fEnv)

case Sub(l, r) =>

interp(l, env, fEnv) - interp(r, env, fEnv)

case Val(x, i, b) =>

interp(b, env + (x -> interp(i, env, fEnv)), fEnv)

case Id(x) => env(x)

case Call(f, a) =>

val FunDef(_, x, e) = fEnv(f)

interp(e, Map(x -> interp(a, env, fEnv)), fEnv)

}

The implementation reflects the semantics exactly. You can easily check

its correctness with the case-wise comparison.

8.4 Scope

The current semantics is called static scope. Static scope allows the scope

of a binding occurrence to be determined statically, i.e. only by looking

the code, without executing it. In other words, a function body can

use only variables that have been defined already when the function is

defined. For example, consider the following code:

8 First-Order Functions 91

def f(x)=x + y

Since every function is top-level, while variables are local in F1VAE, y
does not belong to the scope of any binding occurrence of y. No variable

can be defined before the function. Therefore, y is a free variable, and

calling the function f must incur a run-time error. It is true under the

current semantics. The current function call semantics evaluates the

body of a function under the environment that has only the value of

the parameter. The environments at function call-sites never affect the

environment used for the evaluation of the body.

The opposite of static scope is dynamic scope, which makes every

information in the environment at each call-site available to the function

body. The behavior of a function depends on not only its argument

but also its call-site. An identifier in the body of a function becomes

associated with a different entity for each function call. It implies that

the scope of a binding identifier cannot be determined statically; it is

determined at run time, i.e. dynamically.

For example, the following expression evaluates to 3 when we assume

the same definition of f as before:

(val y=1 in f(0)) + (val y=2 in f(0))

During the first function call, y in f is bound to the first y and denotes 1.

However, during the second function call, it is bound to the second one

and denotes 2. The scope of the first y includes not only f(0), which is

normal, but also the body of f. It is the same for the second y. As you can

see, under dynamic scope, the scope of a binding identifier is not fixed; it

becomes extended at run time due to function calls.

To adopt dynamic scope to F1VAE, we need to change the function call

semantics as follows:

Rule Call-Dyn

If

G is in the domain of Λ,

Λ(G) is def G(G′)=4′,
4 evaluates to =′ under � and Λ, and

4′ evaluates to = under �[G′ ↦→ =′] and Λ,
then

G(4) evaluates to = under � and Λ.

It is equivalent to the following inference rule:

�,Λ ` 4 ⇒ =′

G ∈ Domain(Λ) Λ(G) = def G(G′)=4′ �[G′ ↦→ =′],Λ ` 4′⇒ =

�,Λ ` G(4) ⇒ =
[Call-Dyn]

The interpreter can be fixed like below.

case Call(f, a) =>

8 First-Order Functions 92

val FunDef(_, x, e) = fEnv(f)

interp(e, env + (x -> interp(a, env, fEnv)), fEnv)

Dynamic scope prevents programs frombeingmodular. The environment

at each call-site affects the behavior of a function. It hinders programmers

from reasoning about the semantics of a function based on the definition.

They need to additionally consider every possible call-site. It implies

that different parts of a program unexpectedly interfere with each other.

Therefore, dynamic scope makes programs error-prone. Because of the

harmfulness of dynamic scope, most modern languages adopt static

scope.

8.5 Exercises

Exercise 8.1 With the following list of function definitions in F1VAE:

def twice(x)=x + x
def x(y)=y
def f(x)=x + 1

def g(g)=g
Show the results of evaluating the following expressions under the empty

environment. When it is an error, describe which error it is.

1. twice(twice)
2. val x=5 in x(x)
3. g(3)
4. g(f)
5. g(g)

First-Class Functions 9

9.1 Syntax 93

9.2 Semantics 94

9.3 Interpreter 97

9.4 Syntactic Sugar 98

9.5 Exercises 99

First-class functions are functions that can be used as values. They are

much more expressive than first-order functions, which are the topic of

the previous chapter. This chapter explains the semantics of first-class

functions. We need to introduce the notion of a closure to make first-class

functions work properly. We will see what closures are and why they are

necessary.

This chapter defines FVAE by extending VAE with first-class functions.

The only way to create a function in FVAE is to make an anonymous
function, which is a function without a name. However, we can add

named functions as syntactic sugar. In addition, we will see that even

variable definitions can be considered as syntactic sugar.

9.1 Syntax

Consider an anonymous function in Scala:

(x: Int) => x + x

If we ignore its type annotation, it consists of two parts: x and x + x.

x is the parameter of the function; x + x is the body of the function.

This observation lets us know that an anonymous function consists of its

parameter and body.

In F1VAE, the syntax of a function call is G(4). To call a function, the name

of the function should be given. However, it is not true in languages with

first-class functions. Let us see some function calls in Scala.

def twice(x: Int): Int = x + x

twice(1)

twice(1) is a function call, and it designates a function by its name.

def makeAdder(x: Int): Int => Int =

(y: Int) => x + y

makeAdder(3)(5)

makeAdder is a function that returns a function. makeAdder(3) is a

function call, and its result is a function. Therefore, we can call the

resulting function again. makeAdder(3)(5) is an expression that calls

makeAdder(3). It designates a function by an expression, rather than

just a name. We can conclude that the syntax of a function call in FVAE
should be more general than F1VAE because of the presence of first-

class functions. In FVAE, a function call consists of two expressions: one

9 First-Class Functions 94

1: We omit the common part to VAE.

determines the function to be called and the other determines the value

of the argument.

We have used the term function call so far. In the context of functional

programming, we use the term function applicationmore frequently.When

we see f(1), we say “f is applied to 1” instead of “f is called with the

argument 1.” Applications soundmore natural than calls especially when

we are talking about first-class functions. For example, we usually say

“makeAdder(3) is applied to 5” rather than “makeAdder(3) is called with

the argument 5.”

From the above observation on anonymous functions and function

applications, we can define the syntax of FVAE. The following is the

syntax of FVAE: 1

4 ::= · · · | �G.4 | 4 4

I �G.4
It is called an anonymous function or a lambda abstraction. It denotes
a function whose parameter is G and body is 4. G is a binding occur-

rence, and its scope is 4. A function has zero or more parameters

in many real-world languages, but we restrict a function in FVAE
to have one and only one parameter for simplicity as before.

I 41 42
It is a function application, or just an application in short. 41 denotes

the function; 42 denotes the argument.

This book follows the following conventions on the notation of lambda

abstractions and function applications:

I The body of a lambda abstraction extends as far right as possible.

For example, �x.x + x is �x.(x + x), not (�x.x) + x.
I Function applications are left-associative. For example, f 1 2 is

(f 1) 2, not f (1 2).

9.2 Semantics

Integers are the only values in VAE. It is not true in FVAE. Since first-class
functions are values, a value of FVAE is either an integer or a function.

Thus, we define a new kind of semantic element, value. The metavariable

E ranges over values. Also, let + be the set of every value.

E ::= = | 〈�G.4 , �〉

A value is either an integer or a closure. A closure, which is a function as

a value, has the form 〈�G.4 , �〉. It is a pair of a lambda abstraction and an

environment. A lambda abstraction in a closure may have free identifiers,

but the environment of the closure can store the values denoted by the

free identifiers.

To discuss the necessity of closures, consider the following expression:

(�x.�y.x + y) 1 2

9 First-Class Functions 95

It is equivalent to ((x: Int) => (y: Int) => x + y)(1)(2) in Scala.

The function �x.�y.x + y does not have any free identifiers. The scope

of x is �y.x + y; the scope of y is x + y. Therefore, both x and y in x + y
are bound occurrences. The whole expression must result in 3, which

equals 1 + 2, without a run-time error. You can check it by running the

equivalent Scala program.

If we consider a function value as just a lambda abstraction, not a closure,

evaluation of the above expression becomes problematic. When the

expression is evaluated, �x.�y.x + y is applied to 1 first. The result is a

function value, which is a lambda abstraction: �y.x + y. Next, �y.x + y is

applied to 2. The result of the application can be computed by evaluating

x + y under the environment containing that y denotes 2. However, there

is no way to find the value of x. x has become free identifier although it

was not in the beginning.

We adopt the notion of a closure to resolve the problem. When a lambda

expression evaluates to a function value, which is a closure, it captures

the environment. Since �y.x + y is evaluated under the environment

containing that x denotes 1, its result is 〈�y.x+ y, [x ↦→ 1]〉. The captured
environment of the closure records that x is not a free identifier and

denotes 1. When the closure is applied to 2, its body x + y is evaluated

under [x ↦→ 1, y ↦→ 2], not [y ↦→ 2]. The addition successfully results in

3.

In summary, we need closures to retain the static scope semantics.

A first-class function can be passed as a value and thus applied to an

argument at a different place fromwhere it has beendefined.However, the

environments used for the evaluation of their bodies must be determined

statically. In other words, the denotation of identifiers in the bodies of

functions must be determined when the functions are defined, not used.

Therefore, each closure captures the surrounding environment when it

is created.

Now, let us define the semantics of FVAE. Most things are the same as

the semantics of VAE, but we should be aware of that values now include

not only integers but also closures.

An environment is a finite partial function from identifiers to values.

Env = Id
fin↦→ +

The semantics of FVAE is a ternary relation over Env, �, and + .

⇒⊆ Env × � ×+

� ` 4 ⇒ E is true if and only if 4 evaluates to E under �.

A lambda abstraction creates a closure containing the current environ-

ment.

Rule Fun

�G.4 evaluates to 〈�G.4 , �〉 under �.

� ` �G.4 ⇒ 〈�G.4 , �〉 [Fun]

9 First-Class Functions 96

A function application evaluates its both subexpressions. Then, it evalu-

ates the body of the closure under the environment obtained by adding

the value of the argument to the environment of the closure.

Rule App

If

41 evaluates to 〈�G.4 , �′〉 under �,
42 evaluates to E

′
under �, and

4 evaluates to E under �′[G ↦→ E′],
then

41 42 evaluates to E under �.

� ` 41 ⇒ 〈�G.4 , �′〉 � ` 42 ⇒ E′ �′[G ↦→ E′] ` 4 ⇒ E

� ` 41 42 ⇒ E
[App]

We can reuse Rule Num, Rule Add, Rule Sub, and Rule Id of VAE. However,

it is important to note that FVAE has more cases that evaluation can fail

than VAE. For example, consider Rule Add.

Rule Add

If 41 evaluates to =1 under �, and 42 evaluates to =2 under �,
then 41 + 42 evaluates to =1 + =2 under �.

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

[Add]

The rule assumes the results of 41 and 42 to be integers. If the assumption

is violated, a run-time error happens. For example, (�x.x) + 1 incurs a

run-time error because the left operand is a closure, not an integer.

We need to revise Rule Val of VAE a bit. Since every value is an integer in

VAE, a variable of VAE can denote only an integer. In FVAE, a variable

should be able to denote a general value, not only an integer.

Rule Val

If 41 evaluates to E1 under �, and 42 evaluates to E2 under �[G ↦→ E1],
then val G=41 in 42 evaluates to E2 under �.

� ` 41 ⇒ E1 �[G ↦→ E1] ` 42 ⇒ E2

� ` val G=41 in 42 ⇒ E2

[Val]

Now, a variable can denote a value, not only an integer.

The following proof trees prove that (�x.�y.x+y) 1 2 evaluates to 3 under

the empty environment. The proof splits into three trees for readability.

Suppose that �1 = [x ↦→ 1] and �2 = [x ↦→ 1, y ↦→ 2].

∅ ` �x.�y.x + y⇒ 〈�x.�y.x + y, ∅〉
∅ ` 1⇒ 1 �1 ` �y.x + y⇒ 〈�y.x + y, �1〉
∅ ` (�x.�y.x + y) 1⇒ 〈�y.x + y, �1〉

9 First-Class Functions 97

2: We omit the common part to VAE.

x ∈ Domain(�2)
�2 ` x⇒ 1

y ∈ Domain(�2)
�2 ` y⇒ 2

�2 ` x + y⇒ 3

∅ ` (�x.�y.x + y) 1⇒ 〈�y.x + y, �1〉 ∅ ` 2⇒ 2 �2 ` x + y⇒ 3

∅ ` (�x.�y.x + y) 1 2⇒ 3

9.3 Interpreter

The following Scala code implements the syntax of FVAE: 2

sealed trait Expr

...

case class Fun(x: String, b: Expr) extends Expr

case class App(f: Expr, a: Expr) extends Expr

Fun(G, 4) represents �G.4; App(41, 42) represents 41 42.

A value of FVAE is either an integer or a closure. Thus, we represent a

value as an ADT.

sealed trait Value

case class NumV(n: Int) extends Value

case class CloV(p: String, b: Expr, e: Env) extends Value

NumV(=) represents =; CloV(G, 4, �) represents 〈�G.4 , �〉.

An environment is a finite partial function from identifiers to values.

Therefore, the type of an environment is Map[String, Value].

type Env = Map[String, Value]

The following function evaluates a given expression under a given

environment:

def interp(e: Expr, env: Env): Value = e match {

case Num(n) => NumV(n)

case Add(l, r) =>

val NumV(n) = interp(l, env)

val NumV(m) = interp(r, env)

NumV(n + m)

case Sub(l, r) =>

val NumV(n) = interp(l, env)

val NumV(m) = interp(r, env)

NumV(n - m)

case Id(x) => env(x)

case Fun(x, b) => CloV(x, b, env)

case App(f, a) =>

val CloV(x, b, fEnv) = interp(f, env)

interp(b, fEnv + (x -> interp(a, env)))

}

9 First-Class Functions 98

In the Num case, the return value is NumV(n), not n, since the function

must return a value of the type Value.

In the Add and Sub cases, we cannot assume that the operands are

integers any longer. We use pattern matching to discriminate integers

from closures. If both operands are integers, addition or subtraction

succeeds. Otherwise, at least one of them is a closure, and the interpreter

crashes due to a patternmatching failure. Note that this code is equivalent

to the following code:

case Add(l, r) =>

interp(l, env) match {

case NumV(n) => interp(r, env) match {

case NumV(m) => NumV(n + m)

case _ => error("not an integer")

}

case _ => error("not an integer")

}

Similarly, in the App case, we use pattern matching to discriminate

closures from integers. The first expression of Appmust yield a clsoure,

not an integer, to make the execution succeed.

9.4 Syntactic Sugar

We can add named local functions to FVAE with the following change in

the syntax:

4 ::= · · · | def G(G)=4 in 4

def G1(G2)=41 in 42 defines a function whose name is G1, parameter is G2,

and body is 41. The scope of G1 is 42, and thus the function does not allow

recursion.

Instead of changing the semantics, FVAE can provide named local func-

tions as syntactic sugar. Let B be a string transformed intodef G1(G2)=41 in 42
by the parser of FVAE with named local functions embedded in the se-

mantics. To treat named local functions as syntactic sugar, the parser

should transform B into val G1=�G2.41 in 42.

Variable definitions can be considered as syntactic sugar as well. Let B

be a string transformed into val G=41 in 42. To make variable definitions

syntactic sugar, the parser can transform B into (�G.42) 41. The evaluation
of (�G.42) 41 evaluates 41 first. Then, 42 is evaluatedunder the environment

that G denotes the result of 41. This semantics is exactly the same as that

of val G=41 in 42. Therefore, we can say that variable definitions are just

syntactic sugar in FVAE.

Hereafter,we removevariable definitions fromFVAE and call the language

FAE. However, we may still use variable definitions in examples. It is

completely fine because they are considered as syntactic sugar.

Furthermore, we can treat even integers, addition, and subtraction as syn-

tactic sugar. The only things we need are variables, lambda abstractions,

9 First-Class Functions 99

and function applications. We can write any programs with these three

kinds of expressions. The lambda calculus is a language that provides only
the three features. This book does not discuss how integers, addition,

and subtraction can be desugared into the lambda calculus.

9.5 Exercises

Exercise 9.1 Consider the following expression:

val x=5 in
val f=�y.y + x in
(�g.f (g 1)) (�x.x)
Write the arguments to interp each time it is called during the evaluation

of the expression. Write them in the order in which the calls to interp

occur during evaluation. For Num, Id, and Fun expressions, show their

result values as well.

Exercise 9.2 This exercise examines differences between semantics by

changing scope. Consider the following code:

def interp(e: Expr, env: Env): Value = e match {

...

case App(f, a) =>

val CloV(x, b, fEnv) = interp(f, env)

interp(b, ??? + (x -> interp(a, env)))

}

Describe the semantics of the App case in prose when we use each of the

following for ???.

1. env

2. Map()

3. fEnv

Exercise 9.3 Rewrite the following FVAE expression to an FAE expression

by desugaring val:

val x=�y.8 + y in �y.x (10 − y)

Exercise 9.4 This exercise asks you to implement the desugar function,

which takes an FVAE expression as an argument and returns an FAE by

desugaring val.

Complete the following implementation:

def desugar(e: Expr): Expr = e match {

case Num(n) => ???

case Id(x) => ???

case Val(x, e, b) => ???

case Fun(x, b) => ???

case App(f, a) => ???

}

9 First-Class Functions 100

Exercise 9.5 We can extend FVAE with pairs:

case class Pair(f: Expr, s: Expr) extends Expr

case class Fst(e: Expr) extends Expr

case class Snd(e: Expr) extends Expr

This exercise asks you to implement the desugar function, which takes

an expression and returns an expression that lacks Pair, Fst, and Snd

but has the same behavior as the given expression. Precisely speaking,

desugar satisfies the following:

I If e evaluates to an integer, desugar(e) evaluates to the same

integer.

I If e evaluates to a function, desugar(e) evaluates to a function.

I If e evaluates to a pair, desugar(e) evaluates to a function.

I If e does not terminate, desugar(e) does not terminate.

I If e incurs a run-time error, desugar(e) can have any behavior.

Complete the following implementation:

def desugar(e: Expr): Expr = e match {

case Num(n) => Num(n)

case Id(x) => Id(x)

case Fun(x, b) => Fun(x, desugar(b))

case App(f, a) => App(desugar(f), desugar(a))

case Fst(e) => App(desugar(e), Fun("x", Fun("y", Id("x"))))

case Snd(e) => App(desugar(e), Fun("x", Fun("y", Id("y"))))

case Pair(f, s) => ???

}

Exercise 9.6 Consider the following semantics without closures:

E ::= = | �G.4 � ` �G.4 ⇒ �G.4

� ` 41 ⇒ �G.4 � ` 42 ⇒ E2 [G ↦→ E2] ` 4 ⇒ E

� ` 41 42 ⇒ E

1. Explain why the above semantics, which lacks closures, is prob-

lematic.

2. Write an FVAE expression such that

I the evaluation in the original semantics with closures results

in an integer, but

I the evaluation in the above semantics without closures incurs

a run-time error.

Exercise 9.7 Suppose thatwe say that an expression 4 terminates properly

if and only if ∅ ` 4 ⇒ E for some E. Write an FVAE expression 4 such that

only one of 4 and �x.4 x terminates properly.

Exercise 9.8 Write an FVAE expression that has a free identifier but

evaluates to a value without incurring any run-time errors.

Exercise 9.9 This exercise extends FVAE with pairs. Consider the follow-

9 First-Class Functions 101

3: https://tc39.es/ecma262/

#sec-block-runtime-semantics-evaluation

ing language:

4 ::= · · · | (4 , 4) | 4.1 | 4.2
E ::= · · · | (E, E)

The semantics is as follows:

I The evaluation of (41 , 42) yields (E1 , E2), where 48 evaluates to E8 .

I The evaluation of 4.1 yields the first value of a pair E, where 4

evalutes to E.

I The evaluation of 4.2 yields the second value of a pair E, where 4

evalutes to E.

1. Write the operational semantics of the form � ` 4 ⇒ E .

2. Write the evaluation derivation of (8, (320, 42).1).2.

Exercise 9.10 This exercise extends FVAE with records. A record is a

value that maps labels to values. Consider the following language:

4 ::= · · · | {; : 4 , · · · , ; : 4} | 4.;
E ::= · · · | 〈; : E, · · · , ; : E〉

where ; ranges over labels.

The semantics is as follows:

I The evaluation of {;1 : 41 , · · · , ;= : 4=} yields 〈;1 : E1 , · · · , ;= : E=〉,
where 48 evaluates to E8 .

I The evaluation of 4.; yields the value of a field ; in a record E,

where 4 evaluates to E.

Write the operational semantics of the form � ` 4 ⇒ E .

Exercise 9.11 This exercise extends FVAE with JavaScript-like sequenc-

ing.
3
Consider the following language:

4 ::= · · · | () | 4; · · · ; 4
E ::= · · · | ()

The semantics is as follows:

I The value of () is ().
I The value of 41; · · · ; 4= is () if every 48 evaluates to ().
I The value of 41; · · · ; 4= is the value of the last expression whose

value is not () if there is such an expression.

Write the operational semantics of the form � ` 4 ⇒ E .

Exercise 9.12 This exercise modifies FVAE to check body expressions

when evaluating function expressions. Consider we extend the value of

FVAE to include a special value ↑ to represent an error during function

body checking. Write the operational semantics of the form � ` 4 ⇒ E

for a function expression �G.4, when its semantics changes as follows:

I If every free identifier of 4 is in the domain of � or is G, then

evaluation of �G.4 under � yields a closure containing the function

expression and the environment.

I Otherwise, evaluation of �G.4 under � yields ↑.

You may use the semantic function fv, which takes an expression and

returns the set of every free identifier in the expression. For example,

https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation

9 First-Class Functions 102

fv(�x.y x) = {y}.

Exercise 9.13 This exercise extends FVAE to support multiple parameters.

Consider the following language:

4 ::= · · · | �G · · · G.4 | 4(4 , · · · , 4)
E ::= · · · | 〈�G · · · G.4 , �〉

The semantics of some constructs are as follows:

I Evaluating �G1 · · · G= .4 under � yields a closure 〈�G1 · · · G= .4 , �〉.
I If

• evaluating 40 under � yields a closure 〈�G1 · · · G= .4 , �′〉,
• evaluating 48 under � yields E8 for each 1 ≤ 8 ≤ =, and
• evaluating 4 under �′[G1 ↦→ E1 , · · · , G= ↦→ E=] yields E,

then evaluating 40(41 , · · · , 4=) under � yields E.

1. Write the operational semantics of the form � ` 4 ⇒ E for the

expressions.

2. Write the evaluation derivation of (�f m.f(m))(�x.x, 8).

Exercise 9.14 Consider the following language:

4 ::= = | G | �G · · · G.4 | 4(4 , · · · , 4) | get 4
E ::= = | undefined | 〈�G · · · G.4 , �〉

The semantics of some constructs are as follows:

I The value of a function expression �G1 · · · G= .4 at an environment

� is a closure 〈�G1 · · · G= .4 , �〉.
I A function application 40(41 , · · · , 4=) is evaluated as follows:

• Evaluate the subexpressions in order. The value of 40 should

be a closure 〈�G1 · · · G< .4 , �〉 that has < parameters.

• Create an array
 of size = and initialize the 8-th value of the

array with the value of 48+1 where 0 ≤ 8 ≤ = − 1.

• Evaluate the closure body 4 under the environment � extended
as follows:

∗ The value of the 8-th parameter is the value of 48 where

1 ≤ 8 ≤ min (<, =).
∗ The value of the 9-th parameter is the undefined value

where = < 9 ≤ <.

and the array
.

I The value of get 4 is the =-th value of the array
 where = is the

value of 4 and the array indices start from 0.

For example, (�x y.y)(4) evaluates to undefined, and (�x.get 0)(5) evaluate
to 5.

1. Write the operational semantics of the form �,
 ` 4 ⇒ E .

2. Write the evaluation derivation of (�x y.get x)(2, 19, 141).

Exercise 9.15 This exercise replaces the environment-based semantics

of FVAE with substitution-based semantics. Consider the following

implementation:

trait Expr

9 First-Class Functions 103

trait Value extends Expr

case class Num(n: Int) extends Expr with Value

case class Id(x: String) extends Expr

case class Fun(x: String, b: Expr) extends Expr with Value

case class App(f: Expr, a: Expr) extends Expr

def subst(e: Expr, x: String, v: Expr): Expr = e match {

case Num(n) => e

case Id(name) =>

if (name == x) v else e

case Fun(y, b) =>

Fun(y, if (y == x) b else subst(b, x, v))

case App(f, a) =>

App(subst(f, x, v), subst(a, x, v))

}

def interp(e: Expr): Value = e match {

case Num(n) => Num(n)

case Id(x) => error("free identifier")

case Fun(x, b) => Fun(x, b)

case App(f, a) =>

val Fun(x, b) = interp(f)

interp(subst(b, x, interp(a)))

}

In this implementation, a value is either an integer or a lambda abstraction:

E ::= = | �G.4

1. Write the operational semantics of the above implementation of

the form 4 ⇒ E where 4[G/E] denotes subst(4, G, E).

2. Write thedefinitionof the substitution 4[G/E]of the form 4[G/E] = 4 :

3. Consider the following expression:

(�f.�x.f 0) (�y.x) 0

a) What is the result of evaluating the expression under the

empty environment in substitution-based FVAE?
b) What is the result of evaluating the expression under the

empty environment in environment-based FVAE?
c) Why are the results different?

4. Fix the Fun case of the funtion subst in the implementation tomake

substitution-based FVAE equivalent to environment-based FVAE.
You may use the following helper functions without defining them:

// returns the set of every binding identifier in e

def binding(e: Expr): Set[String]

// returns the set of every free identifier in e

def free(e: Expr): Set[String]

// returns a new identifier that does not belong to xs

def fresh(xs: Set[String]): String

9 First-Class Functions 104

Exercise 9.16 This exercise extends FVAE with JavaScript-like records,

field accesses, and method calls:

4 ::= · · · | {; : 4 , · · · , ; : 4} | 4.; | 4.;(4) | E
E ::= · · · | 〈; : E, · · · , ; : E〉 | undefined

; ranges over labels, which are the names of fields in records. Let Label be
the set of every label. Note that this ∈ Id and proto ∈ Label.

For ease of formalizing operational semantics, we treat a value E as one

sort of an expression. For example, for a value E and a label ;, both E

and E.; are expressions. The operational semantics of E is as follows:

� ` E ⇒ E

1. The following sentences describe the operational semantics:

I {;1 : 41 , · · · , ;= : 4=}
Let E8 be the results of 48 . The result is 〈;1 : E1 , · · · , ;= : E=〉.

I 4.;

Let E be the result of 4. The value E must be a record value.

• If E contains a field named ;, the result is the value of the

field.

• If E does not contain a field named ; but does contain

a field named proto, the result is the result of Eproto.;,

where Eproto is the value of the field named proto.

• If E does not contain a field named either ; or proto, the

result is undefined.
I 41.;(42)

Let E1 be the result of 41. The result of E1.; must be a closure.

Let 〈�G.4 , �〉 be the result of E1.;. Let E2 be the result of 42.

Let �′ be the new environment made by adding a mapping

from this to E1 and a mapping from G to E2 to �. Let E be the

result of 4 under �′. The result is E.

Write the operational semantics of {;1 : 41 , · · · , ;= : 4=}, 4.;, and
41.;(42) of the form � ` 4 ⇒ E .

2. Draw the evaluation derivation of {proto : {x : 1}}.x under the

empty environment.

3. When {a : 0, b : 4}.b(1) evaluates to a value without a run-time

error, does the function application (4 1) always yield the same

result? If so, explain why. Otherwise, write a counterexample, i.e.

write 4 such that {a : 0, b : 4}.b(1) evaluates to a value E, while

(4 1) does not evaluate to that E.

Exercise 9.17 This exercise extends FVAE with exceptions.

Expression 4 ::= · · · | throw | try 4 catch 4
Result A ::= E | exc

Due to the presence of exceptions, an expression can throw an exception

instead of evaluating to a value. � ` 4 ⇒ E denotes that 4 evaluates to E

under �, and � ` 4 ⇒ exc denotes that 4 throws an exception under �.

Note that errors are different from exceptions. Errors are unintended

failures of evaluation, which cannot be handled. For example, adding

an interger to a closure causes an error and terminates the execution

immediately. However, exceptions are thrown by throw written by pro-

9 First-Class Functions 105

grammers and can be handled by try-catch. Therefore, exceptions are
thrown and handled according to the intention of programmers.

The semantics of the language is as follows:

I throw throws an exception.

I Any expressions except try-catch propagate exceptions, i.e. if a

subexpression of 4 that is not try-catch throws an exception, then 4

also throws an exception without evaluating the remaining subex-

pressions. This language uses the left-to-right order for evaluating

subexpressions.

I During the evaluation of each expression, dynamic type checking

of the values of the subexpressions happens only after evaluating

all the subexpressions. For example, in 41+ 42, when 41 evaluates to

E1, it is checked whether E1 is an integer or not after the evaluation

of 42.

I try 41 catch 42 handles an exception. If 41 throws an exception,

try 41 catch 42 evaluates 42 and uses the result of 42 as its result. If

41 does not throw an exception, the result of 41 is used as the result

without evaluating 42.

Below are some examples:

I ∅ ` throw⇒ exc
I ∅ ` throw + 1⇒ exc
I ∅ ` (�x.x) + throw⇒ exc
I ∅ ` throw + ((�x.(x x)) (�x.(x x))) ⇒ exc
I ((�x.(x x)) (�x.(x x))) + throw does not terminate.

I ∅ ` try 1 catch 2⇒ 1

I ∅ ` try throw catch 2⇒ 2

1. Write the operational semantics of the form � ` 4 ⇒ A .

2. Draw the evaluation derivation of try (1 + throw) catch (throw + 2).

1: We ignore the case when the input is

negative.

2: FAE does not provide conditional ex-

pressions (if0), which is defined by RFAE,
but we use it since we can easily add them

to FAE.

3: We omit the common part to FAE.

Recursion 10

10.1 Syntax 106

10.2 Semantics 107

10.3 Interpreter 108

10.4 Recursion as Syntactic Sugar109

10.5 Exercises 111

Recursive functions are widely used in programming. We have discussed

importance of recursion in Section 3.2. This chapter explains the semantics

of recursive functions bydefiningRFAE,which extendsFAEwith recursive

functions. In addition, we will see that recursive functions also are

just syntactic sugar: we can express recursive functions with first-class

functions.

Consider the following Scala program:

def sum(x: Int): Int =

if (x == 0)

0

else

x + sum(x - 1)

println(sum(10))

The function sum takes an integer n as an argument, and returns the sum

of the integers between 0 to n (including n). 1 Therefore, the program

prints 55.

How can we implement an equivalent program in FAE? One naïve

approach could be the following expression:
2

val sum=�x.if0 x 0 (x + sum (x − 1)) in sum 10

However, it is wrong since the scope of sum includes sum 10 but excludes

�x.if0 x 0 (x + sum (x − 1)). sum in the body of the function is a free

identifier. Evaluation of the expression termiantes with a run-time error.

It is nontrivial to define recursive functions in FAE.

10.1 Syntax

We define RFAE by extending FAE with recursive functions. To demon-

strate the usefulness of recursion with examples, we add conditional

expressions as well.

The following is the abstract syntax of RFAE: 3

4 ::= · · · | if0 4 4 4 | def G(G)=4 in 4

I if0 41 42 43
It is a conditional expression. 41 is the condition; 42 is the true

branch; 43 is the false branch. We consider the condition to be true

when it denotes 0. All the other values, i.e. nonzero integers and

closures, are considered as false.

10 Recursion 107

I def G1(G2)=41 in 42
It defines a recursive function whose name is G1, parameter is G2,

and body is 41. Both G1 and G2 are binding occurrences. The scope

of G1 is 41 and 42; the scope of G2 is 41. If G1 occurs in 41, it is a bound

occurrence, which implies that the function can be recursive.

In RFAE, we can implement a function computing the sum of consecutive

integers like below.

def sum(x)=if0 x 0 (x + sum (x − 1)) in sum 10

10.2 Semantics

The semantics of conditional expressions is quite easy. The semantics

consists of two rules: one for when the condition is true and the other for

when the condition is false.

The following rule defines the semantics when the condition is true:

Rule If0-Z

If 41 evaluates to 0 under � and 42 evaluates to E under �,
then if0 41 42 43 evaluates to E under �.

� ` 41 ⇒ 0 � ` 42 ⇒ E

� ` if0 41 42 43 ⇒ E
[If0-Z]

When 41 evaluates to 0, the condition is considered as true, and the

true branch, 42, is evaluated. The result of 42 is the result of the whole

expression.

The following rule defines the semantics when the condition is false:

Rule If0-Nz

If 41 evaluates to E
′
under �, where E′ ≠ 0, and 43 evaluates to E under �,

then if0 41 42 43 evaluates to E under �.

� ` 41 ⇒ E′ E′ ≠ 0 � ` 43 ⇒ E

� ` if0 41 42 43 ⇒ E
[If0-Nz]

When 41 evaluates to a value other than 0, the condition is considered as

false, and the false branch, 43, is evaluated. The result of 43 is the result

of the whole expression.

Now, let us discuss the semantics of recursive functions. Consider

def G1(G2)=41 in 42. 42 is in the scope of G1, and G1 denotes a func-

tion. Therefore, we can start by defining �′ = [G1 ↦→ 〈�G2.41 , �〉] and
evaluating 42 under �′. However, this approach is incorrect. When the

body of the closure, 41, is evaluated, the environment is �[G2 ↦→ E] for
some E. The environment does not contain G1, and therefore using G1 in

41 will incur a free identifier error, which is certainly wrong since G1 is a

recursive function. The environment of the closure must include G1 and

its value, which is the closure itself. From this observation, we obtain the

10 Recursion 108

4: We omit the common part to FAE.

following rule:

Rule Rec

If 42 evaluates to E under �′, where �′ = �[G1 ↦→ 〈�G2.41 , �′〉],
then def G1(G2)=41 in 42 evaluates to E under �.

�′ = �[G1 ↦→ 〈�G2.41 , �
′〉] �′ ` 42 ⇒ E

� ` def G1(G2)=41 in 42 ⇒ E
[Rec]

The environment of the closure is �′, which has G1 and the closure. �′

is recursively defined at the meta-level. It is not that surprising. We

are defining a recursive function, so the defined function value itself

should be recursive. When the body of the closure, 41, is evaluated, the

environment is �′[G2 ↦→ E] for some E, which contains G1. The function

G1 can be used in its body and thus recursive.

We can reuse the rules of FAE for the other expressions.

The following proof trees prove that def f(x)=if0 x 0 (x + f (x − 1)) in f 1

evaluates to 1 under the empty environment. The proof splits into three

trees for readability. Suppose the following facts:

4f = if0 x 0 (x + f (x − 1))
Ef = 〈�x.4f , �1〉
�1 = [f ↦→ Ef]
�2 = �1[x ↦→ 1]
�3 = �1[x ↦→ 0]

f ∈ Domain(�2)
�2 ` f⇒ Ef

x ∈ Domain(�2)
�2 ` x⇒ 1

�2 ` 1⇒ 1

�2 ` x − 1⇒ 0

x ∈ Domain(�3)
�3 ` x⇒ 0

�3 ` 0⇒ 0

�3 ` 4f ⇒ 0

�2 ` f (x − 1) ⇒ 0

f ∈ Domain(�1)
�1 ` f⇒ E 5

�1 ` 1⇒ 1

x ∈ Domain(�2)
�2 ` x⇒ 1

1 ≠ 0

x ∈ Domain(�2)
�2 ` x⇒ 1

�2 ` f (x − 1) ⇒ 0

�2 ` x + f (x − 1) ⇒ 1

�2 ` 4f ⇒ 1

�1 ` f 1⇒ 1

�1 = [f ↦→ Ef] �1 ` f 1⇒ 1

∅ ` def f(x)=4f in f 1⇒ 1

10.3 Interpreter

The following Scala code implements the syntax of RFAE: 4

sealed trait Expr

...

case class If0(c: Expr, t: Expr, f: Expr) extends Expr

case class Rec(f: String, x: String, b: Expr, e: Expr) extends Expr

10 Recursion 109

If0(41, 42, 43) represents if0 41 42 43; Rec(G1, G2, 41, 42) represents

def G1(G2)=41 in 42.

sealed trait Value

case class NumV(n: Int) extends Value

case class CloV(p: String, b: Expr, var e: Env) extends Value

Values are defined in a similar way to FAE. The only difference is that

the field e, which denotes the captured environment, of CloV is now

mutable. Using mutation is the easiest way to make recursive values in

Scala, though we can do it without mutation.

def interp(e: Expr, env: Env): Value = e match {

...

case If0(c, t, f) =>

interp(if (interp(c, env) == NumV(0)) t else f, env)

case Rec(f, x, b, e) =>

val cloV = CloV(x, b, env)

val nenv = env + (f -> cloV)

cloV.e = nenv

interp(e, nenv)

}

In the If0 case, the condition is evaluated first. According to the condition,

one of the branches is evaluated.

In the Rec case, we construct a closure first. However, the closure is not

complete at this point. We next create a new environment: the environ-

ment with the closure. The closure must capture the new environment.

To achieve this, we change the environment of the closure to the new en-

vironment. Now, both closure and environment have recursive structures,

and e can be evaluated under the environment.

10.4 Recursion as Syntactic Sugar

Even if a language does not support recursive functions, we can imple-

ment recursive functions with first-class functions, i.e. we can implement

recursive functions in FAE. The key to desugar recursive functions into

FAE is the following function:

/ = �f.(�x.f (�v.x x v)) (�x.f (�v.x x v))

/ is called afixed point combinator. Inmathematics, afixed pointof a function
5 is a solution of the equation 5 (G) = G. A fixed point combinator is a

function that computes a fixed point of a given function. A recursive

function can be considered as a fixed point of a certain function. For

example, consider the following function:

�f.�v.if0 v 0 (v + f (v − 1))

Let us call the function 5 . Suppose that sum is given to the function as an

10 Recursion 110

argument, where sum is a function that takes a natural number = as an

argument and returns

∑=
8=0
8. Then, the return value of 5 is

�v.if0 v 0 (v + sum (v − 1))

It is a function again.When 0 is given to the function, the result is 0. When

a positive integer = is given to the function, the result is = + sum (= − 1),
which equals sum =. Therefore, 5 sum equals sum, and we can say that

sum is a fixed point of 5 .

The fixed point combinator / takes a function as an argument and returns

a fixed point of the function. Therefore, / 5 equals sum. Let us see the

reason. We use 4 5 as an abbreviation of if0 v 0 (v + f (v − 1)). Then, / 5

is the same as

/ (�f.�v.4 5)

It evaluates to � � where � denotes

�x.(�f.�v.4 5) (�v.x x v)

By expanding only the first � in � �, we get

(�x.(�f.�v.4 5) (�v.x x v)) �

which evaluates to

(�f.�v.4 5) (�v.� � v)

By expanding 4 5 , we get

(�f.�v.if0 v 0 (v + f (v − 1))) (�v.� � v)

which evaluates to

�v.if0 v 0 (v + (�v.� � v) (v − 1))

Let us call this function 6. Note that we now know that � � evaluates to

6. If we apply 6 to 0, the result is 0. If we apply 6 to a positive integer =,

the result is

= + (�v.� � v) (= − 1)

which evaluates to

= + � � (= − 1)

Since � � evaluates to 6, the above expression evaluates to

= + 6 (= − 1)

Then, the semantics of 6 is

6 = =

{
0 if = = 0

= + 6 (= − 1) otherwise

It implies that 6 equals sum. Actually, this evaluation has started from

/ 5 . Therefore, / 5 equals sum.

One may ask if we can use the following expression /′ instead of /:

/′ = �f.(�x.f (x x)) (�x.f (x x))

10 Recursion 111

It is a natural question because x x does the same thing as �v.x x v when

applied to an argument. However, the answer is no. Eta-expanding x x to

�v.x x v has the effect of delaying computation on x x. While x x should

be immediately evaluated, x x in �v.x x v can be evaluated only when the

function is applied to an argument. This delaying effect is necessary in /.

Suppose that we use /′. Then, /′ 5 evaluates to �′ �′ where �′ denotes

�x.(�f.�v.4 5) (x x)

By expanding only the first �′, we get

(�x.(�f.�v.4 5) (x x)) �′

which evaluates to

(�f.�v.4 5) (�′ �′)

To evaluate this expression, we need to evaluate the argument. However,

the argument is �′ �′, which implies that we need the value of �′ �′ to
compute the value of �′ �′. Thus, at this point, the execution starts to

evaluate �′ �′ forever and never terminates. For this reason, we should

use /, not /′, as a fixed point combinator.

Finally, we can define the syntactic transformation rule to desugar recur-

sive functions:def G1(G2)=41 in 42 is transformed into val G1=/ (�G1.�G2.41) in 42.
If G1 in def G1(G2)=41 in 42 denotes a function ℎ, ℎ is a fixed point of

�G1.�G2.41. Therefore,/ (�G1.�G2.41) is equal to ℎ. Both def G1(G2)=41 in 42
and val G1=/ (�G1.�G2.41) in 42 evaluate 42 under the environment that G1

denotes ℎ. Therefore, they have the same semantics, and the desugaring

is correct.

10.5 Exercises

Exercise 10.1 Consider the following expression:

val f=�x.if0 x 0 (f (x − 1)) in
def f(x)=if0 x 0 (f (x − 1)) in
f y

1. Draw arrows from each bound occurrence to its binding occurrence.

2. Circle each free identifier.

Exercise 10.2 Consider the following functions:

I bindings: returns the set of every identifier that has at least one

binding occurrence in a given expression

I frees: returns the set of every identifier that has at least one free

occurrence in a given expression

Complete the following implementation of bindings and frees forRFAE:

def bindings(e: Expr): Set[String] = e match {

case Num(n) => ???

case Id(x) => ???

case Val(x, e, b) => ???

case App(f, a) => ???

case Fun(x, b) => ???

10 Recursion 112

case Rec(f, x, b, e) => ???

}

def frees(e: Expr): Set[String] = e match {

case Num(n) => ???

case Id(x) => ???

case Val(x, e, b) => ???

case App(f, a) => ???

case Fun(x, b) => ???

case Rec(f, x, b, e) => ???

}

Exercise 10.3 What are the results of the following expression:

def f(x)=if0 x x (1 + (f (x − 1))) in
val f=�x.42 + (f x) in
f 7

in different scoping semantics when we evaluate it under the following

environment?

Map("f" -> CloV("x", Add(Num(13), Id("x")), Map()))

1. Dynamic scope

2. Static scope

Exercise 10.4 Consider the new semantics of if0 as follows:

� ` 41 ⇒ 0 � ` 42 ⇒ E2 � ` 43 ⇒ E3

� ` if0 41 42 43 ⇒ E2

� ` 41 ⇒ E1 E1 ≠ 0 � ` 42 ⇒ E2 � ` 43 ⇒ E3

� ` if0 41 42 43 ⇒ E3

1. Explain how the new semantics is different from the original

semantics.

2. Write an RFAE expression such that

I the evaluationwith the original semantics results in an integer,

but

I the evaluation with the above semantics incurs a run-time

error.

Exercise 10.5 Consider the following language:

4 ::= · · · | 1 | 4 ∧ 4 | ¬4 | if 4 4 4
E ::= · · · | 1

where 1 ranges over booleans.

The semantics is as follows:

I The value of 1 is 1.

I The value of 41 ∧ 42 is E1 ∧ E2, where 48 evaluates to E8 . Note that

the language does not support the short-circuiting semantics, i.e.,

42 is always evaluated.

I The value of ¬4 is ¬E, where 4 evaluates to E.

10 Recursion 113

5: https://docs.racket-lang.org/

reference/if.html

I The value of if 41 42 43 is the value of 42 if 41 evaluates to true and 43
if 41 evaluates to false.

Write the operational semantics of the form � ` 4 ⇒ E .

Exercise 10.6 The following sentences are a simplified version of the

Racket programming language reference about conditionals.
5

I Booleans

True and false booleans are represented by the values true and false,
respectively.

I if 41 42 43
Evaluates 41. If it produces any value other than false, then 42 is

evaluated, and its result is the result for the if expression. Otherwise,

43 is evaluated, and its result is the result for the if expression.
I and 41 42
41 is evaluated. If it produces false, the result of the and expression

is false. Otherwise, the result is the same as the result of 42.

I or 41 42
41 is evaluated. If it produces a value other than false, that result is
the result of the or expression. Otherwise, the result is the same as

the result of 42.

Now, we extend RFAE with Racket-like booleans.

1. Write the operational semantics of the form � ` 4 ⇒ E .

2. Draw the evaluation derivation of if (or false 2) (and false 2) 1 under

the empty environment.

Exercise 10.7 Explain why the following expression does not terminate

and describe how to fix it.

val z=(�f.
val x=(�y.

val g=y y in
f g

) in
x x

) in
val f=z (�f.�v.if0 v 0 (v + f (v − 1))) in
f 10

Exercise 10.8 Explain what is wrong with the following expression and

describe how to fix it.

val z=(�f.
val x=(�y.

val g=�x.y y x in
f g

) in
x x

) in
val f=z (�v.if0 v 0 (v + f (v − 1))) in
f 10

Exercise 10.9 Consider the following expression:

https://docs.racket-lang.org/reference/if.html
https://docs.racket-lang.org/reference/if.html

10 Recursion 114

val f=(
val x=�y.(

val f=�v.y y v in
�v.if0 v 0 (v + f (v − 1))
) in
x x

) in
f 10

1. Draw arrows on the above expression from each bound variable to

its binding occurrence.

2. Draw dotted arrows on the above expression from each shadowing

variable to its shadowed variable.

3. Write the value of f in the last line.

Exercise 10.10 Consider the following definition of z and its use to define

the recursive function f.

val z=(�f.
val x=(�y.

val g=�a.y y a in
f g

) in
x x

) in
val f=z (�f.�v.if0 v 0 (v + f (v − 1))) in
f 10

Describe conditions that an argument given to zmust satisfy so that z

can make its recursive version.

Exercise 10.11 Mutually recursive functions are functions that call each

other. For example, the following Scala code defines two mutually recur-

sive functions even and odd:

def even(n: Int): Boolean = if (n == 0) true else odd(n - 1)

def odd(n: Int): Boolean = if (n == 0) false else even(n - 1)

We can implement mutually recursive functions also in FAE. For this
purpose, we add pairs to FAE: (41 , 42) creates a new pair; 4.1 gives the

first value of a pair; 4.2 gives the second value of a pair. Also, in order to

implement even and odd, we add booleans to FAE: true and false.

The following expression implements even and odd in FAE:

val z=(�b.
val fx=(�fy.

val f=??? in
val g=??? in
???

) in
fx fx

) in
val f=z �f.??? in
val even=f.1 in
val odd=f.2 in
(even 10, odd 10)

10 Recursion 115

Complete the expression.

Boxes 11

11.1 Syntax 116

11.2 Semantics 117

11.3 Interpreter 122

11.4 Exercises 124

Mutation is awidely-used feature. It is an important concept in imperative

languages. Even functional languages support mutation. Few languages

are purely functional, i.e. do not allow any mutation: e.g. Haskell and

Coq. Mutation is important since many programs can be implemented

concisely and efficiently with mutation. At the same time, mutation

often makes programs difficult to be reasoned about and error-prone.

While binding of identifiers works modularly and allows local reasoning,

mutation has a global effect on execution and enables uncontrolled

interference between distinct parts of a program. Mutation should be

used with extreme care of programmers.

This chapter introduces mutation by defining BFAE, which extends FAE
with boxes. A box is a cell in memory that contains a single value. The

value contained in a box can be modified anytime after the creation of

the box. Boxes in BFAE are higher-order. Each box can contain any value,

which can be a box or a closure, rather than only an integer. A box itself is

rarely found in real-world languages: it is almost the same as a reference in

OCaml (ref). However, it is a good abstraction of more general mutation

mechanisms including mutable objects and data structures. We can find

such concepts in most languages, and boxes are useful to understand

those concepts.

We can consider mutable objects in Scala as generalization of boxes. By

going the opposite direction, we can say that boxes can be represented as

objects. Consider the following class definition in Scala:

case class Box(var value: Any)

The class Box has one field: value. Like any other classes, we can construct

instances of Box and read the fields of the instances.

val b = Box(3)

println(b.value)

It prints 3. In addition, since the field value is declared as mutable, we

can mutate its value.

b.value = 10

println(b.value)

It changes the value of the field to 10 and prints 10.

11.1 Syntax

The above Scala example shows three kinds of expressions regarding

boxes: creating a new box, reading the value of a box, and changing the

11 Boxes 117

1: We omit the common part to FAE.

value of a box. To create a box, we need an expression that determines

the initial value of the box. To read the value of a box, we need an

expression that determines the box. To change the value of a box, we need

an expression that determines the box and an expression that determines

the new value of the box.

In addition, there is another kind of expression that has been implicitly

used: the sequencing expression. Usually, an expression mutating a box

is useless per se. There should be other expressions that observe the

change and do other interesting things based on the change. To do so, we

need to combine multiple expressions to form a single expression. Such

an expression is the sequencing expression.

We candefine the syntax ofBFAEbasedon the observations. The following

is the syntax of BFAE: 1

4 ::= · · · | box 4 | !4 | 4:=4 | 4; 4

I box 4
It creates a new box, cf. Box(3) in the example. 4 determines the

initial value of the box.

I !4

It reads the value of a box, cf. b.value in the example. 4 determines

the box to be read.

I 41:=42
It changes the value of a box, cf. b.value = 10 in the example. 41
determines the box to be updated; 42 determines the new value.

I 41; 42
It is a sequencing expression. 41 is the first expression to be evalu-

ated; 42 is the second. Many real-world languages allow sequencing

of an arbitrary number of expressions. For brevity, BFAE allows

only sequencing of two expressions. Sequencing of multiple expres-

sions can be easily expresssed by nested sequencing. For example,

41; 42; 43 can be expresssed as (41; 42); 43.

11.2 Semantics

Defining mutable memory is crucial to define the semantics of BFAE. We

call the memory of a program a store. A store records the values of boxes.

Each box is distinguished from another box by its address, i.e. every box

has its own address, which differs from the addresses of any other boxes.

The metavarible 0 ranges over addresses. Let Addr be the set of every

possible address. We do not care about what Addr really is.

0 ∈ Addr

A store is a finite partial function from addresses to values. If the store

maps an address 0 to a value E, the value of the box whose address is

0 is E. The metavarible " ranges over stores. Let Sto be the set of every
store.

Sto = Addr
fin↦→ +

11 Boxes 118

2: We omit the common part to FAE.

" ∈ Sto

The semantics does not require a concrete notion of a box. Since every

box is uniquely identified by an address, the semantics can consider each

address as a box. Thus, we treat an address as a value of BFAE, instead of

introducing a new semantic element denoting boxes. For example, an

expression creating a box evaluates to an address. We need to revise the

definition of a value to include addresses.
2

E ::= · · · | 0

Note that we keep using the concept of a box for explanation. Even

though the semantics abstracts boxes with addresses, boxes do exist from

the programmers’ perspective. The term box and the term address will

be interchangeably used.

How are stores used in the semantics? First, consider an expression

reading a box. Evaluating !4 needs not only an environment but also a

store. If 4 denotes a box, the store has the value of the box. The value

becomes the result of !4. Without a store, there is no way to find the value

of a box and yield a result. It implies that evaluation requires a store to

be given.

Now, let us consider the other kinds of expressions related to boxes. box 4
creates a new box; 41:=42 changes the content of a box. Both modify stores.

Modifying a store differs from extending an environment with a new

identifier.

A change in an environment is propagated to the subexpressions of an

expression that has caused the change. Consider val G=41 in 42. It extends
the environment with G, but only 42 uses the extended environment

because the scope of G is 42 but nowhere else. A variable definition can

affect only its subexpressions. For instance, in (val G=41 in 42) + 43, 43 does
not belong to the scope of G. The extended environment must be used

for only 42, but not 43. Therefore, we say that binding and environments

are local and modular.

On the other hand, the modified store is unnecessary for the subex-

pressions of an expression that modifies the store, while other parts of

the program need the modified one. Consider (x:=2); !x as an example.

Assume that x denotes a box. !xmust be aware of that x:=2 has changed

the value of the box to 2. Otherwise, !x will get the previous value of

the box and produce a wrong result. Note that !x is not a subexpression

of x:=2. However, in x:=2, the evaluation of 2, which is a subexpression

of x:=2, must not be affected by the change in the value of the box since

the change happens after the evaluation of 2. Therefore, how stores

change due to expressions is important. If an expression contains two

subexpressions, the store obtained by evaluating the first subexpression

has to be passed to the evaluation of the second subexpression. Stores are

completely different from environments. Any change in a store affects

the entire remaining computation. Stores are global and not modular.

From the observation, we can conclude that evaluation of an expression

needs to take a store in addition to an environment as input and output

a new store along with a result value. We can define the semantics as a

11 Boxes 119

3: Side effects are any observable behav-

iors of expressions except the results. Mu-

tation and exceptions are side effects.

relation over Env, Sto, �, + , and Sto. The former store is input, and the

latter store is output.

⇒⊆ Env × Sto × � ×+ × Sto

�, "1 ` 4 ⇒ E, "2 is true if and only if 4 evaluates to E and changes the

store from"1 to"2 under �. We call this way of defining semantics a

store-passing style. The style allows defining BFAE, featuring mutability,

without any mutable concepts at the meta-level.

Now, let us define the semantics of each expression. We can easily reuse

Rule Num, Rule Id, and Rule Fun of BFAE by adding stores. Theymaintain

the contents of given stores.

Rule Num

= evaluates to = and changes the store from" to" under �.

�, " ` = ⇒ =, " [Num]

Rule Id

If G is in the domain of �,
then G evaluates to �(G) and changes the store from" to" under �.

G ∈ Domain(�)
�, " ` G ⇒ �(G), "

[Id]

Rule Fun

�G.4 evaluates to 〈�G.4 , �〉 and changes the store from" to" under �.

�, " ` �G.4 ⇒ 〈�G.4 , �〉, " [Fun]

During the evaluation of a certain expression, the order of the evaluation

among the subexpressions matters as they can modify the store. Suppose

that G denotes a box, and the box contains 1. If the left operand of

addition is evaluated before the right operand, in (x:=2)+!x, !x evaluates

to 2 since it is affected by the previous change. On the other hand, if the

right operand is evaluated first, !x evaluates to 1 because its evaluation

precedes the modification and can observe only the original value.

The order among the premises in a semantics rule does not specify the

order of evaluation. So far, we have not specified the order of evaluation

in the semantics as the order does not matter if there are no side effects.
3

However, BFAE supports mutation, and we should specify the order in

the semantics. This goal can be naturally achieved by passing stores. If we

define the semantic to use the store that comes out from the evaluation

of the left operand as input of the evaluation of the right operand, the

order is determined to evaluate the left first.

A sequencing expression per se cannot modify a given store, but its

subexpressions can.

11 Boxes 120

Rule Seq

If

41 evaluates to E1 and changes the store from" to"1 under �, and
42 evaluates to E2 and changes the store from"1 to"2 under �,

then

41; 42 evaluates to E2 and changes the store from" to"2 under �.

�, " ` 41 ⇒ E1 , "1 �, "1 ` 42 ⇒ E2 , "2

�, " ` 41; 42 ⇒ E2 , "2

[Seq]

41 is evaluated before 42. The evaluation of 42 must be aware of any

modifications of the store made by 41. For this purpose, the rule passes

"1, obtained by evaluating 41, to the evaluation of 42. The result of 41 is

just discarded. The final result is the same as the result of 42.

Rule Add, Rule Sub, and Rule App are similar to Rule Seq. They cannot

modify stores, but their subexpressions can. The evaluation order is the

same as the sequencing expression. BFAE chooses the left-to-right order

for every expression, but other languages may use a different order.

Rule Add

If

41 evaluates to =1 and changes the store from" to"1 under �, and
42 evaluates to =2 and changes the store from"1 to"2 under �,

then

41 + 42 evaluates to =1 + =2 and changes the store from" to"2 under �.

�, " ` 41 ⇒ =1 , "1 �, "1 ` 42 ⇒ =2 , "2

�, " ` 41 + 42 ⇒ =1 + =2 , "2

[Add]

Rule Sub

If

41 evaluates to =1 and changes the store from" to"1 under �, and
42 evaluates to =2 and changes the store from"1 to"2 under �,

then

41 − 42 evaluates to =1 − =2 and changes the store from" to"2 under �.

�, " ` 41 ⇒ =1 , "1 �, "1 ` 42 ⇒ =2 , "2

�, " ` 41 − 42 ⇒ =1 − =2 , "2

[Sub]

Rule App

If

41 evaluates to 〈�G.4 , �′〉 and changes the store from" to"1 under �,
42 evaluates to E

′
and changes the store from"1 to"2 under �, and

4 evaluates to E and changes the store from"2 to"3 under �′[G ↦→ E′],
then

41 42 evaluates to E and changes the store from" to"3 under �.

�, " ` 41 ⇒ 〈�G.4 , �′〉, "1

�, "1 ` 42 ⇒ E′, "2 �′[G ↦→ E′], "2 ` 4 ⇒ E, "3

�, " ` 41 42 ⇒ E, "3

[App]

11 Boxes 121

Note that the evaluation of the body of a closure can modify the store as

well.

Now, let us define the semantics of expressions treating boxes. box 4 is an
expression creating a new box. The result of 4 becomes the initial value

of the box. The result of box 4 is the new box.

Rule NewBox

If

4 evaluates to E and changes the store from" to"1 under �, and
0 is not in the domain of"1,

then

box 4 evaluates to 0 and changes the store from" to"1[0 ↦→ E] under �.

�, " ` 4 ⇒ E, "1 0 ∉ Domain("1)
�, " ` box 4 ⇒ 0, "1[0 ↦→ E]

[NewBox]

To get the initial value, 4 is evaluated first. The address of the new box

must not belong to "1, the store attained by evaluating 4. There is no

additional condition the address must satisfy, so we can freely choose

any address that is not in "1. Note that if we check the domain of ",

not"1, we result in multiple boxes sharing the same address, which is

certainly wrong, when 4 also creates boxes. The result is the address of

the box. Also, we add a mapping from the address of the box to the value

of the box to the final store.

!4 is an expression reading the value of a box. 4 determines the box to be

read. If 4 does not evaluate to a box, a run-time error occurs. Otherwise,

4 is some box, and the final result is the value of the box.

Rule OpenBox

If

4 evaluates to 0 and changes the store from" to"1 under �, and
0 is in the domain of"1,

then

!4 evaluates to"1(0) and changes the store from" to"1 under �.

�, " ` 4 ⇒ 0, "1 0 ∈ Domain("1)
�, " `!4 ⇒ "1(0), "1

[OpenBox]

To get a box, 4 is evaluated. The result of 4 must be an address that

belongs to "1. The rule uses "1 instead of " to find the value of the

box. The reason is that 4 can create a new box and give the box as a

result. Consider !(box 1). If the semantics is correct, this expression must

evaluate to 1. The initial store is empty, but evaluating box 1 makes the

store contain the address of the box. It means that the address can be

obtained only by looking into"1, not". Therefore, the correct semantics

uses"1 to find the value of the box.

41:=42 is an expression changing the value of a box. 41 determines the

box to be updated, and 42 determines the new value of the box. Just like

when we open a box, 41 must evaluate to a box. Otherwise, a run-time

error will happen.

11 Boxes 122

4: We omit the common part to FAE.

5: We omit the common part to FAE.

Rule SetBox

If

41 evaluates to 0 and changes the store from" to"1 under �, and
42 evaluates to E and changes the store from"1 to"2 under �,

then

41:=42 evaluates to E and changes the store from" to"2[0 ↦→ E] under �.

�, " ` 41 ⇒ 0, "1 �, "1 ` 42 ⇒ E, "2

�, " ` 41:=42 ⇒ E, "2[0 ↦→ E]
[SetBox]

Like all the other expressions, an expression modifying a box uses the

left-to-right order. If 41 evaluates to an address 0, the value associated

with 0 in the store changes into the value denoted by 42. Also, the

value is the result of the whole expression. This semantics follows the

semantics of many real-world imperative languages. For example, x =

1 in C changes the value of x to 1 and results in 1. On the other hand,

functional languages usually use unit as the results of expressions for

mutation. We can easily adopt the semantics in BFAE by adding unit to

the language.

11.3 Interpreter

The following Scala code implements the syntax of BFAE: 4

sealed trait Expr

...

case class NewBox(e: Expr) extends Expr

case class OpenBox(b: Expr) extends Expr

case class SetBox(b: Expr, e: Expr) extends Expr

case class Seqn(l: Expr, r: Expr) extends Expr

NewBox(4) represents box 4; OpenBox(4) represents !4; SetBox(41, 42)

represents 41:=42; Seqn(41, 42) represents 41; 42.

Addresses should be defined. We treat addresses as integers in Scala.

type Addr = Int

In addition, we add a new variant of Value to represent boxes.
5

sealed trait Value

...

case class BoxV(a: Addr) extends Value

Box(0) represents 0.

We use a map to represent a store. The type of a store is Map[Addr,

Value].

type Sto = Map[Addr, Value]

11 Boxes 123

interp takes an expression, an environment, and a store as arguments

and returns a pair of a value and a store.

def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) =

e match {

...

}

Let us see each case of the pattern matching.

case Num(n) => (NumV(n), sto)

case Id(x) => (env(x), sto)

case Fun(x, b) => (CloV(x, b, env), sto)

The Num, Id, and Fun cases use given stores as the results.

case Seqn(l, r) =>

val (_, ls) = interp(l, env, sto)

interp(r, env, ls)

case Add(l, r) =>

val (NumV(n), ls) = interp(l, env, sto)

val (NumV(m), rs) = interp(r, env, ls)

(NumV(n + m), rs)

case Sub(l, r) =>

val (NumV(n), ls) = interp(l, env, sto)

val (NumV(m), rs) = interp(r, env, ls)

(NumV(n - m), rs)

case App(f, a) =>

val (CloV(x, b, fEnv), ls) = interp(f, env, sto)

val (v, rs) = interp(a, env, ls)

interp(b, fEnv + (x -> v), rs)

The Seqn, Add, Sub, and App cases do not directly modify or read stores,

but pass the stores returned from the recursive calls to the next recursive

calls or use them as results.

case NewBox(e) =>

val (v, s) = interp(e, env, sto)

val a = s.keys.maxOption.getOrElse(0) + 1

(BoxV(a), s + (a -> v))

The NewBox case computes the initial value of the box first. Then, it com-

putes an address not used in the store. We use the method maxOption.

If a collection is empty, the method returns None. Otherwise, the re-

sult is Some(n), where n is the greatest value in the collection. By

.getOrElse(0), we can get n from Some(n) and 0 from None. Con-

sequently, s.keys.maxOption.getOrElse(0) results in the maximum

key in the store when the store is nonempty and 0 otherwise. a is one

greater than that value and thus does not belong to the store. Therefore,

we can use a as the address of the box. The result of the function consists

of the address and the extended store.

11 Boxes 124

case OpenBox(e) =>

val (BoxV(a), s) = interp(e, env, sto)

(s(a), s)

The OpenBox case evaluates the subexpression to get an address. If the

result is not a box, an exception is thrown due to a pattern matching

failure. The address is used to find the value of the box from the store.

The result of the function consists of the value of the box and the store

from the evaluation of the subexpression.

case SetBox(b, e) =>

val (BoxV(a), bs) = interp(b, env, sto)

val (v, es) = interp(e, env, bs)

(v, es + (a -> v))

The SetBox case evaluates both subexpressions and modifies the store.

11.4 Exercises

Exercise 11.1 Consider the following expression:

(�x.(�y.x:=8; !y) x) box 7

Write the arguments and result of interp each time it is called during

the evaluation of the expression. Write them in the order in which the

calls to interp occur during evaluation.

Exercise 11.2 This exercise asks you to implement the desugar function,

which takes a BFAE expression as an argument and returns an expression

of the same behavior without ; (sequencing).

def desugar(e: Expr): Expr = e match {

...

case Seqn(l, r) => ???

}

Fill ??? to complete the implementation. You may use the following

helper functions without defining them:

// returns the set of every free identifier in e

def free(e: Expr): Set[String]

// returns a new identifier that does not belong to xs

def fresh(xs: Set[String]): String

Exercise 11.3 We can implement a fixed point combinator with boxes.

The key idea is to put a dummy function in a box, create a recursive

function with the box, and replace the dummy function with the correct

recursive function. This strategy is known as Landin’s knot [Lan64].

Complete the following implementation:

11 Boxes 125

val z=�b.(
val a=box �x.y in
val f=(b ???) in
a:=???;

???

) in
val f=z (�f.�v.if0 v 0 (v + f (v − 1))) in
f 10

Mutable Variables 12

12.1 Syntax 127

12.2 Semantics 127

12.3 Interpreter 129

12.4 Call-by-Reference 130

12.5 Exercises 133

BFAE of the previous chapter provides boxes. Boxes are good abstraction

of mutable objects and data structures but do not explain mutable

variables well. Boxes, mutable objects, mutable data structures are values,

while mutable variables are names. Mutable variables allow the values

associated with names to change. We can find the notion of a mutable

variable in many real-world languages except a few functional languages

including OCaml and Haskell.

The semantics of mutable variables seem trivial. We can change the

values of mutable variables. However, if we use mutable variables with

closures, we can domany interesting things. Consider the following Scala

program:

def makeCounter(): () => Int = {

var x = 0

def counter(): Int = {

x += 1

x

}

counter

}

val counter1 = makeCounter()

val counter2 = makeCounter()

println(counter1())

println(counter2())

println(counter1())

println(counter2())

The program defines the function makeCounter. The function has a

mutable variable xwhose initial value is 0. Also, it defines and returns

the function counter. counter increases the value of x by one every time

it is called. We make two counters by calling makeCounter twice. Then,

we call each counter in turn and print the return value. What does the

program print? The first value will be 1 since counter1 will increase x

by one from zero and return x. However, predicting the other ones is

difficult. We need the exact semantics of mutable variables to answer the

question.

This chapter defines MFAE by extending FAE with mutable variables.

We will see the semantics of mutable variables. Addition of mutable

variables gives us a chance to explore a different design of the function

application semantics. We will see what is the call-by-reference semantics

and how it differs from the call-by-value semantics.

12 Mutable Variables 127

1: We omit the common part to FAE.

12.1 Syntax

As variables are mutable in MFAE, we need to add expressions that

change the values of variables. The following is the abstract syntax of

MFAE: 1

4 ::= · · · | G:=4

G:=4 is an expression changing the value of a variable. G is the variable

to be updated; 4 determines the new value of the variable. Unlike 41:=42
in BFAE, the left-hand-side of an assignment is restricted to a variable.

The reason is that variables are not values. We cannot get a variable by

evaluating an expression. The only way to designate a variable is to write

the name of the variable, and the syntax reflects this point.

Note that MFAE lacks sequencing expressions, which exist in BFAE. Actu-
ally, it is not problematic at all. We can desugar sequencing expressions

into lambda abstractions and function applications: transform 41; 42 into

(�G.42) 41, where G is not free in 42. The semantics of 41; 42 is that evalu-

ating 41 first and then 42. The evaluation of (�G.42) 41 is the same. First,

�G.42 evaluates to a closure, which means that 42 is not evaluated. Then,

the argument, 41, is evaluated. Finally, the body of the closure, 42, is

evaluated. Therefore, 41 is evaluated before 42. Also, since G is not a free

identifier in 42, the result of 41 is never used even though it is passed to

the function as an argument. Thus, we can conclude that the desugaring

is correct. We may use sequencing expressions in examples as they can

be easily desugared.

12.2 Semantics

Since MFAE provides mutation, its semantics uses store-passing just like

BFAE. Therefore, a store is a finite partial function from addresses to

values.

Sto = Addr
fin↦→ +

" ∈ Sto

The semantics is a relation over Env, Sto, �, + , and Sto.

⇒⊆ Env × Sto × � ×+ × Sto

Like FAE, a value of MFAE is either an integer or a closure. It is different

from BFAE, which allows addresses to be values. BFAE treats addresses

as values because expressions creating boxes evaluate to addresses.

However, there are mutable variables instead of boxes in MFAE. MFAE
has addresses to support mutation, but they are used only for tracking

the value of each variable. Addresses are not exposed to programmers as

values.

An environment of MFAE is a finite partial function from identifiers to

addresses, but not values.

12 Mutable Variables 128

Env = Id
fin↦→ Addr

� ∈ Env

The semantics needs environments to find the value denoted by a variable.

FAE, whose variables are immutable, is satisfied with environments that

take identifiers as input and return values. However, variables of MFAE
are mutable. Evaluation outputs a value and a store. Environments are

not the output of evaluation. Therefore, we cannot use environments to

record changes in the values of variables. On the other hand, we can use

stores to record the changes as stores are output of evaluation. It implies

that stores must contain the values of variables tomake variables mutable.

Since the value of a certain variable is stored at a particular address of a

store, an environment must know the address of each variable.

One may ask if we can remove environments from the semantics and

consider a store as a partial function from identifiers to values. However,

in fact, removing environments from the semantics prevents use of static

scope. Assume that the semantics lacks environments, and a store is a

partial function from an identifier to a value. Consider ((�x.x:=1) 0); x. To
evaluate the function application, the value of the argument should be

recorded in the store. After evaluating the function body, the store will be

passed to the evaluation of x. Then, x evaluates to 1 without a run-time

error since x is in the store. On the contrary, under static scope, the scope

of x includes only G := 1. The expression should result in a run-time

error because x outside the function is a free identifier. Environments are

essential for resolving this problem. Environments enable static scope,

and stores make variables mutable. The semantics must have both.

Because of the change in the definition of an environment, the semantics

of identifiers need to be revised. An environment has the address of a

given identifier, and a store has the value at a given address. Therefore,

we need two steps to find the value of a variable: find the address of a

variable from the environment and find the value at the address from

the store.

Rule Id

If

x is in the domain of �, and
�(G) is in the domain of",

then

G evaluates to"(�(G)) and changes the store from" to" under �.

G ∈ Domain(�) �(G) ∈ Domain(")
�, " ` G ⇒ "(�(G)), "

[Id]

Like boxes in BFAE, each variable of MFAE has its own address. New

variables can be defined only by function applications. Hence, function

applications are the only expressions that create new addresses. Let us

see the semantics of function applications.

Rule App

12 Mutable Variables 129

2: We omit the common part to FAE.

If

41 evaluates to 〈�G.4 , �′〉 and changes the store from" to"1 under �,
42 evaluates to E

′
and changes the store from"1 to"2 under �,

0 is not in the domain of"2, and

4 evaluates to E and changes the store from"2[0 ↦→ E′] to"3 under �′[G ↦→ 0],
then

41 42 evaluates to E and changes the store from" to"3 under �.

�, " ` 41 ⇒ 〈�G.4 , �′〉, "1 �, "1 ` 42 ⇒ E′, "2

0 ∉ Domain("2) �′[G ↦→ 0], "2[0 ↦→ E′] ` 4 ⇒ E, "3

�, " ` 41 42 ⇒ E, "3

[App]

The evaluation of the subexpressions is the same as BFAE. However,

the remaining procedure is different. We cannot store the value of the

argument in the environment. It should go into the store. To put the

value into the store, we need a fresh address. The name of the parameter

becomes associated with the address in the environment; the address

becomes associated with the value of the argument in the store. Finally,

the function body is evaluated.

Changing the value of a variable is similar to changing the value of a box

of BFAE. However, we have to evaluate an expression to find the address

of the box to be updated in BFAE. On the other hand, we can find the

address of the variable to be updated from the environment by using its

name in MFAE.

Rule Set

If

G is in the domain of �, and
4 evaluates to E and changes the store from" to"1 under �,

then

G:=4 evaluates to E and changes the store from" to"1[�(G) ↦→ E] under �.

G ∈ Domain(�) �, " ` 4 ⇒ E, "1

�, " ` G:=4 ⇒ E, "1[�(G) ↦→ E]
[Set]

We can reuse the rules of BFAE for the other expressions.

Now, we can answer the question in the beginning of the chapter. At

each call to makeCounter, a new address is allocated to store the value of

x. Therefore, x of counter1 uses a different address from x of counter2.

Both of the first two lines of println print 1. Also, each address is

permanent throughout the execution. When a call to counter1 updates

the value of x, the change remains until the next call to counter1. Thus,

both of the last two lines of println print 2.

12.3 Interpreter

The following Scala code implements the syntax of MFAE: 2

12 Mutable Variables 130

3: We omit the common part to BFAE.

sealed trait Expr

...

case class Set(x: String, e: Expr) extends Expr

Set(G, 4) represents G:=4.

The types of an address and a store can be defined as in BFAE.

type Addr = Int

type Sto = Map[Addr, Value]

We need to change the type of an environment.

type Env = Map[String, Addr]

As in BFAE, interp takes an expression, an environment, and a store as

arguments and returns a pair of a value and a store.
3

def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) =

e match {

...

case Id(x) => (sto(env(x)), sto)

case App(f, a) =>

val (CloV(x, b, fEnv), ls) = interp(f, env, sto)

val (v, rs) = interp(a, env, ls)

val addr = rs.keys.maxOption.getOrElse(0) + 1

interp(b, fEnv + (x -> addr), rs + (addr -> v))

case Set(x, e) =>

val (v, s) = interp(e, env, sto)

(v, s + (env(x) -> v))

}

In the Id case, the function finds the address of the variable first and

then the value at the address.

In the App case, we use the same strategy to the interpreter of BFAE to

compute a new address. The body of the function is evaluated under the

extended environment and the extended store.

The Set case uses the environment to find the address of the variable.

Then, it updates the store to change the value of the variable.

12.4 Call-by-Reference

Novices in programming often implement a swap function incorrectly.

For example, consider the following C++ program:

void swap(int x, int y) {

int tmp = x;

x = y;

y = tmp;

}

12 Mutable Variables 131

int a = 1, b = 2;

swap(a, b);

std::cout << a << " " << b << std::endl;

They expect the program to print 2 1 as swap has been called. On the

contrary, their expectation is wrong. The result is 1 2. We can explain

the reason based on the content of this chapter. When swap is called, two

new fresh addresses are allocated for x and y. The values of a and b are

copied and stored in the addresses, respectively. The function affects only

the values in the addresses of x and y. It never touches the addresses of a

and b. As a consequence, while the values of x and y are swapped, the

values of a and b are not.

This is the usual semantics of function applications. The values of

arguments are copied and saved at fresh addresses. This semantics is

called call-by-value (CBV) as function calls pass the values of arguments.

People have explored another semantics for function applications to

implement functions like swap easily. The semantics is called call-by-
reference (CBR). In this semantics, function calls pass the references, i.e.

addresses, when variables are used as arguments.

The following rule defines the semantics of a function application using

CBR when its argument is a variable:

Rule App-Cbr

If

4 evaluates to 〈�G′.4′, �′〉 and changes the store from" to"1 under �,
G is in the domain of �, and
4′ evaluates to E and changes the store from"1 to"2 under �′[G′ ↦→ �(G)],

then

4 G evaluates to E and changes the store from" to"2 under �.

�, " ` 4 ⇒ 〈�G′.4′, �′〉, "1

G ∈ Domain(�) �′[G′ ↦→ �(G)], "1 ` 4′⇒ E, "2

�, " ` 4 G ⇒ E, "2

[App-Cbr]

The rule does not evaluate the argument to get a value. It simply uses

the address of the variable. Then, the parameter of the function has the

exactly same address to the argument. Any change in the parameter that

happens in the function body affects the variable outside the function.

We say that the parameter is an alias of the argument as they share the

same address.

Even if we want to adopt the CBR semantics in MFAE, we cannot use it

when the argument is not a variable. We cannot get an address from an

expression that is not a variable. In such cases, we fall back to the CBV

semantics. The following rule specifies such cases:

Rule App-Cbv

12 Mutable Variables 132

If

41 evaluates to 〈�G.4 , �′〉 and changes the store from" to"1 under �,
42 is not an identifier,

42 evaluates to E
′
and changes the store from"1 to"2 under �,

0 is not in the domain of"2, and

4 evaluates to E and changes the store from"2[0 ↦→ E′] to"3 under �′[G ↦→ 0],
then

41 42 evaluates to E and changes the store from" to"3 under �.

�, " ` 41 ⇒ 〈�G.4 , �′〉, "1 42 ∉ Id �, "1 ` 42 ⇒ E′, "2

0 ∉ Domain("2) �′[G ↦→ 0], "2[0 ↦→ E′] ` 4 ⇒ E, "3

�, " ` 41 42 ⇒ E, "3

[App-Cbv]

It is the same as Rule App except that it has one more premise to ensure

that the argument is not a variable.

The interpreter needs the following change:

case App(f, a) =>

val (CloV(x, b, fEnv), ls) = interp(f, env, sto)

a match {

case Id(y) =>

interp(b, fEnv + (x -> env(y)), ls)

case _ =>

val (v, rs) = interp(a, env, ls)

val addr = rs.keys.maxOption.getOrElse(0) + 1

interp(b, fEnv + (x -> addr), rs + (addr -> v))

}

It uses pattern matching on the argument expression of a function

application. When it is an identifier, the CBR semantics can be used.

Otherwise, it falls back to the CBV semantics.

We can find a few languages that support CBR in real-world. One

example is C++. In C++, if there is an ampersand in front of the name

of a parameter, the parameter uses the CBR semantics. We can fix the

function swapwith this feature.

void swap(int &x, int &y) {

int tmp = x;

x = y;

y = tmp;

}

int a = 1, b = 2;

swap(a, b);

std::cout << a << " " << b << std::endl;

It is enough to fix only the first line to make the parameters use CBR.

When swap is applied to a and b, the addresses of a and b are passed.

The address of x is the same as that of a, and the address of y is the same

as that of b. Therefore, the function swaps not only the values of x and y

but also the values of a and b. The program prints 2 1 as intended.

12 Mutable Variables 133

12.5 Exercises

Exercise 12.1 Consider the following MFAE expression:

(�x.x) ((�x.x) 1)

Write the arguments to interp each time it is called during the evaluation

of the expression. Write them in the order in which the calls to interp

occur during evaluation.

Exercise 12.2 The following code is an excerpt from the implementation

of the interpreter for MFAE:

def interp(e:Expr, env:Env, sto:Sto): (Value, Sto) =

e match {

...

case App(f, a) =>

val (CloV(x, b, fEnv), ls) = interp(f, env, sto)

a match {

case Id(y) =>

interp(b, fEnv + (x -> env(y)), ls)

case _ =>

val (v, rs) = interp(a, env, ls)

val addr = rs.keys.maxOption.getOrElse(0) + 1

interp(b, fEnv + (x -> addr), rs + (addr -> v))

}

}

1. What is this semantics? CBV or CBR?

Consider the following expression:

val n=42 in
val f=�g.g n in
f (�x.x + 8)

2. Show the environment and store just before evaluating addition in

the CBV semantics.

3. Show the environment and store just before evaluating addition in

the CBR semantics.

Exercise 12.3 This question extends MFAE with mutable records as

follows:

4 ::= · · · | { 5 :4 , · · · , 5 :4} | 4. 5
E ::= · · · | { 5 :0, · · · , 5 :0}

�, "0 ` 41 ⇒ E1 , "
′
1
· · · �, "=−1 ` 4= ⇒ E= , "

′
=

01 ∉ Domain("′
1
) · · · 0= ∉ Domain("′=)

"1 = "
′
1
[01 ↦→ E1] · · · "= = "

′
=[0= ↦→ E=]

�, "0 ` { 51:41 , · · · , 5= :4=} ⇒ { 51:01 , · · · , 5= :0=}, "=

�, " ` 4 ⇒ {· · · , 5 :0, · · · }, "1 0 ∈ Domain("1)
�, " ` 4. 5 ⇒ "1(0), "1

12 Mutable Variables 134

Consider the following interpreter implementation of the language:

case class Get(r: Expr, f: String) extends Expr

case class RecV(fs: Map[String, Addr]) extends Value

def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) = e match {

...

case App(f, a) =>

val (fv, fs) = interp(f, env, sto)

fv match {

case CloV(x, b, fenv) =>

a match {

case Get(r, f) => ???

case _ =>

val (av, as) = interp(a, env, fs)

val addr = malloc(as)

interp(b, fenv + (x -> addr), as + (addr -> av))

}

case _ => error()

}

}

Note that Get(4, 5) is 4. 5 and RecV(Map(51 -> 01, · · · , 5= -> 0=))

is { 51:01 , · · · , 5= :0=}.

1. Complete the implementation. The language uses CBR when a

record field is an argument of a function call.

Consider the following expression:

val x={z:1} in
val f=�y.y:=2 in
f x.z;

x.z

2. Write the result and the store at the end of the evaluation of the

above expression.

3. Write the result and the store at the end of the evaluation of the

above expression if the language uses CBV when a record field is

an argument of a function call.

Exercise 12.4 This exercise extends MFAE with pointers. Consider the

following language:

4 ::= · · · | ∗ 4 | &G | ∗ 4:=4
E ::= · · · | 0

The semantics of some constructs are as follows:

I The value of ∗4 is the value in the store at the address denoted by

the expression.

I The value of &G is the address denoted by the identifier in the

environment.

I The evaluation of ∗41:=42 evaluates 42 first, which is the value of the

whole expression. Then, it evaluates 41, and it maps the address

denoted 41 to the value of 42.

12 Mutable Variables 135

1. Write the operational semantics of the form �, " ` 4 ⇒ E, " for

the expressions.

2. Complete the following interpreter implementation:

case class Deref(p: Expr) extends Expr

case class Ref(x: String) extends Expr

case class Assign(p: Expr, e: Expr) extends Expr

case class PtrV(a: Addr) extends Value

def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) = e match {

...

case Deref(p) => ???

case Ref(x) => ???

case Assign(p, e) => ???

}

Exercise 12.5 Consider the following language:

4 ::= = | G | 4 + 4
2 ::= skip | G:=4 | if0 4 2 2 | while0 4 2 | 2; 2
E ::= =

where 2 ranges over commands.

Under a given environment, 4 evaluates to a value without modifying

the environment:

� ` = ⇒ =
G ∈ Domain(�)
� ` G ⇒ �(G)

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

1. A command takes an environment as input and produces a new

environment as output. We write � ` 2 ⇒ �′ if 2 produces �′

when � is given. The following sentences describe the semantics of

commands:

I skip does not change a given environment.

I G:=4 evaluates 4 to get a value E and updates the value of G to

E. G does not need to be in a given environment.

I if0 4 21 22 evaluates 4 to get a value E. If E is 0, 21 is evaluated.

Otherwise, 22 is evaluated.

I while0 4 2 evaluates 4 to get a value E. If E is not 0, the command

terminates without changing a given environment. Otherwise,

it evaluates 2 and then checks the result of 4 again under the

new environment. This process repeats until the result of 4

becomes nonzero.

I 21; 22 evaluates 21 first to get a new environment. Then, it

evaluates 22 under the new environment.

Write theoperational semantics of commandsof the form � ` 2 ⇒ � .

2. Draw the evaluation derivation of x:=0; if0 x skip x:=1 under the

empty environment.

Garbage Collection 13

13.1 Stack and Heap 136

Stack 137

Heap 138

13.2Memory Management 140

Manual Memory Manage-

ment 141

Automatic Memory Manage-

ment 143

13.3 Reference Counting 146

Pros 149

Cons 149

13.4Mark-and-Sweep GC 154

Pros 157

Cons 157

13.5 Copying GC 157

Pros 163

Cons 163

13.6 Exercises 164

Consider the following BFAE expression:

val f=�x.(
box x;

x

) in
f 0;

f 1;

· · ·
f 999

The function f creates a new box but does not use the box at all. Each

time the function is called, it newly creates one more box. The above

expression calls f 1,000 times, so there are 1,000 boxes in the store at the

end of the execution.

Under the operational semantics we have defined, programs like the

above expression are not problematic. The size of a store is unlimited, so

each program can create boxes as many as it wants.

However, the operational semantics does not fully reflect the execution of

programs on real machines; our semantics is merely a mathematical one.

The memory of every machine has a physical limit. There is a maximum

number of boxes that can be created on a single machine. Programs

cannot create boxes forever.

How can we handle a situation that programs need to create boxes

exceeding the physical limit of the machine on which they run? The

most reasonable solution is to reuse memory locations carrying boxes

not to be used any longer. For example, every box created by the above

expression has no use, so its memory address is reusable for another

box without changing the behavior of the program. Such reuse of the

memory is called memory management.

This section introduces the notion of memory management and ex-

plains garbage collection (GC), one of the most popular forms of memory

management.

13.1 Stack and Heap

To understand memory management, you first need to know how the

memory is organized. Programs store their data on the memory during

execution. The memory is divided into two parts: stack and heap. The
stack is similar to an environment, and the heap is similar to a store.

Keeping this intuition in your mind would help you understand the stack

and the heap. However, they are not completely identical.

13 Garbage Collection 137

1: Sometimes, it is not true. For example,

tail call optimization prevents the stack

from growing when a function is called.

However, we ignore such cases.

Stack

The stack is a place to store the values of local variables of functions.

Here, local variables include function parameters. The stack follows the

LIFO (last in, first out) manner, just like the stack data-structure. When

a function is called, a stack frame for the function is created and pushed

onto the stack, so the stack grows.
1
The function stores the values of its

local variables in its stack frame. When the function returns, the stack

frame is popped off because there is no need for storing the values of

the local variables of the returned function. Therefore, the stack shrinks

when each function returns.

Let us see how the stack changes during execution. Consider the following

Scala code:

def f() = {

val x = 1

val y = 2

val z = g(x)

val w = y + z

}

def g(a: Int): Int = {

val b = a + 3

return b

}

Suppose that f is called. Since f has four local variables, the stack frame

of f has four slots. In the beginning, all the variables are uninitialized.

The stack at this point is as follows:

x

y

z

w

After executing val x = 1, the value of x becomes 1.

x 1

y

z

w

After executing val y = 2, the value of y becomes 2.

x 1

y 2

z

w

When f calls g, the stack frame of g is created. g has two local variables.

The value of the parameter a is 1, given as an argument by f.

13 Garbage Collection 138

x 1

y 2

z

w

a 1

b

After executing val b = a + 3, the value of b becomes 4.

x 1

y 2

z

w

a 1

b 4

When g returns, the stack frame of g is destroyed. The value of b is copied

because it is the return value. Now, the value of z is 4.

x 1

y 2

z 4

w

After executing val w = y + z, the value of w becomes 6.

x 1

y 2

z 4

w 6

Heap

Sometimes, the stack is not a good place to put data. There are multiple

reasons. One such reason is the existence of large objects. Consider the

following Scala code:

case class C(x: Int, y: Int, z: Int, w: Int)

def f() = {

val x = g()

}

def g(): C = {

val a = C(1, 2, 3, 4)

return a

}

Each object of the class C consists of four integers. After executing val a

= C(1, 2, 3, 4), the stack is as follows:

13 Garbage Collection 139

2: It can be more than sixteen bytes. For

example, an object can have a type tag,

which indicates the class it belongs to, and

a method table, which consists of pointers

to its methods.

3: https://en.cppreference.com/w/c/

memory/malloc

4: https://en.cppreference.com/w/

cpp/language/new

5: https://doc.rust-lang.org/std/

boxed/index.html

x

a C(1,2,3,4)

When g returns, the object denoted by a is copied.

x C(1,2,3,4)

In the previous example, the return value is an integer, which occupies

only four bytes. On the other hand, in this example, the return value is

an object, whose size is sixteen bytes.
2
Therefore, copying requires more

time. If the object has more fields, copying will take much more.

The problem is that the object lives even after g returns while the stack

frame is destroyed when g returns. To resolve the problem, we need

alternative storage whose lifetime is irrelevant to the call-return of

functions.

The heap is such storage. The heap is a large chunk of memory indepen-

dent of the stack. When a value is stored on the heap, it can stay forever,

even after the function that has stored the value on the heap returns. We

call a run-time system that manages the heap a memory manager. When a

program requests the memory manager to put a value on the heap, the

memory manager finds free space and places the value there. Such an

act of putting a value on the heap is called allocation.

Suppose that the program stores the object on the heap. Initially, the heap

is empty.

x
0x1000

0x1010

Stack Heap

After executing val a = C(1, 2, 3, 4), the object is allocated on the

heap. The value of a becomes the heap address where the object is

stored. Addresses are just integers, but here we represent addresses in

the hexadecimal form to distinguish them from normal integers in the

decimal form.

x

a 0x1000

0x1000 C(1,2,3,4)

0x1010

Stack Heap

When g returns, only the address of the object is copied. Since the size of

each address is only eight bytes (on a 64-bit machine) regardless of the

size of the object, the execution is more efficient than before.

x 0x1000
0x1000 C(1,2,3,4)

0x1010

Stack Heap

Each language has its own mechanism to choose among the stack and

the heap when putting values on the memory. Low-level languages like

C, C++, and Rust allow programmers to choose by themselves. Values go

https://en.cppreference.com/w/c/memory/malloc
https://en.cppreference.com/w/c/memory/malloc
https://en.cppreference.com/w/cpp/language/new
https://en.cppreference.com/w/cpp/language/new
https://doc.rust-lang.org/std/boxed/index.html
https://doc.rust-lang.org/std/boxed/index.html

13 Garbage Collection 140

to the stack by default, and programmers can choose the heap by using

designated keywords (malloc3 in C, new4 in C++, and Box::new5 in

Rust).

On the other hand, high-level languages like Java and Scala have a

predefined rule and do not give a choice to programmers. They place all

the primitive values (booleans, characters, and numbers) on the stack and

all the objects on the heap. Thus, the behavior described by the previous

example, which stores the object on the stack, actually never happens in

Scala. Only the description of this example, which stores the object on

the heap, is possible. Following this rule, we hereafter assume that every

on-heap value is an object.

13.2 Memory Management

Unfortunately, the use of the heap introduces a new problem. Consider

the following code:

def f() = {

for (i <- 1 to 300) {

g(i)

...

}

}

def g(a: Int) = {

val b = C(1, 2, 3, a)

... // do something with `b`
}

f calls g repeatedly, and g allocates a new object on the heap each time it

is called. Suppose that the heap uses addresses from 0x1000 to 0x1fff.

It means that the heap is 4KiB-large. Since each object is 16B-large, the

heap becomes full after the 256th iteration.

i 256

0x1000 C(1,2,3,1)

0x1010 C(1,2,3,2)

· · ·
0x1ff0 C(1,2,3,256)

Stack Heap

In the 257th iteration, it is impossible to create a new object because the

heap does not have any more free space. Each language has its own way

of signalling the lack of the heap space. Low-level languages like C and

C++ return a null pointer instead of a valid address to the newly allocated

data. High-level languages like Java and Scala throw an exception:

Exception in thread "main" java.lang.OutOfMemoryError:

Java heap space
Run-time error

However, it is unusual to face the situation that the heap is really lacking

in free space. As mentioned at the beginning of the chapter, most objects

13 Garbage Collection 141

6: https://en.cppreference.com/w/c/

memory/free

7: https://en.cppreference.com/w/

cpp/language/delete

8: https://doc.rust-lang.org/std/

mem/fn.drop.html

become useless after some periods from their allocations. Such useless

objects are called garbage. If the memory manager deallocates garbage, i.e.,
marks the space occupied by garbage as free, the heap can recover some

of its space and allows the program to allocate new objects.

Memory management is to decide when to deallocate each object. There

are two forms of memory management: manual memory management and
automatic memory management.

Manual Memory Management

Manual memory management is memory management done by pro-

grammers. Programmers can make their programs send deallocation

requests to the memory manager by using designated keywords (free6

in C, delete7 in C++, and drop8 in Rust).

While Scala does not support manual memory management, assume that

Scala has free, just like C. Consider the following code:

def f() = {

for (i <- 1 to 300) {

g(i)

...

}

}

def g(a: Int): Int = {

val b = C(1, 2, 3, a)

... // do something with `b`
free(b)

}

It is similar to the previous code, but now g deallocates the object just

before it returns. The memory at the beginning of the first call to g is as

follows:

i 1

a 1

b

0x1000

0x1010

Stack Heap

After executing val b = C(1, 2, 3, a), the heap has one object.

i 1

a 1

b 0x1000

0x1000 C(1,2,3,1)

0x1010

Stack Heap

After executing free(b), the heap becomes empty again.

i 1

a 1

b 0x1000

0x1000

0x1010

Stack Heap

https://en.cppreference.com/w/c/memory/free
https://en.cppreference.com/w/c/memory/free
https://en.cppreference.com/w/cpp/language/delete
https://en.cppreference.com/w/cpp/language/delete
https://doc.rust-lang.org/std/mem/fn.drop.html
https://doc.rust-lang.org/std/mem/fn.drop.html

13 Garbage Collection 142

In the next iteration, the same heap address can be reused.

i 2

a 2

b 0x1000

0x1000 C(1,2,3,2)

0x1010

Stack Heap

Since this process repeats, the heap never becomes full, and the program

never faces the lack of the heap space regardless of the number of

iterations.

As this example shows, under manual memory management, program-

mers need to insert free after using objects. If done correctly, this

guarantees that the heap contains only objects in use, so the utilization

of the heap space is always efficient and optimal. However, programs

are complex in practice, and programmers often make mistakes while

inserting free. If they deallocate objects too early or too late, they can

introduce bugs to their programs.

If deallocations happen too early, dangling pointers are created. Dangling

pointers are heap-address values that do not refer to valid objects. Dan-

gling pointers are not harmful per se, but the use of dangling pointers

can cause bugs.

Consider the following code:

val a = C(1, 2, 3, 4)

...

free(a)

...

val b = C(5, 6, 7, 8)

...

a.x = 0

...

assert(b.x == 5)

This code is problematic because it deallocates a too early. While a is

used even after the creation of b, it deallocates a before the creation of

b. This mistake can corrupt the behavior of the program. Let us see the

behavior of the program in detail.

After the allocation of a, the memory is as follows:

a 0x1000

b

0x1000 C(1,2,3,4)

0x1010

Stack Heap

After the deallocation of a, the variable a still holds 0x1000, but the

heap location 0x1000 is marked as free. Now, the pointer denoted by a is

dangling.

a 0x1000

b

0x1000

0x1010

Stack Heap

13 Garbage Collection 143

9: In fact, UAF is considered as an unde-
fined behavior in most languages. It means

that programs with UAF can exhibit any

behaviors. Therefore, corrupting on-heap

data is just one possible consequence of

UAF. Other bad things can happen as well.

10: https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-9715

Then, the program may allocate b at the same address as a since the

address is marked as free.

a 0x1000

b 0x1000

0x1000 C(5,6,7,8)

0x1010

Stack Heap

Now, executing a.x = 0 reads the value of a and accesses the heap

address 0x1000 to modify the value of the field x.

a 0x1000

b 0x1000

0x1000 C(0,6,7,8)

0x1010

Stack Heap

However, the object stored at 0x1000 is not the object denoted by a, but

is the object denoted by b. Finally, assert(b.x == 5) fails. Even though

the program never changes the value of b.x to 0, its value is 0.

The problem of the program is using a dangling pointer. Such an incident

is called use-after-free (UAF). When UAF happens, a programmay corrupt

on-heap data by overwriting it.
9

UAFhas caused a large number of critical problems in the real world. UAF

is the source of many unpleasant bugs and severe security vulnerabilities.

One example is a vulnerability caused by UAF in Acrobat Reader DC.
10

An attacker can make a special PDF file that triggers UAF of the PDF

reader. By carefully crafting the file, the attacker can lead the PDF reader

to run arbitrary code he or she wants. A proof-of-concept video at

https://youtu.be/sGQYG_Qbjvg shows that the PDF reader opens a

calculator application just by opening a file created by the attacker. If it

was a real attack, the PDF reader could have exhibited a much worse

behavior, e.g., deleting all the files.

On the other hand, if programmers insert free too late or do not insert

at all, memory leaks happen. A memory leak is a waste of the heap space

by not deallocating garbage. Memory leaks are less critical than UAF in

most cases. Unless the heap becomes full, memory leaks do not yield

an observable problem. However, memory leaks may make the heap

lack free space, which should not have happened if there is no memory

leak.

Automatic Memory Management

Automatic memory management is memory management that does not

require programmers’ intervention. The memory manager automatically

finds and deallocates garbage.

GC is the most popular form of automatic memory management. GC

decides whether a certain object is garbage or not by using the notion of

reachability. An object is reachable if a program can reach the object from

the stack by following pointers. Consider the following code:

case class C(x: Int)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9715
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9715
https://youtu.be/sGQYG_Qbjvg

13 Garbage Collection 144

var a = C(0)

a = C(1)

After executing var a = C(0), the memory is as follows:

a 0x1000
0x1000 C(0)

0x1004

Stack Heap

At this point, C(0) at 0x1000 is reachable because the stack has the

address 0x1000.

After executing a = C(1), the memory is as follows:

a 0x1004
0x1000 C(0)

0x1004 C(1)

Stack Heap

Now, C(1) at 0x1004 is reachable, but C(0) at 0x1000 is not reachable

any longer.

Note that it is possible that an object is reached in more than one step.

For example, consider the following code:

13 Garbage Collection 145

11: More precisely, objects reachable from

the stack and registers are accessible. Reg-
isters are small memory storage inside the

CPU. They also are used to store the val-

ues of local variables. Sometimes, the stack

and registers are collectively called the root
in the context of GC. For simplicity, this

book ignores registers.

case class C(x: C)

var a = C(null)

a = C(a)

After executing the program, the memory is as follows:

a 0x1004
0x1000 C(null)

0x1004 C(0x1000)

Stack Heap

Although the stack does not contain 0x1000, C(null) at 0x1000 is still

reachable because the stack has 0x1004 and 0x1000 is stored at the

address 0x1004.

The intuition of GC is that unreachable objects cannot be used by pro-

grams. The stack stores the values of local variables. Therefore, programs

can access any values on the stack by reading local variables. However,

objects on the heap do not directly correspond to specific program con-

structs. To access them, programs need to read their addresses from

somewhere. It implies that programs can access objects only when they

are reachable from the stack
11

by following pointers.

Both of the above examples advocate this intuition. In the first example,

after executing var a = C(0), C(0) is reachable. The object is indeed

accessible by reading the variable a. Then, after executing a = C(1), C(0)

becomes unreachable and inaccessible; reading a accesses C(1), not C(0).

In the second example, C(null) is reachable even after executing a =

C(a), and the program can access C(null) by reading a.x.

Following this intuition, GC finds unreachable objects and deallocates

them during the execution of programs. In this way, GC never makes

dangling pointers. It is guaranteed that all the deallocated objects are

garbage. In other words, GC completely prevents UAF.

However, GC cannot completely prevents memory leaks. It is because

not every garbage is unreachable. Consider the following code:

case class C(x: Int)

13 Garbage Collection 146

val a = C(0)

... // never use `a`

The program creates C(0) but never uses it. In this case, C(0) is garbage

but reachable. Since C(0) is reachable, GC never deallocates it although

it is garbage in fact. Therefore, this causes a memory leak. Fortunately,

code like the above is rare in practice. For this reason, memory leaks

caused by GC are usually negligible.

Note that not every automaticmemorymanagement usesGC; for example,

the Rust compiler analyzes programs and automatically inserts drop at

compile time. It is different fromGC,whichoperates at run time.Although

GC is not the only way of achieving automatic memory management,

GC is still the most popular one.

The remainder of the chapter introduces three widely-used techniques

to implement GC.

13.3 Reference Counting

Under reference counting, each object is accompanied by a reference

count. The reference count of an object is an integer representing the

number of pointers referring the object. When an object is created, its

reference count equals zero. Each time a pointer to the object is created,

the reference count increases by one, and each time a pointer to the

object is destroyed, the reference count decreases by one. When the

reference count becomes zero after a decrement, the object is considered

unreachable and immediately deallocated.

Consider the following code:

case class C(var x: Any)

var a = C(0)

val b = C(a)

a = C(1)

b.x = a

Let us see how reference counting collects garbage with the example.

After executing var a = C(0), the memory is as follows:

13 Garbage Collection 147

The reference count of C(0) increases from 0 to 1 because a pointer to

the object has been created and stored in the variable a on the stack.

After executing val b = C(a), the memory is as follows:

The reference count of C(0) increases again from 1 to 2 because a pointer

to the object has been created and stored in C(a).

After executing a = C(1), the memory is as follows:

13 Garbage Collection 148

The reference count of C(0) decreases from 2 to 1 because the pointer

held by a has been destroyed. Now, a has a pointer to C(1).

After executing b.x = a, the memory is as follows:

The reference count of C(0) decreases again from 1 to 0 because the

pointer held by C(a) also has been destroyed. Since the reference count

equals zero, the object is considered unreachable and becomes deallo-

cated.

13 Garbage Collection 149

12: https://en.cppreference.com/w/

cpp/memory/shared_ptr

13: https://doc.rust-lang.org/std/

rc/struct.Rc.html

Pros

Reference counting has the following strengths:

I It is easy to implement.

I Memory reclamation is immediate and takes a short time.

Ease of Implementation Reference counting requires only reference

counts attached to objects and modification of them at the creation and

deletion of pointers. It is easy to implement; it can be implemented even as

a library, without any language-level support. For example, shared_ptr12

in C++ and Rc13 in Rust are well-known library implementations of

reference counting.

Immediate Reclamation The reference count of an object decreases to

zero as soon as it becomes unreachable. Then, the object is deallocated

immediately. Therefore, memory reclamation is immediate if one uses

reference counting. There is little space wasted in the heap. In addition,

checking whether a certain reference count is zero or not is extremely

fast, so the execution of a program never pauses for a long time due to

GC.

Cons

Reference counting has the following weaknesses:

I It cannot handle cyclic structures.

I Maintaining reference counts takes cost.

I It requires free lists.

I It suffers from external fragmentation.

Cyclic Structure Unfortunately, reference counting suffers from mem-

ory leaks when objects form cycles. Consider the following code:

def f() = {

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html

13 Garbage Collection 150

val a = C(null)

val b = C(a)

a.x = b

}

Suppose that f is called. After executing val a = C(null), the memory

is as follows:

After executing val b = C(a), the memory is as follows:

After executing a.x = b, the memory is as follows:

13 Garbage Collection 151

14: https://docs.python.org/3/

library/gc.html

15: https://docs.swift.org/

swift-book/LanguageGuide/

AutomaticReferenceCounting.html

Each object has a pointer to the other, so a cycle has been formed.

Finally, the function returns. Then, the memory is as follows:

Both of the local variables a and b have been popped off from the stack,

so each of the objects loses one pointer. Therefore, their reference counts

decrease to 1. Since there is no way to reach them from the stack, they are

unreachable. However, their reference counts are not zero. They will not

be deallocated forever. This is definitely a memory leak, and the reason

is the cyclic structure made by the objects.

While the otherweaknesses of reference counting cause only performance

degradation, memory leaks due to the inability to handle cyclic structures

are a critical drawback of reference counting. For this reason, reference

counting is often criticized. However, some languages use reference

counting despite this crucial limitation. For example, Python and Swift

use reference counting. Each of them has its own solution to overcome

the limitation of reference counting. Python provides a secondary GC

algorithm, which can properly handle cycles, while having reference

counting as the primary one.
14

Swift allows programmers to create

weak references, which are pointers that do not increase reference counts,

https://docs.python.org/3/library/gc.html
https://docs.python.org/3/library/gc.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html

13 Garbage Collection 152

in addition to usual pointers, i.e., strong references.15 Programmers can

use weak references when they want to create cycles without memory

leaks.

Maintaining Reference Counts Reference counts occupy some of the

heap space. It decreases the total size of objects that can be allocated on

the heap.

In addition, creation and deletion of a pointer always modify reference

counts, which takes some time. It harms the performance of programs

compared to other GC techniques, which modify the heap only when

allocating and deallocating objects, but not when creating and destroying

pointers. Note that each object is allocated and deallocated only once, but

pointers to each object can be created and destroyed multiple times.

Free List The free space of the heap is initially a single continuous block

of memory.

At this moment, it is enough to know the starting address of the free

space to decide the address of a new allocation.

If there is no garbage and only allocations happen, this remains the

same.

However, after deallocating some objects, the free space splits into

multiple separated blocks.

Therefore, it is not enough to know only the starting address of the free

space in general. The memorymanager should know the starting address

and the size of each free block.

13 Garbage Collection 153

For this purpose, the memory manager maintains a data structure called

a free list on the heap. A free list is typically a linked list containing all

the free blocks. Maintaining a free list takes some time and space. Also,

each time allocating an object, the memory manager needs to traverse its

free list to find a free block of a proper size.

External Fragmentation As mentioned above, the free space splits into

multiple blocks. It is called external fragmentation. Because of external

fragmentation, an object may not be allocated on the heap although there

is enough free space. Consider the following program:

1. allocates four 1KiB-large objects

2. deallocates the first and the last objects

3. allocates a 2KiB-large object

Suppose that the program runs with the heap of 4KiB. Ignoring the space

for the reference counts and the free list, the heap after the first four

allocations is as follows:

After the deallocations, the heap is as follows:

Then, it is impossible to allocate the 2KiB-large object although the heap

has free space of 2KiB.

External fragmentation also harms cache utilization. When allocating

multiple objects to be used together, it is desirable to place them close to

each other in the memory. When it is achieved, we say that the locality
is good. Good locality is important because it makes objects go into a

single cache block and, thus, reduces cache misses. However, the locality

is usually poor due to external fragmentation. Consider the following

heap:

If a program allocates two objects, they are placed far away from each

other.

13 Garbage Collection 154

13.4 Mark-and-Sweep GC

Unlike reference counting, which possibly deallocates a new unreachable

object each time a pointer is destroyed, mark-and-sweep GC finds and

deallocates all the unreachable objects at once only when GC is triggered

for some reason (e.g., the heap is full). Mark-and-sweep GC consists of

two phases: the marking phase and the sweeping phase. The memory

manager “marks” all the reachable objects in the marking phase and

“sweeps,” i.e. deallocates, all the unmarked objects in the sweeping

phase.

Let us see how mark-and-sweep GC works in detail. During the marking

phase, each object is in one of the following states:

I Unreached: This object has not been explored yet. It may be un-

reachable and is a candidate for deallocation. However, the state

may change.

I Unscanned: This object is reachable and will not be deallocated. It

has a pointer to an Unreached object, so a further “scan” is required.

I Scanned: This object is reachable and will not be deallocated. It

does not have any pointers to Unreached objects.

When the marking phase starts, all the objects are Unreached, which is

represented by a white box.

As the first step, objects pointed by on-stack pointers move from the

Unreached state to the Unscanned state, which is represented by a gray

box.

13 Garbage Collection 155

The memory manager chooses one Unscanned object and “scans” the

object by following all the pointers in the object. All the Unreached objects
pointed by the pointers move to the Unscanned state. After the scan, the

chosen object becomes Scanned, which is represented by a black box.

This repeats until there is no Unscanned object.

13 Garbage Collection 156

If there is no Unscanned object, the marking phase ends.

In the sweeping phase, each object is in either Unreached or Scanned
state. Scanned objects are considered marked, and Unreached objects are

considered unmarked. Since unmarked objects are unreachable, all the

unmarked objects are deallocated.

13 Garbage Collection 157

Pros

Unlike reference counting, mark-and-sweep GC can handle cyclic struc-

tures.

Cons

Mark-and-sweep GC has the following weaknesses:

I It requires free lists.

I It suffers from external fragmentation.

I Execution pauses during GC.

Just like reference counting, mark-and-sweep GC also requires free lists

and suffers from external fragmentation.

Execution Pause When GC is triggered, the memory manager scans

the entire heap. It takes some time, especially when the heap is large

and has many objects. To correctly decide the reachability of each object,

the execution must stop during GC. Therefore, a program pauses for a

while when GC is triggered. Since programmers cannot control the exact

timing of GC, pauses caused by GC are mostly unpredictable.

To alleviate this issue, modern GC implementations adopt various tech-

niques such as parallel GC, incremental GC, and concurrent GC, which

are beyond the scope of this book.

13.5 Copying GC

Copying GC is similar to mark-and-sweep GC; it finds and deallocates

all the unreachable objects when GC is triggered. However, it copies

all the reachable objects and reorganizes them in a compact layout. For

this purpose, it divides the heap into two parts: the from-space and the

to-space.

13 Garbage Collection 158

Every allocation happens in the from-space. Therefore, when GC is

triggered, all the objects are in the from-space, and the to-space is

empty.

The operation of copying GC is quite similar to the marking phase of

mark-and-sweep GC. It starts from the stack and marks objects reached

by following pointers. The difference is that an object is copied from

the from-space to to-space when it becomes Unscanned from Unreached.
First, all the objects reachable from the stack in one step are copied to the

to-space.

When copying an object, existing pointers to the object are updated

so that they correctly point to the object in the to-space. In addition,

a forwarding pointer (an arrow with a dashed line) to the object in the

to-space is stored in the object in the from-space. The forwarding pointer

allows thememorymanager to correctly update pointers to be discovered

in the future.

The memory manager chooses one Unscanned object and makes all

the pointed Unreached objects Unscanned. The chosen object becomes

Scanned.

13 Garbage Collection 159

This repeats until there is no Unscanned object.

When an object pointed by a pointer has been copied to the to-space

already, the memory manager does not copy the object again and simply

updates the pointer by checking the forwarding pointer.

13 Garbage Collection 160

If there is no Unscanned object, GC ends. The from-space and the to-space

are swapped. Now, all the allocations happen in the new from-space, and

the new to-space is considered empty.

Cheney’s Algorithm Cheney’s algorithm is an efficient implementation

of copying GC. It maintains two pointers to the to-space during GC:

I free: a pointer to the beginning of the free space of the to-space

I scan: a pointer to the first Unscanned object in the to-space

We use the same example as before to illustrate how Cheney’s algorithm

works.

13 Garbage Collection 161

Note that C, D, and E are classes defined as below.

case class C(x: AnyRef, y: AnyRef)

case class D(x: AnyRef)

case class E(x: Int)

AnyRef is the type of any objects.

Suppose that each object in the memory has a type tag, which is the

name of the class to which the object belongs. This allows the memory

manager to distinguish pointers from integers by checking the types of

fields. For example, E(42) is represented as E 42 , and the memory

manager knows that 42 is an integer, not a pointer, because the type of

the field x is Int.

Now, assume that the heap is 32B-large, and each type tag, integer,

and address occupies only one byte. Then, the memory before GC is as

follows:

Stack

0x02

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 C 0x050x0d D 0x0b D 0x00 D 0x0b E 42 D 0x0b

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

scan
free

The first row of each space shows the address of each slot, and the second

row shows the content of the space. The last row shows the locations of

scan and free. In the beginning, both scan and free point to the beginning

of the to-space because the to-space is empty.

As the first step, the only object directly pointed by the stack is copied.

13 Garbage Collection 162

Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d D 0x0b D 0x00 D 0x0b E 42 D 0x0b

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x050x0d

scan
free

F is the type tag of an object that has been copied already. An object with

the type tag F has a forwarding pointer. The to-space now has an object,

so the free pointer advances by the size of the object. On the other hand,

the object has not been scanned yet, so the scan pointer stays still. It

shows that the objects between scan and free are Unscanned objects.

As the next step, the object pointed by scan is scanned. All the objects

pointed by the object being scanned are copied.

Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d F 0x13 D 0x00 D 0x0b E 42 F 0x15

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x130x15 D 0x0b D 0x0b

scan
free

The free pointer advances again by the sum of the sizes of all the copied

objects. In addition, the scan pointer also advances to the next object

in the to-space because the object previously pointed by scan has been

scanned. Note that when the scan pointer advances, the old addresses

0x05 and 0x0d are updated to new addresses 0x13 and 0x15, respectively.

This shows that the objects before scan are Scanned objects.

This repeats until scan catches up with free, i.e., there is no Unscanned
object.

Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d F 0x13 D 0x00 D 0x0b F 0x17 F 0x15

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x130x15 D 0x17 D 0x0b E 42

scan
free

13 Garbage Collection 163

Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d F 0x13 D 0x00 D 0x0b F 0x17 F 0x15

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x130x15 D 0x17 D 0x17 E 42

scan
free

Stack

0x10

From-space

0x000x010x020x030x040x050x060x070x080x090x0a0x0b0x0c0x0d0x0e0x0f

D 0x07 F 0x100x0d F 0x13 D 0x00 D 0x0b F 0x17 F 0x15

To-space

0x100x110x120x130x140x150x160x170x180x190x1a0x1b0x1c0x1d0x1e0x1f

C 0x130x15 D 0x17 D 0x17 E 42

scan
free

Pros

The copying GC has the following strengths:

I It can handle cyclic structures.

I Allocations are extremely fast.

I It does not suffer from external fragmentation.

Like mark-and-sweep GC, copying GC can handle cyclic structures.

FastAllocation CopyingGCdoes not require free lists. The freepointer

used by Cheney’s algorithm is enough. Objects are contiguously allocated

at the beginning of the from-space, and GC copies reachable objects to the

beginning of the to-space instead of selectively deallocating unreachable

objects. For this reason, the free space of the heap is always a single

continuous block of memory, and every new object can be allocated at

the address to which free points. It allows constant-time allocation. It

is much faster than reference counting and mark-and-sweep GC, which

need to traverse free lists.

No External Fragmentation Since the free space is always a single

memory block, there is no external fragmentation. It allows efficient use

of the heap; if there is enough space, objects can be always allocated.

In addition, it guarantees good locality; consecutive allocations always

result in contiguous objects on the heap.

Cons

The copying GC has the following weaknesses:

I Execution stops during GC.

13 Garbage Collection 164

I Only a half of the heap can store objects.

I Copying is expensive.

Like mark-and-sweep GC, programs pause for a while when GC is

triggered.

Small Free Space Since copying GC divides the heap into two pieces,

only a half of the heap is available for allocating objects. It leads to more

frequent GC, which pauses execution.

Cost of Copying Unlike reference counting and mark-and-sweep GC,

copying GC copies reachable objects every time GC is triggered. If the

heap has a large amount of reachable objects, copying will take a long

time and increase the duration of the pause.

13.6 Exercises

Exercise 13.1 Suppose a program uses the following four kinds of an

object:

I Type tag 1: an object containing one integer

I Type tag 2: an object containing one integer and one pointer

I Type tag 3: an object containing one pointer and one integer

I Type tag 4: an object containing two pointers

The heap is of size 26B. The memory manager uses copying GC, so each

space is of size 13B. The following is the memory just before GC, where

all the memory has been allocated:

I Stack: 10

I Fromspace:
1 2 2 3 7 1 4 4 5 10 3 7 5
0 1 2 3 4 5 6 7 8 9 10 11 12

I To space:
0 0 0 0 0 0 0 0 0 0 0 0 0
13 14 15 16 17 18 19 20 21 22 23 24 25

What are the values in the stack, the from-space, and the to-space after

GC? Suppose that 10 in the stack is a pointer and copied objects have 99

as type tags.

1: One may wonder whether CBR is eager

or not. The best answer is that CBR is irrele-

vant to distinction between eagerness and

laziness. As shown in the previous chapter,

CBR is possible only when an argument

is a variable, whose address is known. In

that case, there is nothing to evaluate. We

have to make a choice between passing

the address (CBR) and passing the value

at the address (CBV). On the other hand,

choosing one of eagerness and laziness is

about a choice between evaluating the ar-

gument and not evaluating the argument.

CBR can be used in both eager and lazy

languages.

2: Some people use the term lazy evalu-

ation to denote call-by-need only. In that

sense, CBN is not considered as lazy evalu-

ation. However, this book views lazy eval-

uation as a term that can be used broadly

to mean any form of delayed computation.

In this sense, both CBN and call-by-need

belong to lazy evaluation.

3: Programmers can force evaluation if

they really want.

Lazy Evaluation 14

14.1 Semantics 166

14.2 Interpreter 169

14.3 Call-by-Need 170

14.4 Exercises 172

This chapter is about lazy evaluation. Lazy evaluation means delaying the

evaluation of an expression until the result is required. The opposite of

lazy evaluation is eager evaluation, which evaluates an expression even

if in the case that it is unknown whether the result of the expression is

necessary for future computation. There are multiple features that lazy

evaluation can be applied to in programming languages. For example,

arguments for function applications can be evaluated lazily; each argu-

ment of a function application is evaluated when the argument is used in

the function body, not before the evaluation of the function body starts.

Another example is a variable definition. The initialization of variable

happenswhen the variable is used for the first time, not when it is defined.

Actually, as you have seen already, local variables can be considered as

syntactic sugar of function parameters, it is enough to focus on laziness

in function applications. Therefore, this book considers lazy evaluation

only on arguments of function applications.

All the previously defined languages in the book are eager languages.

They use the CBV semantics for function applications. CBV can be con-

sidered equivalent to eager evaluation. CBV means that every argument

is passed as a value. The value of an argument can be acquired only

by evaluating the argument expression. It implies that every argument

is evaluated before the evaluation of the function body regardless of

whether the argument is used during the body evaluation. Thus, the

CBV semantics is equal to the eager evaluation semantics.
1

This chapter mainly discusses call-by-name (CBN) semantics, which is

one form of lazy evaluation. In the CBN semantics, each argument is

passed as its name, i.e. the expression itself, rather than the value denoted

by the expression. Since it is passed as an expression, there is no need

to evaluate the expression to obtain its value. The expression will be

evaluated when the value is required by the function body. As you

can see, CBN delays the computation of arguments by passing them as

expressions and can be considered as lazy evaluation. We will define

LFAE, which is a lazy version of FAE, in this chapter. LFAE adopts the

CBN semantics. In addition, we will introduce call-by-need,
2
which is

another form of lazy evaluation, as an optimized version of CBN.

Before we discuss the CBN semantics and LFAE, let us see why lazy

evaluation is valuable in practice.We can find lazy evaluation in a few real-

world languages. Haskell is well-known as treating every computation

lazily bydefault.
3
On the other hand, Scala is an eager language but allows

programmers to selectively apply lazy evaluation to their programs. We

will see code examples in Scala as it is the language used in this book,

thoughHaskell is the most famous lazy language. Consider the following

Scala code:

def square(x: Int): Int = {

Thread.sleep(5000) // models some expensive computation

14 Lazy Evaluation 166

x * x

}

def foo(x: Int, b: Boolean): Int =

if (b) x else 0

val file = new java.io.File("a.txt")

foo(square(10), file.exists)

The function square takes an integer as an argument and returns its

square. It always takes five seconds to return due to Thread.sleep(5000),

which makes the thread sleep for five seconds. Of course, no one will

write such code in practice, but it is an analogy of highly expensive

computation that takes a long time.

The function foo takes one integer and one boolean. It returns the integer

when the boolean is true and zero otherwise. Therefore, the integer value

is required only when the boolean is true.

The last line of the program applies foo to square(10) and file.exists.

The second argument is true if and only if there exists a file named

a.txt. If the file does not exist, foo returns zero, and thus the value

of square(10) is unnecessary. However, as Scala uses eager evaluation

by default, square(10) is evaluated and spends five seconds regardless

of the existence of the file. If we modify the program not to evaluate

square(10) when the file is absent, we can save time in many cases

without changing the behavior of the program.

Lazy evaluation gives us an easy solution to this issue. If the first argument

for foo is evaluated lazily, the program will evaluate square(10) only

when the file exists. In Scala, we can make a certain parameter use the

CBN semantics by adding => in front of the type of the parameter. Thus,

the following fix completely resolves the problem:

def foo(x: => Int, b: Boolean): Int =

if (b) x else 0

We call x a by-name parameter in Scala. Since x is a by-name parameter,

the first argument for foo is evaluated only when the value of x is needed

during the evaluation of the body.

14.1 Semantics

We do not explain the syntax of LFAE as it is the same as FAE. We can

move on to the semantics immediately. The definition of an environment

is the same as FAE. Also, as in FAE, � ` 4 ⇒ E is true if and only if 4

evaluates to E under �. We can use Rule Num of LFAE since evaluation of

integers are not affected by lazy evaluation. Similarly, Rule Fun can be

reused as well. Rule Id also remains the same. The value of an identifier

can be found in an environment.

One that certainly requires a change is the semantics of function appli-

cations. It is the most distinctive feature of lazy languages compared to

eager languages. In the CBV semantics, we store the values of arguments

14 Lazy Evaluation 167

4: We omit the common part to FAE.

in environments and use the environments to evaluate function bodies.

We still need to store arguments in environments in the CBN semantics.

However, arguments are passed as expressions, and expressions are not

values. We need a way to put expressions in environments. The simplest

solution is to define a new kind of values as follows:
4

E ::= · · · | (4 , �)

(4 , �) is an expression as a value; we call it an expression-value. It denotes

that the computation of 4 under � has been delayed. We must keep

the environment together with the expression since the expression can

have free identifiers whose values are available in the environment. The

reason is the same as why we need the notion of a closure, which is a

function with an environment. The structure of (4 , �) is quite similar to

the structure of a closure, 〈�G.4 , �〉, except that an expression-value lacks

the name of a parameter. The similarity is not just a coincidence. Both

kinds of values denote delay of computation. The evaluation of 4 in (4 , �)
is postponed until the value of the argument becomes required, and the

evaluation of 4 in 〈�G.4 , �〉 is postponed until the closure is applied to a

value.

Because of the addition of expression-values, we need to define another

form of evaluation. We call it strict evaluation. The purpose of strict

evaluation is to force an expression-value to be a “normal” value, which

is an integer or a closure. Strict evaluation is required because the ability

of an expression-value is limited. It can be passed as an argument or

stored in an environment like normal values but cannot be used as an

operand of an arithmetic expression or applied to a value as a function.

There must be a way to convert an expression-value to a normal value,

and strict evaluation takes this role.

Strict evaluation is defined as a binary relation over + and + . We use ⇓
to denote strict evaluation.

⇓⊆ + ×+

E1 ⇓ E2 is true if and only if E1 strictly evaluates to E2. Here, E1 can be any

value. However, E2 cannot be an expression-value; it must be a normal

value. The reason obviously comes from the purpose of strict evaluation:

converting an expression-value to a normal value.

The following rules define strict evaluation of normal values:

Rule Strict-Num

= strictly evaluates to =

= ⇓ = [Strict-Num]

Rule Strict-Clo

〈�G.4 , �〉 strictly evaluates to 〈�G.4 , �〉

〈�G.4 , �〉 ⇓ 〈�G.4 , �〉 [Strict-Clo]

14 Lazy Evaluation 168

A normal value strictly evaluates to itself since it is already a normal

value.

The following rule defines strict evaluation of expression-values:

Rule Strict-Expr

If 4 evaluates to E1 under �, and E1 strictly evaluates to E2, then (4 , �)
strictly evaluates to E2.

� ` 4 ⇒ E1 E1 ⇓ E2

(4 , �) ⇓ E2

[Strict-Expr]

An expression-value (4 , �) is strictly evaluated by evaluating 4 under

�. The result of 4 can be an expression-value again, and thus we need

repeated strict evaluation until reaching a normal value.

Now, we can define the semantics of function applications by using the

notions of expression-values and strict evaluation.

Rule App

If

41 evaluates to E1 under �,
E1 strictly evaluates to 〈�G.4 , �′〉, and
4 evaluates to E under �′[G ↦→ (42 , �)],

then

41 42 evaluates to E under �.

� ` 41 ⇒ E1 E1 ⇓ 〈�G.4 , �′〉 �′[G ↦→ (42 , �)] ` 4 ⇒ E

� ` 41 42 ⇒ E
[App]

41 evaluates to E1 first. E1 may be an expression-value, while we need

a closure. Therefore, we strictly evaluate E1 to get a closure. On the

other hand, in the CBN semantics, the argument must not be evaluated

before the evaluation of the function body. Instead of evaluating 42, we

make an expression-value with 42 and � and then put the value into the

environment.

Let us see the semantics of addition and subtraction.

Rule Add

If

41 evaluates to E1 under �,
E1 strictly evaluates to =1,

42 evaluates to E2 under �, and
E2 strictly evaluates to =2,

then

41 + 42 evaluates to =1 + =2 under �.

� ` 41 ⇒ E1 E1 ⇓ =1 � ` 42 ⇒ E2 E2 ⇓ =2

� ` 41 + 42 ⇒ =1 + =2

[Add]

Rule Sub

14 Lazy Evaluation 169

5: It is not a flaw in real-world program-

ming languages like Haskell. A program

shows its result by output operations (e.g.

to files) rather than the value of a single

expression. Each output operation applies

strict evaluation to its argument (like Rule

Add, Rule Sub, and Rule App in LFAE), and
the value of each expression does not need

to be a normal value.

6: We omit the common part to FAE.

If

41 evaluates to E1 under �,
E1 strictly evaluates to =1,

42 evaluates to E2 under �, and
E2 strictly evaluates to =2,

then

41 − 42 evaluates to =1 − =2 under �.

� ` 41 ⇒ E1 E1 ⇓ =1 � ` 42 ⇒ E2 E2 ⇓ =2

� ` 41 − 42 ⇒ =1 − =2

[Sub]

There is nothing difficult. They are similar to the rules of FAE but

additionally require strict evaluation since addition and subtraction are

possible only by using integers, not expression-values.

The semantics is a correct instance of CBN but has a flaw from a practical

perspective. Consider (�x.x) (1 + 1). It results in (1 + 1, ∅), not 2. Most

programmers are likely to prefer 2 as a result. We need to apply one last

strict evaluation at the end of the evaluation to resolve the problem. It is

to say that “the result of a program 4 is E when ∅ ` 4 ⇒ E′ and E′ ⇓ E.”
Note that it is different from applying strict evaluation to the evaluation

of every expression in the program. Strict evaluation is applied to only

the result of the whole expression, which is the program. In this way, we

can make the result of the above expression 2 and eliminate the flaw.
5

If evaluating an expression in the CBV semantics results in a value, then

the CBN semantics yields the same value. It is known as a corollary of

the standardization theorem of lambda calculus [Rey09]. Note that it is

true only in languages without side effects. The result of an expression

with side effects varies in the order of the evaluation. For example, if an

argument is an expression changing the value of a box, and the body of

the function reads the value of the box without using the argument, the

program can behave differently in CBV and CBN. In CBV, the read value

will be the value after the update. On the other hand, in CBN, the update

never happens, and the read value will be the original value of the box.

While the CBN semantics preserves the results of the CBV semantics, the

converse is false even without mutation, i.e. there are expressions that

yield results only in CBN. For instance, consider a function application

whose argument is a nonterminating expression. If the function returns

zero without using the argument, evaluation with CBN results in zero,

while evaluation with CBV does not terminate.

14.2 Interpreter

We need to add a new variant to Value to represent expression-values.
6

sealed trait Value

...

case class ExprV(e: Expr, env: Env) extends Value

ExprV(4, �) represents (4 , �).

14 Lazy Evaluation 170

7: We omit the common part to FAE.

The following function implements strict evaluation:

def strict(v: Value): Value = v match {

case ExprV(e, env) => strict(interp(e, env))

case _ => v

}

We can implement interp as follows:
7

def interp(e: Expr, env: Env): Value = e match {

...

case Add(l, r) =>

val NumV(n) = strict(interp(l, env))

val NumV(m) = strict(interp(r, env))

NumV(n + m)

case Sub(l, r) =>

val NumV(n) = strict(interp(l, env))

val NumV(m) = strict(interp(r, env))

NumV(n - m)

case App(f, a) =>

val CloV(x, b, fEnv) = strict(interp(f, env))

interp(b, fEnv + (x -> ExprV(a, env)))

}

Each case matches the corresponding rule, so there is nothing difficult.

14.3 Call-by-Need

The current implementation is efficient when a parameter appears once

or less in the function body. However, using a parameter twice or more

leads to redundant calculation. Consider the following Scala program:

def square(x: Int): Int = {

Thread.sleep(5000) // models some expensive computation

x * x

}

def bar(x: => Int, b: Boolean): Int =

if (b) x + x else 0

val file = new java.io.File("a.txt")

bar(square(10), file.exists)

x appears twice in the body of bar. If a.txt exists, square(10) is evalu-

ated twice. Actually, we do not need to evaluate square(10) twice since

its result is always the same. Since square is an expensive function, it is

desirable to reduce the number of function calls as much as possible. If

we use CBV instead of CBN, it is possible to evaluate square(10) only

once when the file exists. However, going back to CBV is not a good

choice. It will make the program evaluate square(10) even when the file

does not exist.

14 Lazy Evaluation 171

The way to solve this problem is to store the value of an argument and

use the value again. This strategy is as optimal as CBV when a parameter

appears multiple times; it is as optimal as CBN when a parameter is

not used at all. For programmers, it is tedious to implement such logic

in their programs by themselves. Instead, programming languages can

provide the optimization. This optimization is called call-by-need as each

argument is evaluated based on need for its value. It is evaluated once if

needed and is not otherwise.

Call-by-need is not different semantics from CBN in purely functional

languages. The behaviors of a program in call-by-need and CBN are com-

pletely equal. Call-by-need is just an optimization strategy of interpreters

and compilers. On the other hand, call-by-need is different semantics

from CBN in languages with side effects. In such languages, the number

of computation of a certain expression can affect the result. For example,

consider an argument that is an expression that increases the value of

the box by one. Suppose that its value is used twice in the function body.

Then, the value of the box increases by two in CBN, while it increases by

one in call-by-need.

Since LFAE lacks side effects, we can adopt call-by-need to the language

as optimization of the interpreter. There is no need to newly define the

call-by-need version of the semantics.

To store the strict value of an expression-value, we add a new field to the

class ExprV.

case class ExprV(

e: Expr, env: Env, var v: Option[Value]

) extends Value

The field is declared as mutable. Initially, the value of the expression is

unknown, and v equals None. When the value is calculated for the first

time, the value is stored in v. The fact that v equals Some(a) for some a

implies that the value of the expression is a. In the next time we need the

value again, a can be used without any redundant computation.

The function strict requires the following change:

def strict(v: Value): Value = v match {

case ExprV(_, _, Some(cache)) => cache

case ev @ ExprV(e, env, None) =>

val cache = strict(interp(e, env))

ev.v = Some(cache)

cache

case _ => v

}

It checks whether there exists a cached value. If it is the case, the function

simply returns the cached value. Otherwise, e is evaluated under env

like before. In addition, the function stores the value in v.

The function interp needs only one fix. When a new ExprV instance is

created in the App case, one additional argument is required to initialize

the field v.

14 Lazy Evaluation 172

case App(f, a) =>

val CloV(x, b, fEnv) = strict(interp(f, env))

interp(b, fEnv + (x -> ExprV(a, env, None)))

Since we do not know the value of a, the initial value of v is None.

Purely functional languages with lazy evaluation usually adopt call-by-

need because it is just optimization but not a change in their semantics.

On the other hand, impure languages cannot consider call-by-need as

optimization and often allow programmers to choose one of them at

each place. For example, Scala uses CBN for by-name parameters and

call-by-need for lazy variables. We can define lazy variables with the

lazymodifier.

lazy val x = {

println(1)

1

}

val y = x + x

The program prints 1 only once. By using both by-name parameter and

lazy variable, we can simulate the call-by-need semantics in Scala.

def bar(_x: => Int, b: Boolean): Int = {

lazy val x = _x

if (b) x + x else 0

}

If b is true, the first argument is evaluated only once. Otherwise, it is not

evaluated at all.

14.4 Exercises

Exercise 14.1 Consider the following LFAE expression:

(�x.x + x) (1 + 2)

Write the arguments to interp each time it is called during the evaluation

of the expression. Write them in the order in which the calls to interp

occur during evaluation.

Exercise 14.2 Write the results of each expression under CBV and CBN.

1. (�y.y 3) (�x.1 2)
2. (�y.y �x.10) (�x.x (1 2))
3. (�y.y �x.10) (�x.1 2)
4. (�y.y) (1 + �x.x)
5. (�y.1 + 2) (1 + �x.x)
6. (�x.8) + 10

7. (�x.8) (1 2)
8. �x.((�y.42) (9 2))
9. 1 + ((�x.x + 13) (1 + �y.7))
10. 1 + ((�x.1 + 13) (1 + �y.7))

14 Lazy Evaluation 173

Exercise 14.3 Consider the following expression:

val f=�x.y + 7 in
val y=5 in
f (42 + �y.3)

Explain the result of evaluating it under the following semantics:

1. CBN with static scoping

2. CBN with dynamic scoping

3. CBV with static scoping

4. CBV with dynamic scoping

Exercise 14.4 There is a recursive call in strict:

def strict(v: Value): Value = v match {

case ev @ ExprV(e, env, None) =>

val cache = strict(interp(e, env))

ev.v = Some(cache)

cache

case ExprV(_, _, Some(cache)) => cache

case _ => v

}

Write an example LFAE expression showing the need for the recursive

strict call.

Exercise 14.5 This exercise extends LFAE with val and if0. Complete the

following interpreter implementation:

sealed trait Expr

...

case class Val(x: String, e: Expr, b: Expr) extends Expr

case class If0(c: Expr, t: Expr, f: Expr) extends Expr

def interp(e: Expr, env: Env): Value = e match {

...

case Val(x, e, b) => ???

case If0(c, t, f) => ???

}

Like in FAE, the semantics of val G=41 in 42 must be the same as (�G.42) 41.
Like in RFAE, if0 41 42 43 evaluates 42 when 41 evaluates to 0 and evaluates

43 when 41 evaluates to a nonzero integer or a closure.

Exercise 14.6 This exercise extends LFAE with pairs. Complete the

following interpreter implementation:

sealed trait Expr

...

case class Pair(f: Expr, s: Expr) extends Expr

case class Fst(e: Expr) extends Expr

case class Snd(e: Expr) extends Expr

14 Lazy Evaluation 174

sealed trait Value

...

case class PairV(???) extends Value

def interp(e: Expr, env: Env): Value = e match {

...

case Pair(f, s) => ???

case Fst(e) => ???

case Snd(e) => ???

}

The semantics of pairs is as follows:

I Pair(41, 42) corresponds to (41 , 42), which is an expression that

creates a new pair.

I Fst(4) corresponds to 4.1, which is an expression that gives the

first value of a given pair.

I Snd(4) corresponds to 4.2, which is an expression that gives the

second value of a given pair.

Pairs in this language are lazy, which means that 41 and 42 in (41 , 42) are
not evaluated when the pair is created. Each of them is evaluated only

when its value is needed. For example,

I (3, (�x.x) + 4) does not incur a run-time error.

I (3, (�x.x) + 4).1 + 5 does not incur a run-time error.

I (3, (�x.x) + 4).2 + 5 incurs a run-time error.

Exercise 14.7 This exercise extends LFAE with lists. Complete the follow-

ing interpreter implementation:

sealed trait Expr

...

case object Nil extends Expr

case class Cons(h: Expr, t: Expr) extends Expr

case class Head(e: Expr) extends Expr

case class Tail(e: Expr) extends Expr

sealed trait Value

...

case object NilV extends Value

case class ConsV(???) extends Value

def interp(e: Expr, env: Env): Value = e match {

...

case Nil => ???

case Cons(h, t) => ???

case Head(e) => ???

case Tail(e) => ???

}

The semantics of lists is as follows:

I Nil creates the empty list.

I Cons(41, 42) corresponds to 41 :: 42, which is an expression that

creates a nonempty list. Since lists are lazy, 41 and 42 in 41 :: 42 are

14 Lazy Evaluation 175

not evaluated when the list is created. Each of them is evaluated

only when its value is needed.

I Head(4) corresponds to 4.head, which is an expression that gives

the head of a list.

I Tail(4) corresponds to 4.tail, which is an expression that gives the

tail of a list. The tail must be a list.

For example,

I ((0 + Nil) :: (2 :: Nil)).tail.head does not incur a run-time error.

I ((0 + Nil) :: (2 :: Nil)).head incurs a run-time error.

I (0 :: 1).head does not incur a run-time error.

I (0 :: 1).tail incurs a run-time error.

You may use the helper function def isList(v: Value): Boolean,

which returns true if a given value is ConsV or NilV and false otherwise,

without defining it.

Exercise 14.8 This exercise asks you to extend FAE with promises, which

originate from the Racket programming language. A promise is a value

that encapsulates an expression to be evaluated on demand via force. Due

to the introduction of promises, values are now defined as follows:

E ::= = | 〈�G.4 , �〉 | delay(4 , �) | lazy(4 , �)

While = and 〈�G.4 , �〉 are usual number and closure values, delay(4 , �)
and lazy(4 , �) are two different kinds of a promise value. They are similar

in that both encapsulate expressions, but their behaviors are slightly

different when being forced.

When a value is forced, a value comes out as the result. The semantics of

force is as follows:

I =

When forced, it produces = as the result.

I 〈�G.4 , �〉
When forced, it produces 〈�G.4 , �〉 as the result.

I delay(4 , �)
When forced, it evaluates 4 under � and produces 4’s result as the

result.

I lazy(4 , �)
When forced, it evaluates 4 under �. Then, 4’s result is also forced

to obtain a value E. E is the result of forcing lazy(4 , �).

There are three kinds of an expression treating a promise:

4 ::= · · · | delay 4 | lazy 4 | force 4

I delay 4
Creates a delay promise with 4 and the current environment.

I lazy 4
Creates a lazy promise with 4 and the current environment.

I force 4
Evaluates 4 and forces 4’s result to obtain the result.

1. Define the semantics of force of the form E ⇓ E . E1 ⇓ E2 means

forcing E1 results in E2.

2. Define the operational semantics of the form � ` 4 ⇒ E for delay 4,

14 Lazy Evaluation 176

lazy 4, and force 4.

Continuations 15

15.1 Redexes and Continuations 179

15.2Continuation-Passing Style 181

15.3 Interpreter in CPS 185

15.4 Small-Step Operational Seman-

tics 189

15.5 Exercises 195

Many real-world languages support control diverters, which alter control
flows of programs. For example, programmers can use return in Scala

code. Consider the following Scala program:

def foo(x: Int): Int = {

val y = return x

x + x

}

foo(3)

Its result is 3, not 6. When return x is evaluated, the value denoted by

x is immediately returned by the function. x + x is never evaluated. It

shows how return is different from many other expressions, including

addition and function application. Most expressions produce values

as results. However, return changes the control flow by making the

function immediately return. We can find various control diverters other

than return in real-world languages: break, continue, goto, throw (or

raise), and so on.

Control diverters are useful for writing programs with complex control

flows. For instance, consider a function numOfWordsInFile that takes the

name of a file and a string as arguments and returns how many times

the string occurs in the file.

def numOfWordsInFile(name: String, word: String): Int = ...

If such a file does not exist, the function returns -1. When the file is read

for the first time, its content is cached, so the function must check the

cache first to reuse the cached result if available.

Assume that we have the following helper functions:

// checks whether a cached result exists

def cached(name: String): Boolean

// gets the cached result

def getCache(name: String): String

// checks whether a given file exists

def exists(name: String): Boolean

// reads the content of the file and caches it

def read(name: String): String

// counts the number of occurrences of `word` in `content`
def numOfWords(content: String, word: String): Int

15 Continuations 178

Then, we can implement numOfWordsInFile with the helper functions

and return.

def numOfWordsInFile(name: String, word: String): Int = {

val content =

if (cached(name))

getCache(name)

else if (exists(name))

read(name)

else

return -1

numOfWords(content, word)

}

First, the function checks whether there is a cached result by calling

cached. If so, the cached result is acquired with getCache and stored

in the variable content. Otherwise, the function checks whether the

file exists with exists. The file is read with read if the file exists, and

its content is stored in content. When the file is missing, the function

immediately returns -1 with return -1. Finally, the function counts the

number of word in contentwith numOfWords to compute the result. Note

that when both cached result and file are absent, numOfWords is never

called because return -1 terminates the function beforehand.

Without return, we need to call numOfWords in multiple places.

def numOfWordsInFile(name: String, word: String): Int = {

if (cached(name))

numOfWords(getCache(name), word)

else if (exists(name))

numOfWords(read(name), word)

else

-1

}

The code looks fine, but we cannot directly express the idea that the

function needs to call numOfWords except one erroneous case, where

both cache and file are not found. It is not a big flaw in the current

implementation of numOfWordsInFile. However, if we write a function

with a large number of conditions, we would prefer return (Figure 15.1)

to call numOfWordsmultiple times (Figure 15.2).

Like mutation, control diverters make languages impure. In pure lan-

guages, the order of evaluation does not matter. Each expression only

produces a result; there is no other side effect. On the other hand, in impure

languages, the order of evaluation matters. Expressions can perform

side effects, including mutation and control flow changes. Evaluating a

certain expression can change the result of other expressions or make

other expressions not evaluated. Therefore, programs written in impure

languages require global reasoning, while programs written in pure

languages require local, modular reasoning. Mutation and control di-

verters make the reasoning of programs difficult despite their usefulness.

Control diverters must be used with extra care of programmers.

15 Continuations 179

def numOfWordsInFile(name: String, word: String): Int = {
val content =
if (A)
a

else if (B)
b

...

else if (F)
f

else
return -1

numOfWords(content, word)
}

Figure 15.1: numOfWordsInFile with

return

def numOfWordsInFile(name: String, word: String): Int = {
if (A)
numOfWords(a, word)

else if (B)
numOfWords(b, word)

...

else if (F)
numOfWords(f, word)

else
-1

}
Figure 15.2: numOfWordsInFile without

return

1: Assume that we use the left-to-right

order for subexpression evaluation in this

chapter.

This chapter and the following two chapters introduce continuations,

which are the most general explanation of control flow. This chapter

focuses on what continuations are and how we can write programs and

define semantics while exposing continuations explicitly. Then, the next

chapter explains how we can add control diverters to languages based

on the notion of a continuation.

15.1 Redexes and Continuations

Evaluating an expression requires one or more steps of computation.

Consider (1 + 2) + (3 + 4). Evaluation of this expression consists of the

following seven steps of computation:
1

1. Evaluate the expression 1 to get the integer value 1.

2. Evaluate the expression 2 to get the integer value 2.

3. Add the integer value 1 to the integer value 2 to get the integer

value 3.

4. Evaluate the expression 3 to get the integer value 3.

5. Evaluate the expression 4 to get the integer value 4.

6. Add the integer value 3 to the integer value 4 to get the integer

value 7.

7. Add the integer value 3 to the integer value 7 to get the integer

15 Continuations 180

2: The term redex stands for a reducible

expression. However, we introduce the

notion of a redex without explaining what

“reduction” or “reducible” is. The notion

can be understood without knowing what

reduction is, so we do not care about the

origin of the term.

value 10.

We can split # steps of computation into two parts: the former = steps

and the remaining # − = steps. We call the expression evaluated by the

former = steps a redex2 and the remaining computation described by the

latter # − = steps the continuation of the redex.

For example, if we split the above steps into step 1 and steps 2-7, then the

redex is the expression 1, and the continuation consists of the remaining

steps. The important point is that the continuation requires the result of

the redex to complete the evaluation. Without 1, the result of step 1, the

continuation cannot proceed beyond step 3. Step 3 can be accomplished

only when the result of the redex is provided. Therefore, we can consider

the continuation as an expression with a hole that must be filled with

the result of a redex. Intuitively, the continuation of 1 can be written

as (� + 2) + (3 + 4), where � denotes the place in which the result of

the redex is used. Since the continuation takes the result of a redex as

input and completes the remaining computation, the continuation can be

interpreted as a function. Following this interpretation, we can express

the continuation of 1 as �x.(x + 2) + (3 + 4).

There are multiple ways to split the steps. The following table shows

three different ways of splitting the evaluation of (1 + 2) + (3 + 4) to find

a redex and the continuation.

Redex Continuation

Steps Expression Steps Hole Function

1 1 2-7 (� + 2) + (3 + 4) �x.(x + 2) + (3 + 4)
1-3 1 + 2 4-7 � + (3 + 4) �x.x + (3 + 4)
1-7 (1 + 2) + (3 + 4) · � �x.x

Note that 2, 3, 4, and 3+4 are not redexes, while 1, 1+2, and (1+2)+(3+4)
are redexes. A redex is an expression that can be evaluated first. Since

2 cannot be evaluated until 1 is evaluated, 2 is not a redex. Similarly, 3,

4, and 3 + 4 cannot be evaluated until 1 + 2 is evaluated, so they are not

redexes. On the other hand, 1+ 2 is a redex because there is nothing need

to be done before the evaluation of 1 + 2.

Since a continuation also consists of multiple steps of computation, it can

split again into a redex and the continuation of the redex. For example,

consider the continuation of 1, which consists of steps 2-7. If we split it into

step 2 and steps 3-7, the redex is the expression 2, and the continuation

is (1 +�) + (3 + 4). Here, the line below 1 expresses that 1 is an integer

value, not an expression.

Therefore, evaluation of an expression repeats evaluation of a redex and

application of a continuation. A given expression splits into a redex and

a continuation. The redex evaluates to a value, and the continuation is

applied to the value. Then, the continuation splits again into a redex and

a continuation, and the redex is evaluated. This process repeats until

there is no more remaining computation, i.e. the continuation becomes

the identity function.

15 Continuations 181

15.2 Continuation-Passing Style

Continuation-passing style (CPS) is a style of programming that passes

remaining computations to function calls. In CPS, programs never use

return values; they pass continuations as arguments instead. Therefore,

by writing programs in CPS, continuations become explicit in the source

code of the programs.

Before moving on to the detail of CPS, recalling store-passing style,

used in Chapter 11 and Chapter 12, would help you understand CPS.

Those chapters choose to use store passing in order to show how we can

implement mutation without mutation. The following code is part of the

implementation of a BFAE interpreter in Chapter 11.

def interp(e: Expr, env: Env, sto: Sto): (Value, Sto) =

e match {

...

case Add(l, r) =>

val (NumV(n), ls) = interp(l, env, sto)

val (NumV(m), rs) = interp(r, env, ls)

(NumV(n + m), rs)

case NewBox(e) =>

val (v, s) = interp(e, env, sto)

val a = s.keys.maxOption.getOrElse(0) + 1

(BoxV(a), s + (a -> v))

}

A store-passing interpreter passes the current store to each function call,

and each function call returns its resulting store.

If we use mutable maps, we can implement interpreters of BFAE and

MFAE without store-passing style. The following code is part of the

implementation of a BFAE interpreter using a mutable map.

type Sto = scala.collection.mutable.Map[Addr, Value]

val sto: Sto = scala.collection.mutable.Map()

def interp(e: Expr, env: Env): Value =

e match {

...

case Add(l, r) =>

val NumV(n) = interp(l, env)

val NumV(m) = interp(r, env)

NumV(n + m)

case NewBox(e) =>

val v = interp(e, env)

val a = sto.keys.maxOption.getOrElse(0) + 1

sto += (a -> v)

BoxV(a)

}

The variable sto denotes a mutable map. The function interp depends

on sto, instead of passing stores as an argument and a return value. The

Add case does not pass the resulting store from the evaluation of l to the

15 Continuations 182

evaluation of r. The NewBox case simply mutates sto to create a new box.

Note that sto += (a -> v)mutates the map by adding a mapping from

a to v. Store passing is unnecessary since there is a global, mutable map,

which records every update.

Two code snippets clearly compare interpreters with and without store

passing. In the former, with store passing, the current store at each point

of execution is explicit. When we see the Add case, it is clear that sto is

used for the evaluation of l, whichmay change the store, and the resulting

store of l is used for the evaluation of r. However, in the latter, without

store passing, the current store at each point is implicit. The code does not

reveal the fact that interp(l, env) can change the store and, therefore,

affect the result of interp(r, env). Implementation with store-passing

style explicitly shows the use and flow of stores by passing stores from

functions to functions, while implementation without store-passing style

hides the use and flow of stores and makes the code shorter.

CPS is similar to store-passing style. The difference is that CPS passes

continuations, while store-passing style passes stores. Like that store-

passing style exposes the store used by each function application, CPS

exposes the continuation of each function application.

This section illustrates how we can write programs in CPS by giving

factorial as an example. Consider a function calculating the factorial of a

given integer. The following function does not use CPS:

def factorial(n: Int): Int =

if (n <= 1)

1

else

n * factorial(n - 1)

Since factorial does not use CPS, the continuation is implicit. For exam-

ple, in factorial(5) + 1, the continuation of factorial(5) is to add 1

to the result, i.e. x => x + 1. Although the continuation of factorial(5)

does exist and is executed during the evaluation of factorial(5) +

1, we cannot find x => x + 1 in the code per se. The reason is that

factorial does not use CPS.

Let us transform this function to use CPS. Since each function in CPS

takes a continuation as an argument, the first thing to do is to add a

parameter to a function. The continuation of a function application uses

the return value of certain computation. Therefore, a continuation can

be interpreted as a function that takes the return value as input. In the

case of factorial, the continuation takes an integer as input. On the

other hand, there is no restriction on what the continuation computes;

it can do whatever it wants. In factorial(5) + 1, the continuation of

factorial(5) results in an integer. At the same time, factorial(5) +

1 results in an integer, too. In 120 == factorial(5), the continuation of

factorial(5), which is x => 120 == x, results in a boolean. The whole

expression 120 == factorial(5) also results in a boolean. Therefore,

the output of a continuation can have any type, but the type must be the

same as the type of the whole expression.

Based on these observations, we can define the type of the continuation

of factorial. It is a function type whose parameter type is Int. The

15 Continuations 183

return type can be any type, but for brevity, we fix the return type to

Int.

type Cont = Int => Int

Now, we can add a parameter that denotes the continuation of a function

call to factorial. We call this new function factorialCps.

def factorialCps(n: Int, k: Cont): Int = ...

k is the continuation of the function. Thus, factorialCps(n, k)means

evaluatingfactorial(n)where its continuation isk.According to thedef-

inition of a continuation, k(factorial(n))must equal factorialCps(n,

k). The return type of factorialCps must be the same as the return

type of k. Since the return type of k is fixed to Int, the return type of

factorialCps also is Int.

The most naïve implementation of factorialCps is as follows:

def factorialCps(n: Int, k: Cont): Int =

k(factorial(n))

Obviously, it is not the correct implementation of factorialCps because

it still depends on factorial; we want factorialCps to be indepen-

dent of factorial. The current version is just a specification, not an

implementation, of factorialCps. However, it is a good starting point.

We can replace factorial(n) with the body of factorial to obtain the

following code:

def factorialCps(n: Int, k: Cont): Int =

k(

if (n <= 1)

1

else

n * factorial(n - 1)

)

Note that f(if (e1) e2 else e3) is the same as if (e1) f(e2) else

f(e3). Therefore, the above code is equivalent to the following code:

def factorialCps(n: Int, k: Cont): Int =

if (n <= 1)

k(1)

else

k(n * factorial(n - 1))

It looks better than before but still depends on factorial, which is

not a function written in CPS. The use of factorial must disappear.

Now, the goal is eliminating factorial in k(n * factorial(n - 1)).

It is possible by using factorialCps instead of factorial. The key

intuition to achieve the goal is to recall that k(factorial(n)) equals

15 Continuations 184

factorialCps(n, k). Based on the equality, we can conclude that the

following equation is true:

k(n * factorial(n - 1))

= (x => k(n * x))(factorial(n - 1))

= factorialCps(n - 1, x => k(n * x))

(x => k(n * x))(factorial(n - 1)) applies x => k(n * x) to the

result of factorial(n - 1) and, thus, equals k(n * factorial(n -

1)). Since k(factorial(n)) equals factorialCps(n, k), (x => k(n

* x))(factorial(n - 1)) equals factorialCps(n - 1, x => k(n *
x)). By utilizing the equality, we attain the following code:

def factorialCps(n: Int, k: Cont): Int =

if (n <= 1)

k(1)

else

factorialCps(n - 1, x => k(n * x))

The function uses CPS because its recursive call explicitly passes the con-

tinuation as an argument. When n is greater than one, factorialCps(n,

k) computes (n− 1)!, multiplies the result by n, and applies k to the result

of the multiplication. The first step, computing (n− 1)!, is done by calling

factorialCps itself. The subsequent two steps are the continuation of

the recursive call. In the implementation, the continuation is x => k(n *
x). It exactly coincides with the aforementioned steps: multiplying the

result by n and applying k.

Now,we can compute 5!with factorialCps bywriting factorialCps(5,

x => x). The continuation is x => x because there is nothing more to do

with 5!, which is the desired result. In factorial(5), the continuation

is implicit since x => x is not written in the code. On the other hand, x

=> x is explicitly written in factorialCps(5, x => x), which clearly

illustrates the main characteristic of CPS. Similarly, to compute 5! + 1, we

can write factorialCps(5, x => x + 1) instead of factorial(5) +

1. To obtain 5!+ 1 from 5!, the only thing to do is adding 1. Therefore, the

continuation is x => x + 1. Just like before, the codewith factorialCps

directly shows the continuation, while the code with factorial does

not.

Since the output type of a continuation is T, any code using factorial can

be rewritten with factorialCps. For example, factorial(5) % 2 == 0

checks whether 5! is an even integer. It is equivalent to factorialCps(5,

x => x % 2 == 0), which explicitly shows the continuation. Similarly,

println(factorial(5))prints120,which is 5!. It is the sameasfactorialCps(5,

println), which also reveals the continuation.

The code written in CPS has the following characteristics:

I Each function takes a continuation as an argument, and each

function application passes a continuation as an argument.

I A continuation is used—called or passed to another function—

once and at most once in a function body.

I The return value of every function application is never used.

I Every function call is a tail call.

I Every function ends with a function call.

15 Continuations 185

These are not individual ones; they are connected and express the same

idea. Since a continuation is given as an argument, the onlyway to finish a

computation is calling the continuation. Therefore, a continuation is used

once and at most once in a function body. Also, there is no need to do

additional computation with the return value of a function application.

The continuation does every additional computation with the return

value, so return values are not used at all. Since we do not use return

values, every call is a tail call. Once a function calls another function, the

result of the callee is the result of caller. Moreover, there is no way of

returning from a function without calling any function. If the function is

the last step of a computation, it must call its continuation. Otherwise,

it needs to call another function to proceed the computation. Therefore,

every function ends with a function call.

While CPS may seem to be needlessly complex, it is useful in various

cases. If we compare factorial and factorialCps, the former looks

more concise. It is difficult to implement programs correctly in CPS.

One benefit of CPS is that it makes every function call be a tail call.

If implementation languages support tail-call optimization, CPS can

be used to avoid stack overflow. However, this book uses Scala, which

optimizes only tail-recursive calls. Scala programs written in CPS can

suffer from stack overflow despite the use of CPS. Then, why does this

section introduce CPS? The first reason is to help readers understand the

notion of a continuation. The other reason is that the characteristic of

CPS, passing a continuation explicitly as a value, is sometimes useful.

The next chapter shows such an example: an interpreter of a language

with first-class continuations. We will see how CPS can contribute to the

implementation of an interpreter in the next chapter.

15.3 Interpreter in CPS

Let us implement an interpreter of FAE in CPS. As explained already,

there is no reason to implement an interperter of FAE in CPS. However,

CPS is an appropriate implementation strategy for the interpreter of the

next chapter, and this section is preparation for the next chapter.

First, recall the previous implementation:

def interp(e: Expr, env: Env): Value = e match {

case Num(n) => NumV(n)

case Add(l, r) =>

val v1 = interp(l, env)

val v2 = interp(r, env)

val NumV(n) = v1

val NumV(m) = v2

NumV(n + m)

case Sub(l, r) =>

val v1 = interp(l, env)

val v2 = interp(r, env)

val NumV(n) = v1

val NumV(m) = v2

NumV(n - m)

case Id(x) => env(x)

15 Continuations 186

case Fun(x, b) => CloV(x, b, env)

case App(f, a) =>

val fv = interp(f, env)

val av = interp(a, env)

val CloV(x, b, fEnv) = fv

interp(b, fEnv + (x -> av))

}

To re-implement the interpreter in CPS, we should add the type of a

continuation.

type Cont = Value => Value

A continuation takes a value of Value as input because interp returns a

value of Value. The return type of a continuation can be any type, but

like before, we choose Value just for brevity.

The following function, interpCps, is the CPS version of interp:

def interpCps(e: Expr, env: Env, k: Cont): Value = e match {

...

}

For any e, env, and k, interpCps(e, env, k)must equal k(interp(e,

env)).

Now, we need to implement each case of the pattern matching. First,

consider the Num case. interp(Num(n), env) equals NumV(n). Hence,

k(interp(Num(n), env)) equalsk(NumV(n)). SinceinterpCps(Num(n),

env, k)must also equal k(NumV(n)), the Num case can be implemented

as follows:

case Num(n) => k(NumV(n))

It is similar to k(1) of factorialCps when n is less than or equal to one.

Since there is no need of a recursive call, the function simply passes

NumV(n) to the continuation.

The Id and Fun cases are similar to the Num case.

case Id(x) => k(env(x))

case Fun(x, b) => k(CloV(x, b, env))

The remaining cases are Add, Sub, and App. They are similar in the sense

that each sort of expression consists of two subexpressions, so if you

understand one of them, the others are straightforward. Let us consider

the Add case first. The previous implementation is as follows:

val v1 = interp(l, env)

val v2 = interp(r, env)

add(v1, v2)

where add(v1, v2) denotes val NumV(n) = v1; val NumV(m) = v2;

NumV(n + m). SinceinterpCps(e, env, k) equalsk(interp(e, env)),

we can start from the following code:

15 Continuations 187

val v1 = interp(l, env)

val v2 = interp(r, env)

k(add(v1, v2))

By desugaring variable definitions into an anonymous function and a

function application, we can find the continuation of interp(l, env).

Recall that val x = e1; e2 is equivalent to (x => e2)(e1) as shown in

Chapter 9. Desugaring yields the following code:

(v1 => {

val v2 = interp(r, env)

k(add(v1, v2))

})(interp(l, env))

The function applied to interp(l, env) is the continuation of interp(l,

env). Then, interp can be replacedwith interpCps because k(interp(e,

env)) is the same as interpCps(e, env, k).

interpCps(l, env, v1 => {

val v2 = interp(r, env)

k(add(v1, v2))

})

Now, let us focus on the body of the continuation.

val v2 = interp(r, env)

k(add(v1, v2))

In a similary way, desugaring reveals the continuation of interp(r,

env).

(v2 =>

k(add(v1, v2))

)(interp(r, env))

Just like before, interp can be replaced with interpCps.

interpCps(r, env, v2 =>

k(add(v1, v2))

)

Then, we can use this new expression as the body of the continuation.

interpCps(l, env, v1 =>

interpCps(r, env, v2 =>

k(add(v1, v2))

)

)

Finally, we obtain the complete implementation of the Add case by

replacing addwith its definition.

15 Continuations 188

case Add(l, r) =>

interpCps(l, env, v1 =>

interpCps(r, env, v2 => {

val NumV(n) = v1

val NumV(m) = v2

k(NumV(n + m))

})

)

The code explicitly shows the continuation of each function application.

The first function application evaluates l under env. Its continuation

is v1 => interpCps(r, env, v2 => k(add(v1, v2))). Therefore, we

can say that r is evaluated after the evaluation of l. In k(add(v1, v2)),

v1 denotes the result of l. The second function application evaluates r. Its

continuation is v2 => k(add(v1, v2)). In k(add(v1, v2)), v2 denotes

the result of r. k(add(v1, v2))makes NumV(n + m) from v1 and v2 and

passes NumV(n + m) to k, the continuation of evaluating Add(l, r).

The Sub case is similar to the Add case.

case Sub(l, r) =>

interpCps(l, env, v1 =>

interpCps(r, env, v2 => {

val NumV(n) = v1

val NumV(m) = v2

k(NumV(n - m))

})

)

The App case is also similar but needs extra care. The previous implemen-

tation is as follows:

val fv = interp(f, env)

val av = interp(a, env)

val CloV(x, b, fEnv) = fv

k(interp(b, fEnv + (x -> av)))

By applying the same strategy, we attain the following code:

interpCps(f, env, fv =>

interpCps(a, env, av => {

val CloV(x, b, fEnv) = fv

k(interp(b, fEnv + (x -> av)))

})

)

Unlike Add and Sub, an interp function call still exists. It is not CPS

because the result of the function call is used by being passed to k.

Replacing interpwith interpCps resolves the problem.

case App(f, a) =>

interpCps(f, env, fv =>

15 Continuations 189

interpCps(a, env, av => {

val CloV(x, b, fEnv) = fv

interpCps(b, fEnv + (x -> av), k)

})

)

The code does not directly call k. Instead of calling k, it passes k as an

argument. Look at interpCps(b, fEnv + (x -> av), k). k is passed

to interpCps and, therefore, eventually called.

15.4 Small-Step Operational Semantics

This section defines semantics that explicitly shows continuations for

FAE. Previous chapters define semantics in a big-step style. Big-step

semantics is intuitive, and its inference rules give nice clues to interpreter

implementers. A single rule usually corresponds to a single case of

pattern matching in an interpreter, so it is straightforward to implement

an interpreter based on the big-step semantics and write semantics rules

based on the implementation of an interpreter.

However, it is difficult to formalize continuations in big-step semantics.

The problem is that an inference rule of big-step semantics describes the

result of an expression instead of one step of computation. For instance,

consider the following rule:

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

The rule implies that the value of 41 + 42 is =1 + =2. It does not explain

how 41 evaluates to =1 and 42 evaluates to =2. Therefore, the rule does

not describe steps that evaluate 41 to =1 and 42 to =2. The only step the

rule describes is the last step: adding =1 and =2.

Another problem is that rules of big-step semantics do not specify the

order of computation. Consider the above rule again. The rule does not

decide the order between 41 and 42. The only two things the rule requires

are that 41 evaluates to =1 and that 42 evaluates to =2. The evaluation of

41 may precede that of 42, and vice versa.

These two characteristics of big-step semantics hamper us from for-

malizing continuations. Continuations highly rely on precise steps of

computation whose order is fixed. Big-step semantics neither shows

all the steps nor specifies the order. Therefore, we do not use big-step

semantics in this section.

Small-step operational semantics is another way of defining the semantics of

a language. While big-step semantics defines a relation over expressions

and values, small-step semantics defines a relation between states and

states. If one step of computation transfers a program from state � to

state �, � and � are related by the relation. Such one step of computation

is called reduction. If reduction from � to � is possible, we say that �

is reducible and reduced to �. On the other hand, if a state cannot be

reduced to any state, the state is irreducible. In small-step semantics,

the definition of a state varies. One possible definition of a state is an

15 Continuations 190

3: Note that� has no relation to� used to

represent continuations intuitively. In the

continuation�+1,�means a hole, which

should be filled by the result of a redex. On

the other hand, in the small-step semantics,

� is the empty computation stack. The

overlapped use of � is just coincidence.

expression. For example, 1 + 2 and 3 are states, and 1 + 2 is reduced to 3

by one step of computation. However, this section’s small-step semantics

does not use an expression as a state. We will introduce the definition of

a state soon. The execution of a program is defined as repeated reduction.

The execution starts from an initial state, and the state becomes reduced

if possible. When no further reduction is possible, the execution stops,

and the final state is the result.

Small-step semantics fits formalizing continuations. Since execution

is a sequence of multiple reduction steps, every step of computation

can be identified. The order between the steps naturally arises. By

splitting the steps into two parts, we can formally describe a redex and a

continuation.

Now, let us define states of FAE. A state of FAE is a pair of a computation

stack and a value stack. The following defines computation and value

stacks:

: ::= � | � ` 4 :: : | (+) :: : | (−) :: : | (@) :: :

B ::= � | E :: B

where the metavariable : ranges over computation stacks and the

metavariable B ranges over value stacks. Let (Comp be the set of ev-

ery computation stack and (Val be the set of every value stack. We write

: | | B to denote a state that consists of a computation stack : and a value

stack B. : includes remaining steps of computation, and B includes values

used by those steps.

A computation stack is a stack containing remaining steps of computation.

Thewhite square,�, denotes the empty computation stack, which implies

that there is nothing more to do.
3
If the computation stack of a state is�,

no further reduction is possible, and the evaluation ends. There are four

kinds of computation: � ` 4, (+), (−), and (@). Their detailed descriptions

and formal definitions will be provided soon. The computation at the

top of the stack is the first step of computation. After finishing the step,

the corresponding computation in the stack is popped. For example,

∅ ` 1 :: � has one step of compuation: ∅ ` 1. After finishing the step, the

stack becomes �, and the evaluation finishes.

A value stack is a stack containing values. The black square, �, denotes
the empty value stack. Therefore, 1 :: 2 :: � is a stack that contains 1

and 2. 1 is at the top of the stack. Since a value stack is a stack, the only

possible operations are push and pop. If we push 0 onto 1 :: 2 :: �, we

obtain 0 :: 1 :: 2 :: �. If we pop the top element from 1 :: 2 :: �, we obtain

2 :: �.

Before moving on to the formal defintion of reduction, let us see the

high-level idea of reduction first. Each reduction step pops the element

at the top of the computation stack and manipulates the computation

and value stacks depending on the popped computation. � ` 4 is the
only kind that pushes a value onto the value stack. It evaluates 4 under �
and pushes the result of 4 onto the value stack. Therefore, if the current

state is � ` 4 :: : | | B, then the redex is 4, and the continuation is : | | B.
Applying the continuation to a value is done by pushing the value onto

the value stack. Therefore, if 4 evaluates to E, the continuation is applied

to E, so the state becomes : | | E :: B. For example, ∅ ` 1 :: : | | B is reduced

15 Continuations 191

to : | | 1 :: B. On the other hand, the other kinds of computation consume

values in the value stack. (+) pops two values from the value stack and

then pushes the sum of the values onto the value stack. For instance,

(+) :: : | | 2 :: 1 :: B is reduced to : | | 3 :: B. (−) and (@) are similar to (+).
(−) performs subtraction and (@) performs function application.

It becomes clear that each kind of a computation step coincides with our

intuitive notion of a computation step when we see an example. Consider

the evaluation of 1 + 2 under the empty environment. The evaluation

consists of three steps:

1. Evaluate the expression 1 to get the integer value 1.

2. Evaluate the expression 2 to get the integer value 2.

3. Add the integer value 1 to the integer value 2 to get the integer

value 3.

Steps 1 and 2 can be represented by ∅ ` 1 and ∅ ` 2, respectively. ∅ ` 1

evaluates 1 to get 1 and pushes 1 onto the value stack for the continuation.

Similarly, ∅ ` 2 evaluates 2 to get 2 and pushes 2 onto the value stack for

the continuation. Finally, step 3, which can be represented by (+), pops
both values and computes the sum. The sum, 3, is pushed onto the value

stack and becomes the result of the execution. Therefore, the evaluation

of 1 + 2 can be decomposed into three steps in the computation stack:

∅ ` 1 :: ∅ ` 2 :: (+) :: �.

Now, we formally define reduction. Reduction is a relation over (Comp,

(Val, (Comp, and (Val.

→⊆ (Comp × (Val × (Comp × (Val

We write :1 | | B1 → :2 | | B2 if :1 | | B1 is reduced to :2 | | B2. For example,

we write ∅ ` 1 :: � | | �→ � | | 1 :: �

Asmentioned already, execution of a program is to repeat reduction until

no more reduction is possible. When the state cannot be reduced any

longer, the execution terminates, and the state represents the result. To

formalize the notion of execution, we define the repeated reduction as

the reflexive, transitive closure of the reduction relation.

Reflexive relations

Let � be a set and ' be a binary relation over � and �.

If (0, 0) ∈ ' for every 0 ∈ �, ' is reflexive.

Transitive relations

Let � be a set and ' be a binary relation over � and �.

If (0, 1), (1, 2) ∈ ' implies (0, 2) ∈ ' for every 0, 1, 2 ∈ �, ' is

transitive.

Reflexive, transitive closures

Let � be a set and ' be a binary relation over � and �.

15 Continuations 192

The reflexive, transitive closure of ' is the smallest set (such that

' ⊆ (⊆ � × � and (is reflexive and transitive.

→∗ denotes repeated reduction. :1 | | B1 →∗ := | | B= implies :1 | | B1 →
:2 | | B2, :2 | | B2 → :3 | | B3, . . . , and :=−1 | | B=−1 → := | | B= . The following

rules formalize the relation:

: | | B →∗ : | | B

:1 | | B1 →∗ :2 | | B2 :2 | | B2 → :3 | | B3

:1 | | B1 →∗ :3 | | B3

By definition,→∗ is indeed the reflexive, transitive closure of→. Intu-

itively, :1 | | B1 →∗ :2 | | B2 implies that :2 | | B2 can be reached from :1 | | B1

by zero or more steps of reduction.

Note that→∗ does not require the resulting state to be irreducible. It

just denotes zero or more steps of reduction. When :1 | | B1 → :2 | | B2

and :2 | | B2 → :3 | | B3, all of :1 | | B1 →∗ :1 | | B1, :1 | | B1 →∗ :2 | | B2, and

:1 | | B1 →∗ :3 | | B3 are true. Therefore, we cannot say a program that starts

with :1 | | B1 terminates with :2 | | B2 even if we know :1 | | B1 →∗ :2 | | B2.

:2 | | B2 might not be the final state. To say that the program terminates

with :2 | | B2, we need an additional condition: :2 | | B2 is irreducible.

In small-step semantics, there are two kinds of termination. One kind is

normal termination, which produces a value as a result. The execution

terminates normally when the computation stack is empty. Since each

reduction step pops a computation step, reduction is impossible when

the stack is empty. The empty stack implies that there is no remaining

computation, so this kind of termination is intended. The other kind is

abnormal termination, i.e. termination due to a run-time error. It happens

when the value stack contains values that cannot be used by the current

computation step. For example, if a popped value is not an integer, both

addition or subtraction are impossible, so reduction cannot happen when

the popped computation is (+) or (−). It prevents further reduction even

when there is remaining computation. Therefore, such termination is

considered erroneous and harmful.

When evaluation according to the small-step semantics succesfully pro-

duces a value, we can reach the same conclusion using the big-step

semantics. Recall that � ` 4 ⇒ E implies that 4 evaluates to E under �. In
small-step semantics, evaluation of 4 under � starts with � ` 4 :: � | | �.
The redex and the continuation of the state are 4 and the identity function,

respectively, so the state does evaluate 4. If the evaluation results in E, the

final state is � | | E :: �. The computation stack is empty, and the value

stack contains only E, which is the result. Thus, the following proposition

is true.

∀�.∀4.∀E.(� ` 4 ⇒ E) ↔ (� ` 4 :: � | | �→∗ � | | E :: �)

More generally, the following statement is true:

∀�.∀4.∀E.∀:.∀B.(� ` 4 ⇒ E) ↔ (� ` 4 :: : | | B →∗ : | | E :: B)

Now, we define the rules for reduction based on the interpreter imple-

15 Continuations 193

mentation of the previous section. Consider the Num case first.

case Num(n) => k(NumV(n))

When = is the redex and k is the continuation, the evaluation proceeds

by applying k to =. This state is represented by � ` = :: : | | B, where the

continuation k is represented by : | | B. Applying : | | B to = is to evaluate

: | | = :: B. Therefore, we define the following reduction rule:

� ` = :: : | | B → : | | = :: B [Red-Num]

The rule also matches our high-level intuition on reduction. � ` =
evaluates = and gets =. After the reduction, the computation step is

removed from the computation stack, and the result is pushed onto the

value stack.

In a similar manner, we can define the rules for the Id and Fun cases.

case Id(x) => k(env(x))

case Fun(x, b) => k(CloV(x, b, env))

� ` G :: : | | B → : | | �(G) :: B [Red-Id]

� ` �G.4 :: : | | B → : | | 〈�G.4 , �〉 :: B [Red-Fun]

Now, let us consider the Add case.

case Add(l, r) =>

interpCps(l, env, v1 =>

interpCps(r, env, v2 =>

k(add(v1, v2))

)

)

When 41 + 42 is the redex, the evaluation splits into three parts:

1. Evaluate 41 to get E1. (interpCps(l, env, v1 =>)

2. Evaluate 42 to get E2. (interpCps(r, env, v2 =>)

3. If both E1 and E2 are integers, add E1 and E2 to get E1 + E2, and

apply the continuation to E1 + E2. (k(add(v1, v2)))

Steps 1 and 2 can be represented by � ` 41 and � ` 42, respectively. First,
� ` 41 pushes the result of 41 onto the value stack, and then � ` 42 pushes
the result of 42 onto the value stack. Step 3 can be represented by (+)
since it pops two values from the value stack and adds them. From this

observation, we define the following rules:

� ` 41 + 42 :: : | | B → � ` 41 :: � ` 42 :: (+) :: : | | B [Red-Add1]

(+) :: : | | =2 :: =1 :: B → : | | =1 + =2 :: B [Red-Add2]

15 Continuations 194

Rule Red-Add1 splits the evaluation of 41 + 42 into aforementioned three

parts. Then, the subsequent reduction steps evaluate 41 and 42 and push

their results onto the value stack. After the evaluation of 42, (+) is at the
top of the computation stack. One more reduction step, which is defined

by Rule Red-Add2, pops the values from the value stack and pushes their

sum to the value stack. The following figure summarizes this process:

� ` 41 + 42 :: : | | B

→ � ` 41 :: � ` 42 :: (+) :: : | | B

→∗ � ` 42 :: (+) :: : | | =1 :: B

→∗ (+) :: : | | =2 :: =1 :: B

→ : | | =1 + =2 :: B

We can define the rules for the Sub case in a similar way:

� ` 41 − 42 :: : | | B → � ` 41 :: � ` 42 :: (−) :: : | | B [Red-Sub1]

(−) :: : | | =2 :: =1 :: B → : | | =1 − =2 :: B [Red-Sub2]

The only remaining case is App.

case App(f, a) =>

interpCps(f, env, fv =>

interpCps(a, env, av => {

val CloV(x, b, fEnv) = fv

interpCps(b, fEnv + (x -> av), k)

})

)

When 41 42 is the redex, the evaluation splits into three parts:

1. Evaluate 41 to get E1. (interpCps(f, env, fv =>)

2. Evaluate 42 to get E2. (interpCps(a, env, av =>)

3. If E1 is 〈�G.4 , �′〉, evaluate 4 under �′[G ↦→ E2] with the given

continuation. (interpCps(b, fEnv + (x -> av), k))

The first two steps are the same as those of Add and Sub. Therefore, we

define the following rule:

� ` 41 42 :: : | | B → � ` 41 :: � ` 42 :: (@) :: : | | B [Red-App1]

However, the last step is a bit different. In Add and Sub, the last step

applies the continuation to a certain value, which is obtained by addition

or subtraction. In App, the body of the function must be evaluated. Thus,

we define the rule to evaluate the body with the same continuation

instead of directly applying the continuation to a particular value.

(@) :: : | | E :: 〈�G.4 , �〉 :: B → �[G ↦→ E] ` 4 :: : | | B [Red-App2]

The following figure summarizes the evaluation of App:

15 Continuations 195

� ` 41 42 :: : | | B

→ � ` 41 :: � ` 42 :: (@) :: : | | B

→∗ � ` 42 :: (@) :: : | | 〈�G.4 , �′〉 :: B

→∗ (@) :: : | | E2 :: 〈�G.4 , �′〉 :: B

→ �′[G ↦→ E2] ` 4 :: : | | B

→∗ : | | E :: B

The following shows the reduction steps of (1+2)−(3+4) as an example:

∅ ` (1 + 2) − (3 + 4) :: � | | �
→ ∅ ` 1 + 2 :: ∅ ` 3 + 4 :: (−) :: � | | �
→ ∅ ` 1 :: ∅ ` 2 :: (+) :: ∅ ` 3 + 4 :: (−) :: � | | �
→ ∅ ` 2 :: (+) :: ∅ ` 3 + 4 :: (−) :: � | | 1 :: �
→ (+) :: ∅ ` 3 + 4 :: (−) :: � | | 2 :: 1 :: �
→ ∅ ` 3 + 4 :: (−) :: � | | 3 :: �
→ ∅ ` 3 :: ∅ ` 4 :: (+) :: (−) :: � | | 3 :: �
→ ∅ ` 4 :: (+) :: (−) :: � | | 3 :: 3 :: �
→ (+) :: (−) :: � | | 4 :: 3 :: 3 :: �
→ (−) :: � | | 7 :: 3 :: �
→ � | | −4 :: �

The following shows the reduction steps of (�x.�y.x + y) 1 2 as an

example:

∅ ` 4 1 2 :: � | | �
→ ∅ ` 4 1 :: ∅ ` 2 :: (@) :: � | | �
→ ∅ ` 4 :: ∅ ` 1 :: (@) :: ∅ ` 2 :: (@) :: � | | �
→ ∅ ` 1 :: (@) :: ∅ ` 2 :: (@) :: � | | 〈4 , ∅〉 :: �
→ (@) :: ∅ ` 2 :: (@) :: � | | 1 :: 〈4 , ∅〉 :: �
→ �1 ` �y.x + y :: ∅ ` 2 :: (@) :: � | | �
→ ∅ ` 2 :: (@) :: � | | 〈�y.x + y, �1〉 :: �
→ (@) :: � | | 2 :: 〈�y.x + y, �1〉 :: �
→ �2 ` x + y :: � | | �
→ �2 ` x :: �2 ` y :: (+) :: � | | �
→ �2 ` y :: (+) :: � | | 1 :: �
→ (+) :: � | | 2 :: 1 :: �
→ � | | 3 :: �

where

4 = �x.�y.x + y
�1 = [x ↦→ 1]
�2 = [x ↦→ 1, y ↦→ 2]

15.5 Exercises

Exercise 15.1 Complete the following LFAE interpreter in CPS:

def strict(v: Value, k: Cont): Value = v match {

case ExprV(e, env) => ???

15 Continuations 196

case _ => k(v)

}

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => k(NumV(n))

case Id(x) => k(env(x))

case Fun(x, b) => k(CloV(x, b, env))

case Add(l, r) => ???

case App(f, a) => ???

}

If � ` 4 ⇒ E, then interp(4, �, 5)must evaluate to 5 (E).

1: We omit the common part to FAE.

First-Class Continuations 16

16.1 Syntax 197

16.2 Semantics 198

16.3 Interpreter 200

16.4 Use of First-Class Continua-

tions 201

Return 202

Break and Continue 202

16.5 Exercises 203

The previous chapter defines the small-step semantics of FAE and imple-

ments the interpreter of FAE in CPS. Conceptually, continuations exist

during the evaluation of FAE programs. However, they are not exposed to

programmers. Programmers cannot utilize continuations directly while

writing programs in FAE.

A first-class entity of a language is an entity treated as a value. Since it

is a value, it can be the value denoted by a variable, an argument for a

function call, and the return value of a function. For example, first-class

functions are functions used as values.

First-class continuations are continuations used as values. If a language

supports first-class continuations, continuations can be the value of a

variable, an argument for a function call, and the return value of a function.

A continuation can be considered as a function since it takes a value

and performs computation. Programmers can call continuations like

calling functions. However, continuations are different from functions. A

function call returns a value, and the execution continues with the return

value. On the other hand, a continuation call does not come back to its

call site. The continuation at some point of execution is the remaining

computation. Once a continuation is called and evaluated, the execution

finishes. Calling a continuation changes the current continuation to

the called one. It changes the control flow of the execution. First-class

continuations allow programmers to express computations with complex

control flows concisely.

This chapter defines KFAE by extending FAEwith first-class continuations.

It defines the small-step semantics of KFAE and implements an interpreter

of KFAE in CPS. While implementing the interpreter, you will see why

CPS is required. In addition, this chapter shows utilization of first-class

continuations in programming.

16.1 Syntax

The syntax of KFAE is as follows:
1

4 ::= · · · | vcc G in 4

An expression vcc G in 4 evaluates 4 while G denotes the continuation

of vcc G in 4. The term “cc” of vcc stands for the current continuation.

The scope of G equals 4. When a continuation is called, the continuation

replaces the continuation of that point.

16 First-Class Continuations 198

2: Like before, the line below 1 denotes

that 1 is an integer value, not an expres-

sion.

16.2 Semantics

Before going deep into the semantics of first-class continuations, it would

be better to understand the high-level idea with some examples. Consider

1+ (vcc x in (x 2) + 3). The continuation of (vcc x in (x 2) + 3) is to add the

result to 1. Intuitively, we can use 1 +� to represent the continuation.
2

The continuation is the value of x. After binding x, x 2 is evaluated. The

continuation of x 2 is 1 + (� + 3). Therefore, if x is a normal function, the

result of function application fills the hole, and the evaluation continues.

However, x is a continuation, not a function. The evaluation of x 2

completely ignores the original continuation 1 + (� + 3). It replaces the
continuation with the continuation denoted by x and fills the hole with

the argument, 2. Thus, x 2 results in evaluating 1 + 2. Since the original

continuation is ignored, there is nothing more to do after the evaluation

of 1 + 2. The result of the whole expression is 3.

To compare first-class continuations and functions, consider the following

expression:

1 + (val x=�y.1 + y in (x 2) + 3)

In the previous expression, x denotes a continuation, but in this ex-

pression, x denotes a function. The continuation and the function are

almost the same. Both take an argument and add 1 to the argument.

However, continuations change the control flow, while functions do not.

Therefore, in this case, x 2 preserves its continuation, 1 + (� + 3). The
return value of the function application is 3, and it fills the hole in the

original continuation. After the function returns, 1 + (3 + 3) is evaluated,
and the whole expression results in 7.

Let us consider another example:

vcc x in (vcc y in x (1 + (vcc z in y z))) 3

What is the result of this expression? The first thing happens during

the evaluation is binding of x. x denotes the continuation of the whole

expression, which is the identity function, i.e. �. Then, (vcc y in x (1 +
(vcc z in y z))) 3 is evaluated. Any function application evaluates the

expression at the function position first. Thus, the redex is vcc y in x (1 +
(vcc z in y z)), and the continuation is � 3. The redex defines y, which

denotes the continuation, � 3. Under the environment containing x and

y, x (1+ (vcc z in y z)) is evaluated. x directly evaluates to a continuation,

and the argument expression becomes the redex. At this point, the

continuation is (x �) 3. The argument expression is 1 + (vcc z in y z),
and 1 evaluates to 1. Then, vcc z in y z becomes the redex, and the

continuation is (x (1 +�)) 3. Therefore, z denotes (x (1 +�)) 3. When y

is applied to z, the original continuation is ignored, and z fills the hole

in the continuation denoted by y. Now, the remaining computation is

z 3, which is obtained by filling the hole of � 3 with z. Applying z to 3

ignores the continuation again, and (x (1 + 3)) 3 is obtained by filling the

hole of (x (1 +�)) 3 with 3. Since 1 + 3 evaluates to 4, x is applied to 4.

Then, 4 fills the hole of � and becomes the final result.

Now, we define the semantics of KFAE. First, since continuations are

values, values must be extended.

16 First-Class Continuations 199

E ::= · · · | 〈:, B〉

A continuation as a value is a pair of a computation stack and a value

stack. 〈:, B〉 denotes a continuation whose computation stack is : and

value stack is B. It corresponds to the state : | | B. The previous chapter
shows that applying a continuation : | | B to a value E changes the state to

: | | E :: B. Therefore, applying 〈:, B〉 to E reduces the state to : | | E :: B.

Since KFAE has a new sort of an expression, vcc G in 4, we need to define

the reduction rule for vcc G in 4.

� ` vcc G in 4 :: : | | B → �[G ↦→ 〈:, B〉] ` 4 :: : | | B [Red-Vcc]

Expression vcc G in 4 evaluates 4 where G denotes the continuation of

vcc G in 4. If the current state is � ` vcc G in 4 :: : | | B and the redex is

vcc G in 4, the continuation is : | | B. This continuation can be represented

by a value 〈:, B〉. Therefore, reduction changes the top of the computation

stack to �[G ↦→ 〈:, B〉] ` 4.

Adding Rule Red-Vcc is not enough to define the semantics of KFAE.
Due to the existence of first-class continuations, function application

expressions must be able to handle not only closures but also first-class

continuations. To define the reduction rule, recall the reduction rule that

handles function application.

(@) :: : | | E :: 〈�G.4 , �〉 :: B → �[G ↦→ E] ` 4 :: : | | B [Red-App2]

If a continuation is applied instead of a function, the state should be

(@) :: : | | E :: 〈:′, B′〉 :: B. The current continuation is : | | B. Since a

continuation is applied to a value, the original continuation is ignored.

The new continuation that replaces the original one is :′ | | B′, which

comes from 〈:′, B′〉 in the value stack. The argument is E, which is at the

top of the value stack. Thus, reduction results in the state :′ | | E :: B′.

(@) :: : | | E :: 〈:′, B′〉 :: B → :′ | | E :: B′ [Red-App2-Cont]

The following shows that 1+(vcc x in ((x 2)+3)) evaluates to 3 by applying

reduction according to the semantics:

∅ ` 1 + (vcc x in ((x 2) + 3)) :: � | | �
→ ∅ ` 1 :: ∅ ` vcc x in ((x 2) + 3) :: (+) :: � | | �
→ ∅ ` vcc x in ((x 2) + 3) :: (+) :: � | | 1 :: �
→ � ` (x 2) + 3 :: (+) :: � | | 1 :: �
→ � ` x 2 :: � ` 3 :: (+) :: (+) :: � | | 1 :: �
→ � ` x :: � ` 2 :: (@) :: � ` 3 :: (+) :: (+) :: � | | 1 :: �
→ � ` 2 :: (@) :: � ` 3 :: (+) :: (+) :: � | | E :: 1 :: �
→ (@) :: � ` 3 :: (+) :: (+) :: � | | 2 :: E :: 1 :: �
→ (+) :: � | | 2 :: 1 :: �
→ � | | 3 :: �

16 First-Class Continuations 200

3: We omit the common part to FAE.

4: We omit the common part to FAE.

where � is [x ↦→ 〈(+) :: �, 1 :: �〉] and E is 〈(+) :: �, 1 :: �〉.

The following shows that vcc x in (vcc y in x (1+(vcc z in y z))) 3 evaluates

to 4:

∅ ` vcc x in (vcc y in x (1 + (vcc z in y z))) 3 :: � | | �
→ �1 ` (vcc y in x (1 + (vcc z in y z))) 3 :: � | | �
→ �1 ` vcc y in x (1 + (vcc z in y z)) :: �1 ` 3 :: (@) :: � | | �
→ �2 ` x (1 + (vcc z in y z)) :: �1 ` 3 :: (@) :: � | | �
→ �2 ` x :: �2 ` 1 + (vcc z in y I) :: (@) :: �1 ` 3 :: (@) :: � | | �
→ �2 ` 1 + (vcc z in y z) :: (@) :: �1 ` 3 :: (@) :: � | | E1 :: �
→ �2 ` 1 :: �2 ` vcc z in y z :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | E1 :: �
→ �2 ` vcc z in y z :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | 1 :: E1 :: �
→ �3 ` y z :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | 1 :: E1 :: �
→ �3 ` y :: �3 ` z :: (@) :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | 1 :: E1 :: �
→ �3 ` z :: (@) :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | E2 :: 1 :: E1 :: �
→ (@) :: (+) :: (@) :: �1 ` 3 :: (@) :: � | | E3 :: E2 :: 1 :: E1 :: �
→ �1 ` 3 :: (@) :: � | | E3 :: �
→ (@) :: � | | 3 :: E3 :: �
→ (+) :: (@) :: �1 ` 3 :: (@) :: � | | 3 :: 1 :: E1 :: �
→ (@) :: �1 ` 3 :: (@) :: � | | 4 :: E1 :: �
→ � | | 4 :: �

where

E1 = 〈�,�〉
E2 = 〈�1 ` 3 :: (@) :: �,�〉
E3 = 〈(+) :: (@) :: �1 ` 3 :: (@) :: �, 1 :: E1 :: �〉
�1 = [x ↦→ E1]
�2 = �1[y ↦→ E2]
�3 = �2[z ↦→ E3]

16.3 Interpreter

The following Scala code implements the syntax of KFAE: 3

sealed trait Expr

...

case class Vcc(x: String, b: Expr) extends Expr

Vcc(G, 4) represents vcc G in 4.

In addition, we add a new variant of Value to represent first-class

continuations.
4

sealed trait Value

...

case class ContV(k: Cont) extends Value

Since the interpreter treats a continuation as a Scala function, a ContV

instance has a single field whose type is Cont. ContV(k) represents a

continuation k as a value.

We need to add the Vcc case to interp and revise the App case to handle

continuation application properly. Consider the Vcc case first.

case Vcc(x, b) =>

interp(b, env + (x -> ContV(k)), k)

16 First-Class Continuations 201

The environment is extended with the continuation as a value, ContV(k).

Then, the body is evaluated under the extended environment.

The above code clearly shows why the interpreter needs to use CPS.

Without CPS, the continuation cannot be accessed in the source code of

the interpreter. There is no way to construct ContV(k). By using CPS, the

interp function always receives the continuation as an argument and

becomes able to use the continuation to construct ContV(k). CPS takes

the key role in implementing an interpreter of a language that provides

first-class continuations.

Now, let usfix theApp case. Theinterp functionmust handle continuation

applications in the App case.

case App(f, a) =>

interp(f, env, fv =>

interp(a, env, av => fv match {

case CloV(x, e, fenv) =>

interp(e, fenv + (x -> av), k)

case ContV(nk) => nk(av)

})

)

When fv is a CloV instance, the interpreter behaves just like before. If

fv is a ContV instance, the expression applies the continuation to the

argument. The applied continuation is the field of fv, and the argument

is av. Since the interpreter expresses a continuation with a Scala function,

applying the Scala function, the field of fv, to av is enough. There is no

interp call. It coincides with that Rule Red-App2-Cont never adds � ` 4
to the computation stack.

16.4 Use of First-Class Continuations

Imperative languages provide control diverters, such as return, break,

and continue, to allow programmers to change control flows. However,

KFAE supports only first-class continuations.

In fact, first-class continuations are the most general form of control

flow manipulation. Continuations represent control flows of programs

because the continuation at some point of execution is the remaining

computation.Changing the current continuation is equivalent to changing

the control flow by making the program compute different things. In

KFAE, programmers can change the current continuation freely by calling

continuations. Therefore, first-class continuations allow arbitrary changes

of control flows. Expressions like return change control flows in a fixed

way according to their semantics. On the other hand, programmers using

KFAE can make first-class continuations with vcc and call them at any

points. The expressivity of first-class continuations surpasses that of

other control diverters.

Although first-class continuations are much more powerful than other

control diverters, it is difficult to utilize first-class continuations to

correctly implement desired control flow changes. To resolve the difficulty,

language designers can provide other control diverters as syntactic sugar.

16 First-Class Continuations 202

5: Assume that the rest of the expression

does not use r at all.

By doing so, the designers can make their language convenient for

programmers while preventing the language from being complicated.

Return

A return expression makes a function immediately return. Instead of

adding return to KFAE, we can desugar return to vcc and a continuation

application.

If a programmer writes return 4 in the body of a function, return 4 can

be desugared to r 4, where r is just an identifier.
5
Then, r 4 is just an

application expression.

Since r is a free identifier yet, it must be bound somewhere. The correct

way to bind r is to use vcc because applying r changes the control flow,

which is possible only by a first-class continuation. Then, where should

we put vcc? When there is no return, the only way to return from a

function is to finish the evaluation of the function body. After the body is

evaluated, its result is used for the remaining compuation, which is the

continuation of the function body. Thus, applying the continuation of

the function body to the return value is the same as returning from the

function. After adding return, applying r to a value makes the function

immediately return with the given value. It implies that r has to denote

the continuation of the function body. Therefore, every function that

contains return in the body needs to be desugared. An expression �G.4
is desugared to �G.vcc r in 4.

The following example uses return:

((�x.(return 1) + x) 2) + 3

By desugaring, the above expression becomes the following expression:

((�x.vcc r in (r 1) + x) 2) + 3

While evaluating (�x.vcc r in (r 1) + x) 2, r denotes � + 3. When r is

applied to 1, the original continuation disappears, and the only remaining

computation is 1 + 3. Therefore, the final result is 4. The result matches

the expected semantics of return.

Break and Continue

Many imperative languages provide break and continue. Programmers

use them inside loops to change control flows. A break expression

immediately terminates the loop, and a continue expression makes the

loop skip the current iteration and directly move on to the beginning of

the next iteration.

Since KFAE lacks loops, we need to add loops first. Suppose that

while0 41 42 evaluates 42 repeatedly while 41 evaluates to 0. When the

evaluation terminates, we define the result to be 0, which is just an

arbitrarily chosen value.

Now, we can add break and continue to KFAE as syntactic sugar. They

can occur only inside loops.

When a loop terminates, the continuation of the loop is applied to 0,

16 First-Class Continuations 203

6: Assume that the rest of the expression

does not use b at all.

7: Assume that the rest of the expression

does not use c at all.

which is the result of the loop. Since break terminates the loop, it applies

the continuation of the loop to 0. Thus, when b denotes the continuation

of the loop, break can be desugared to b 0.
6
To make b the continuation

of a loop, vcc that binds b should enclose the loop. Therefore, every

loop containing breakmust be desugared. An expression while0 41 42 is
desugared to vcc b in while0 41 42.

For example, consider the following expression:

while0 0 break

This expression is desugared to the following expression:

vcc b in while0 0 (b 0)

Then, b is the continuation finishing the evaluation. Inside the loop, b

is applied to 0, so the program terminates and produces 0 as a result. It

coincideswith the expected behavior of break. Even though the condition

of the loop never changes from 0, the loop terminates due to the use of

break.

While break terminates the loop, continue just skips the current iteration.

It makes the program jump to the condition expression of the loop.

Evaluating the condition expression is the continuation of the body of the

loop because the condition is evaluated after the evaluation of the body.

Therefore, an expression while0 41 42 is desugared to while0 41 (vcc c in 42)
when 42 contains continue, and continue is desugared to c 0.

7

For example, consider the following expression:

while0 0 (continue; (1 + �x.x))

This expression is desugared to the following expression:

while0 0 (vcc c in ((c 0); (1 + �x.x)))

Ateach iteration,whenc 0 is evaluated, the result ofwhole vccc in ((c0); (1+
�x.x)) becomes 0 without evaluating 1+�x.x. Then, the loop proceeds to

the next iterationwithout incurring a run-time error. Thus, the expression

never terminates. It is what we expect from continue. Without continue,

the expression causes a run-time error because it is impossible to add a

number to a function. However, continue prevents the addition from

being evaluated, so the expression never terminates.

Note that the selection of 0 in c 0 is completely arbitrary since the result

of the loop body is never used. We may desugar continue to c 42 instead.

It is different from the case of break, which must apply b to 0 to make

the result of the loop 0.

16.5 Exercises

Exercise 16.1 What is the result of each of the following expressions?

1. vcc x in ((x 3) + 4)
2. (vcc x in (2 + (x (�y.(y + y))))) 3
3. (vcc x in x) 5
4. (vcc x in x) (�y.y) 5
5. (vcc x in x) (�y.(y y)) 5

16 First-Class Continuations 204

Exercise 16.2 The following is an interp for KFAE that prints a given

expression each time it is called:

def interp(e: Expr, env: Env, k: Cont): Value = {

println(e)

e match { ... }

}

Let 4 be an expression (vcc x in x)�y.y, which is App(Vcc("x", Id("x")),

Fun("y", Id("y"))). What does interp(4, Map(), x => x) print?

Exercise 16.3 Write the reduction steps of (vcc x in 42 + (x 2)) + 8.

Exercise 16.4 This exercise extends KFAE with mutable variables. Com-

plete the following interpreter implementation:

type Env = Map[String, Addr]

type Sto = Map[Addr, Value]

type Cont = (Value, Sto) => (Value, Sto)

def interp(e: Expr, env: Env, sto: Sto, k: Cont): (Value, Sto) = e match {

case Num(n) => ???

case Id(x) => ???

case Fun(x, b) => ???

case App(f, a) => ???

case Set(x, e) => ???

case Vcc(x, b) => ???

}

1: C provides function pointers but not clo-

sures. Closures are necessary to represent

continuations.

2: Since the Sub case is similar to the Add

case, this chapter omits the Sub case.

First-Order Representation of

Continuations 17

17.1 First-Order Representation of

Continuations 205

17.2 Big-Step Semantics of KFAE 210

17.3 Exercises 213

The previous chapter implements an interpreter of KFAE with first-class

functions in Scala. The interpreter treats continuations as Scala functions.

Since the interpreter uses CPS, continuations are passed from functions

to functions. In addition, continuations sometimes need to be stored in

ContV because KFAE supports first-class continuations. ContV instances

are stored inside environments or returned from interp. Therefore, the

interpreter relies on the fact that Scala provides first-class functions. Since

functions are values in Scala, the interpreter can represent continuations

with functions and uses them as values.

The use of first-class functions is problematic for some cases. First, low-

level languages, such as C, lack first-class functions.
1
There must be

another way to implement an interpreter of KFAE for those who use

low-level languages. Second, functions do not give useful information.

The only ability of functions is being applied to arguments. However, in

particular programs like debuggers, it is necessary to figure out what a

given first-class continuation does. The current implementation disallows

such analysis on continuations. On the other hand, a CloV instance, which

represents a closure, can give the exact information about the parameter,

body, and environment of the closure. Alas, ContV instances do not have

such capabilities.

This chapter showshowwe can represent continuationswithout first-class

functions. By avoiding first-class functions, an interpreter of a language

with first-class continuations can be written in low-level languages. In

addition, if continuations are not functions and have specific structures

instead, debuggers can analyze what a given continuation denotes.

17.1 First-Order Representation of

Continuations

The following code shows the KFAE interpreter implemented in the

previous chapter:
2

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => k(NumV(n))

case Id(x) => k(lookup(x, env))

case Fun(x, b) => k(CloV(x, b, env))

case Add(e1, e2) =>

interp(e1, env, v1 =>

interp(e2, env, v2 =>

k(add(v1, v2))

)

)

case App(e1, e2) =>

interp(e1, env, v1 =>

17 First-Order Representation of Continuations 206

interp(e2, env, v2 => v1 match {

case CloV(x, e, fenv) =>

interp(e, fenv + (x -> v2), k)

case ContV(nk) => nk(v2)

})

)

case Vcc(x, b) =>

interp(b, env + (x -> ContV(k)), k)

}

Wecan change the implementation abit by replacingk(v)withcontinue(k,

v).

def continue(k: Cont, v: Value): Value = k(v)

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => continue(k, NumV(n))

case Id(x) => continue(k, lookup(x, env))

case Fun(x, b) => continue(k, CloV(x, b, env))

case Add(e1, e2) =>

interp(e1, env, v1 =>

interp(e2, env, v2 =>

continue(k, add(v1, v2))

)

)

case App(e1, e2) =>

interp(e1, env, v1 =>

interp(e2, env, v2 => v1 match {

case CloV(x, e, fenv) =>

interp(e, fenv + (x -> v2), k)

case ContV(nk) => continue(nk, v2)

})

)

case Vcc(x, b) =>

interp(b, env + (x -> ContV(k)), k)

}

Since evaluating k(v) is everything continue(k, v) does, the new

implementation behaves the same as the previous implementation. For

now, the change seems needless, but it will become useful soon.

We need to knowwhich continuations are used in the original interpreter

to define values representing continuations. There are four sorts of

continuations in the interpreter:

I v1 => interp(e2, env, v2 => continue(k, add(v1, v2)))

I v2 => continue(k, add(v1, v2))

I v1 => interp(e2, env, v2 => v1 match ...)

I v2 => v1 match ...

Thefirst continuation,v1 => interp(e2, env, v2 => continue(k, add(v1,

v2))), is used after the evaluation of the left operand of addition. It

evaluates the right operand, calculates the sum, and passes the sum to

the continuation of the entire addition. The parameter v1 denotes the

17 First-Order Representation of Continuations 207

value of the left operand. The function body contains three free variables:

e2, env, and k. e2 is the right operand; env is the current environment; k

is the continuation of the addition. If the values of the free variables are

determined, the behavior of the continuation is also determined. There-

fore, (e2, env, k), which is a triple of an expression, an environment,

and a continuation, can represent the continuation.

Currently, continue continues the evaluation with a given function,

which represents the continuation. Since the continuation is a Scala

function, it can be directly applied to a given value. However, if we use

a triple to represent the continuation instead of a function, it cannot be

applied to a value. We need a new way to continue evaluation when a

continuation and a value are given. The clue already exists—look at the

body of the function representing a continuation. When the function

is applied to v1, the result is interp(e2, env, v2 => continue(k,

add(v1, v2))). Now, (e2, env, k) and v1 are provided instead of

the function and v1. It is enough to evaluate interp(e2, env, v2 =>

continue(k, add(v1, v2))) with v1, e2, env, and k. It evaluates the

same thing as the original function application.

Below compare the previous and current strategies:

I Previous: v1 => interp(e2, env, v2 => continue(k ,add(v1,

v2))) and v1 are given. Then, evaluate interp(e2, env, v2

=> continue(k, add(v1, v2))) by applying v1 => interp(e2,

env, v2 => continue(k ,add(v1, v2))) to v1.

I Current:(e2, env, k) andv1 are given. Then, evaluateinterp(e2,

env, v2 => continue(k, add(v1, v2)))with e2, env, k, and v1.

Both strategies evaluateinterp(e2, env, v2 => continue(k, add(v1,

v2))) in the end. While the previous strategy represents continua-

tions with functions, the current strategy represents continuations with

triples.

Once you understand the first sort of continuations, the remaining

ones are straightforward. The second continuation, v2 => continue(k,

add(v1, v2)), is used after the evaluation of the right operand of

addition. It calculates the sum of the operands and passes the sum to

the continuation of the addition. The parameter v2 denotes the value

of the right operand. The function body contains two free variables:

k and v1. k is the continuation of the addition; v1 is the value of the

left operand. In a similar fashion, v1 and k are enough to determine

what the continuation does. Therefore, (v1, k), a pair of a value and a

continuation, can represent the continuation. To continue the evaluation

when (v1, k) and v2 are given, continue(k, add(v1, v2)) needs to

be evaluated.

I Previous: v2 => continue(k, add(v1, v2)) and v2 are given.

Then, evaluate continue(k, add(v1, v2)) by applying v2 =>

continue(k, add(v1, v2)) to v2.

I Current: (v1, k) and v2 are given. Then, evaluate continue(k,

add(v1, v2))with v1, k, and v2.

The third continuation,v1 => interp(e2, env, v2 => v1 match ...),

is used after the evaluation of the expression at the function position of

a function application. It evaluates an argument and applies a function

(or a continuation) to the argument. v1 denotes the value of the expres-

17 First-Order Representation of Continuations 208

3: k is in

4: k is in

sion at the function position. The body of the function representing the

continuation contains three free variables: e2, env, and k.3 e2 is the

expression at the argument position; env is the current environment; k is

the continuation of the application. Therefore, e2, env, and k determine

what the continuation does, and (e2, env, k), a triple of an expression,

an environment, and a continuation, can represent the continuation. Con-

tinuing the evaluation is evaluating interp(e2, env, v2 => v1 match

...), which can be done with (e2, env, k) and v1.

I Previous:v1 => interp(e2, env, v2 => v1 match ...) andv1

are given. Then, evaluateinterp(e2, env, v2 => v1 match ...)

by applying v1 => interp(e2, env, v2 => v1 match ...) to

v1.

I Current:(e2, env, k) andv1 are given. Then, evaluateinterp(e2,

env, v2 => v1 match ...)with e2, env, k, and v1.

The fourth continuation, v2 => v1 match ..., is used after the evalua-

tion of the argument of a function application. It applies a function (or

a continuation) to the argument. v2 denotes the value of the argument.

The body of the function representing the continuation contains two free

variables: v1 and k.4 v1 is the value of the expression at the function

position; k is the continuation of the application. Therefore, (v1, k),

a pair of a value and a continuation, can represent the continuation.

Continuing the evaluation is evaluating v1 match ... with (v1, k)

and v2.

I Previous: v2 => v1 match ... and v2 are given. Then, evaluate

v1 match ... by applying v2 => v1 match ... to v2.

I Current: (v1, k) and v2 are given. Then, evaluate v1 match ...

with v1, k, and v2.

In fact, there is one more continuation, which does not appear in the

implementation of interp. It is the one that is represented as the identity

function and is passed to interp in the beginning. The identity function

returns a given argumentwithout any changes.No additional information

is necessary to determine the behavior of the continuation. Therefore,

(), the zero-length tuple (the Unit value in Scala) can represent the

continuation. To continue the evaluation with the continuation and a

value v, it is enough to give v as the result.

I Previous: An identity function and v are given. Then, evaluate v by

applying the identity function to v.

I Current: () and v are given. Then, evaluate vwith v.

In summary, the KFAE interpreter uses continuations of the following

five sorts:

I (e2: Expr, env: Env, k: Cont)

I (v1: Value, k: Cont)

I (e2: Expr, env: Env, k: Cont)

I (v1: Value, k: Cont)

I ()

Note that the first and the third are different even though they look

the same. The first continuation computes interp(e2, env, v2 =>

continue(k, add(v1, v2))) with its data, while the third continua-

tion computes interp(e2, env, v2 => v1 match ...) with its data.

17 First-Order Representation of Continuations 209

Similarly, the second and the fourth are diffent as well. The second

computes continue(k, add(v1, v2)), while the fourth computes v1

match

As explained in Chapter 5, an ADT is the best way to implement a type

that consists of values of various shapes. Thus, Cont can be newly defined

with a sealed trait and case classes as follows:

sealed trait Cont

case class AddSecondK(e2: Expr, env: Env, k: Cont) extends Cont

case class DoAddK(v1: Value, k: Cont) extends Cont

case class AppArgK(e2: Expr, env: Env, k: Cont) extends Cont

case class DoAppK(v1: Value, k: Cont) extends Cont

case object MtK extends Cont

The names of the classes do not matter, though they are named carefully

so that the names can reflect what they are for. The important things are

data carried by each continuation. Following the Scala convention, the

last sort, which can be represented by the empty tuple, is now represented

by a singleton object. One may use case class MtK() extends Cont

instead without changing the semantics, but the singleton object is

more efficient than the case class from the implementation perspective.

Now, the implementation of continuations does not require first-class

functions.

Now, we need to revise the continue function. The previous implemen-

tation is def continue(k: Cont, v: Value): Value = k(v). It works

because Cont is a function type before our change. However, Cont is

not a function now, and continue needs a fix. In fact, we already know

everything to make a correct fix. Previously, continue applies k to v

when k and v are given. Now, it should check k and do the correct compu-

tation according to the data in k. Below is the repetition of the previous

explanations, but with the names of the case classes and object.

I AddSecondK(e2, env, k) andv1 are given. Then, evaluateinterp(e2,

env, v2 => continue(k, add(v1, v2)))with e2, env, k, and v1.

I DoAddK(v1, k) and v2 are given. Then, evaluate continue(k,

add(v1, v2))with v1, k, and v2.

I AppArgK(e2, env, k) andv1 are given. Then, evaluateinterp(e2,

env, v2 => v1 match ...)with e2, env, k, and v1.

I DoAppK(v1, k) and v2 are given. Then, evaluate v1 match ...

with v1, k, and v2.

I MtK and v are given. Then, evaluate vwith v.

The first and third explanations still pass functions to interp even

though continuations are not functions anymore. They need small

changes. Now, DoAddK(v1, k) represents v2 => continue(k, add(v1,

v2)), and DoAppK(v1, k) represents v2 => v1 match

I AddSecondK(e2, env, k) andv1 are given. Then, evaluateinterp(e2,

env, DoAddK(v1, k))with e2, env, k, and v1.

I AppArgK(e2, env, k) andv1 are given. Then, evaluateinterp(e2,

env, DoAppK(v1, k))with e2, env, k, and v1.

The new implementation of continue is as follows:

17 First-Order Representation of Continuations 210

def continue(k: Cont, v: Value): Value = k match {

case AddSecondK(e2, env, k) => interp(e2, env, DoAddK(v, k))

case DoAddK(v1, k) => continue(k, add(v1, v))

case AppArgK(e2, env, k) => interp(e2, env, DoAppK(v, k))

case DoAppK(v1, k) => v1 match {

case CloV(x, e, fenv) =>

interp(e, fenv + (x -> v), k)

case ContV(nk) => continue(nk, v)

}

case MtK => v

}

The code is straightforward since it is exactly the same as the explana-

tion.

The interp function also needs a fix to follow the new definition of

Cont:

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => continue(k, NumV(n))

case Id(x) => continue(k, lookup(x, env))

case Fun(x, b) => continue(k, CloV(x, b, env))

case Add(e1, e2) => interp(e1, env, AddSecondK(e2, env, k))

case App(e1, e2) => interp(e1, env, AppArgK(e2, env, k))

case Vcc(x, b) => interp(b, env + (x -> ContV(k)), k)

}

Only the Add and App cases are different from before. The Add case uses

AddSecondK(e2, env, k) to represent v1 => interp(e2, env, v2 =>

continue(k, add(v1, v2))); the App case uses AppArgK(e2, env, k)

to represent v1 => interp(e2, env, v2 => v1 match ...).

Note that MtK does not appear in interp. MtK is used to call interp in

the beginning. One should write interp(4, Map(), MtK) to evaluate

4.

17.2 Big-Step Semantics of KFAE

Representing continuations without first-class functions additionally

gives us a clue to define the big-step semantics of KFAE. This section
defines the big-step semantics of KFAE from the new interpreter imple-

mentation.

First, we can define continuations inductively. It is straightforward from

the implementation.

sealed trait Cont

case class AddSecondK(e2: Expr, env: Env, k: Cont) extends Cont

case class DoAddK(v1: Value, k: Cont) extends Cont

case class AppArgK(e2: Expr, env: Env, k: Cont) extends Cont

case class DoAppK(v1: Value, k: Cont) extends Cont

case object MtK extends Cont

17 First-Order Representation of Continuations 211

The above ADT can be formalized as below:

� ::= [� + (4 , �)] :: � | [E +�] :: � | [� (4 , �)] :: � | [E �] :: � | [�]

where the metavariable � ranges over continuations. Note that � in the

definition is different from � used by the small-step semantics. While �
denotes the empty computation stack in the small-step semantics, � in

the above definition is just a part of the notation. It does not have any

formal meaning but conceptually represents a hole in an intuitive way.

Previous chapters define only one sort of a proposition for the big-step

semantics because their interpreters have only interp. On the other

hand, the interpreter of this chapter has both interp and continue, and

each of them has a different role from the other. Therefore, we formalize

each function with a different sort of a proposition. The first sort is

�, � ` 4 ⇒ E, which denotes that the result of interp(4, �, �) is E.

The other is E1 ↦→ � ⇓ E2, which denotes that the result of continue(�,
E1) is E2.

Let us define inference rules related to interp first.

def interp(e: Expr, env: Env, k: Cont): Value = e match {

case Num(n) => continue(k, NumV(n))

case Id(x) => continue(k, lookup(x, env))

case Fun(x, b) => continue(k, CloV(x, b, env))

case Add(e1, e2) => interp(e1, env, AddSecondK(e2, env, k))

case App(e1, e2) => interp(e1, env, AppArgK(e2, env, k))

case Vcc(x, b) => interp(b, env + (x -> ContV(k)), k)

}

Each case of the interp function produces a single inference rule.

= ↦→ � ⇓ E
�, � ` = ⇒ E

[Interp-Num]

The conclusion, �, � ` = ⇒ E, denotes that the result of interp(=, �,
�) is E. The result of interp(=, �, �) is the same as that of continue(�,
NumV(=)). = ↦→ � ⇓ E denotes that the result of continue(�, NumV(=))

is E.

G ∈ Domain(�) �(G) ↦→ � ⇓ E
�, � ` G ⇒ E

[Interp-Id]

〈�G.4 , �〉 ↦→ � ⇓ E
�, � ` �G.4 ⇒ E

[Interp-Fun]

The rules for variables and functions are similar to the rule for integers.

�, [� + (42 , �)] :: � ` 41 ⇒ E

�, � ` 41 + 42 ⇒ E
[Interp-Add]

17 First-Order Representation of Continuations 212

The conclusion, �, � ` 41+42 ⇒ E, denotes that the result ofinterp(Add(41,42),

�, �) is E. The result of interp(Add(41,42), �, �) is the same as that

of interp(41, �, AddSecondK(42, �, �)). Note that [� + (42 , �)] :: �
denotes AddSecondK(42, �, �). �, �′ ` 41 ⇒ E denotes that the result

of interp(41, �, �′) is E, where �′ is [� + (42 , �)] :: �.

�, [� (42 , �)] :: � ` 41 ⇒ E

�, � ` 41 42 ⇒ E
[Interp-App]

The rule for function application is similar to the rule for addition.

�[G ↦→ �], � ` 4 ⇒ E

�, � ` vcc G; 4 ⇒ E
[Interp-Vcc]

The conclusion, �, � ` vcc G; 4 ⇒ E, denotes that the result ofinterp(Vcc(G,

4), �, �) is E. The result of interp(Vcc(G, 4), �, �) is the same as

that of interp(4, �[G ↦→ �], �). �[G ↦→ �], � ` 4 ⇒ E denotes that

the result of interp(4, �[G ↦→ �], �) is E.

Now, we define inference rules related to continue.

def continue(k: Cont, v: Value): Value = k match {

case AddSecondK(e2, env, k) => interp(e2, env, DoAddK(v, k))

case DoAddK(v1, k) => continue(k, add(v1, v))

case AppArgK(e2, env, k) => interp(e2, env, DoAppK(v, k))

case DoAppK(v1, k) => v1 match {

case CloV(xv1, ev1, sigmav1) =>

interp(ev1, sigmav1 + (xv1 -> v), k)

case ContV(k) => continue(k, v)

}

case MtK => v

}

Each case of the continue function also produces a single inference rule.

The only exception is the DoAppK case because it requires two rules: one

for the CloV case and the other for the ContV case.

�, [E1 +�] :: � ` 42 ⇒ E2

E1 ↦→ [� + (42 , �)] :: � ⇓ E2

[Continue-AddSecondK]

The conclusion, E1 ↦→ [� + (42 , �)] :: � ⇓ E2, denotes that the result of

continue(AddSecondK(42, �, �), E1) is E2. The result ofcontinue(AddSecondK(42,

�, �), E1) is the same as that of interp(42, �, DoAddK(E1, �)).
Note that [E1 +�] :: � denotes DoAddK(E1, �). �, �′ ` 42 ⇒ E2 denotes

that the result of interp(42, �, �′) is E2 where �′ is [E1 +�] :: �.

=1 + =2 ↦→ � ⇓ E
=2 ↦→ [=1 +�] :: � ⇓ E

[Continue-DoAddK]

The conclusion, =2 ↦→ [=1 + �] :: � ⇓ E, denotes that the result of

continue(DoAddK(NumV(=1), �), NumV(=2)) is E. The result ofcontinue(DoAddK(NumV(=1),

�), NumV(=2)) is the same as that of continue(�, add(NumV(=1),

17 First-Order Representation of Continuations 213

NumV(=2))). Note that add(NumV(=1), NumV(=2)) equals NumV(=1 +
=2).

=1 + =2 ↦→ � ⇓ E denotes that the result of continue(�, NumV(=1 + =2))

is E.

�, [E1 �] :: � ` 4 ⇒ E2

E1 ↦→ [� (4 , �)] :: � ⇓ E2

[Continue-AppArgK]

This rule is similar to the rule when the continuation is [�+(42 , �)] :: �.

�[G ↦→ E2], � ` 4 ⇒ E

E2 ↦→ [〈�G.4 , �〉 �] :: � ⇓ E
[Continue-DoAppK-CloV]

The conclusion, E2 ↦→ [〈�G.4 , �〉 �] :: � ⇓ E, denotes that the re-

sult of continue(DoAppK(CloV(G, 4, �), �), E2) is E. The result

of continue(DoAppK(CloV(G, 4, �), �), E2) is the same as that of

interp(4, �[G ↦→ E2], �). �[G ↦→ E2], � ` 4 ⇒ E denotes that the

result of interp(4, �[G ↦→ E2], �) is E.

E2 ↦→ �1 ⇓ E
E2 ↦→ [�1 �] :: � ⇓ E

[Continue-DoAppK-ContV]

The conclusion, E2 ↦→ [�1 �] :: � ⇓ E, denotes that the result of

continue(DoAppK(ContV(�1), �), E2) is E. The result ofcontinue(DoAppK(ContV(�1),

�), E2) is the same as that of continue(�1, E2). E2 ↦→ �1 ⇓ E denotes

that the result of continue(�1, E2) is E.

E ↦→ [�] ⇓ E [Continue-MtK]

The conclusion, E ↦→ [�] ⇓ E, denotes that the result of continue(MtK,
E) is E. The result of continue(MtK, E) is actually E.

17.3 Exercises

Exercise 17.1 This exercise asks you to implement an interpreter of

FAE with val and if0 in CPS without first-class functions. Complete the

following implementation:

sealed trait Expr

...

case class Val(x: String, e: Expr, b: Expr) extends Expr

case class If0(c: Expr, t: Expr, f: Expr) extends Expr

sealed trait Cont

...

case class ValSecondK(???) extends Cont

case class If0SecondK(???) extends Cont

def continue(k: Cont, v: Value): Value = k match {

17 First-Order Representation of Continuations 214

...

case ValSecondK(???) => ???

case If0SecondK(???) => ???

}

def interp(e: Expr, env: Env, k: Cont): Value = e match {

...

case Val(x, e, b) => ???

case If0(c, t, f) => ???

}

Exercise 17.2 This exercise asks you to implement an interpreter of FAE
with pairs in CPS without first-class functions. Complete the following

implementation:

sealed trait Expr

...

case class Pair(f: Expr, s: Expr) extends Expr

case class Fst(p: Expr) extends Expr

case class Snd(p: Expr) extends Expr

sealed trait Value

...

case class PairV(f: Value, s: Value) extends Value

sealed trait Cont

...

case class PairSecondK(???) extends Cont

case class DoPairK(???) extends Cont

case class DoFstK(???) extends Cont

case class DoSndK(???) extends Cont

def continue(k: Cont, v: Value): Value = k match {

...

case PairSecondK(???) => ???

case DoPairK(???) => ???

case DoFstK(???) => ???

case DoSndK(???) => ???

}

def interp(e: Expr, env: Env, k: Cont): Value = e match {

...

case Pair(f, s) => ???

case Fst(p) => ???

case Snd(p) => ???

}

Pair(e1, e2) creates a new pair; Fst(e) gives the first value of a pair;

Snd(e) gives the second value of a pair.

1: Since the main purpose of mentioning

substitutions is explaining the problem of

naming, we do not formally define substi-

tutions. To find more about substitution,

see Exercise 9.15.

Nameless Representation of

Expressions 18

18.1 De Bruĳn Indices 216

18.2 Evaluation of Nameless Expres-

sions 220

18.3 Exercises 222

In previous chapters, languages distinguish different variables by naming

them with different identifiers. For example, �x.�y.x is a function that

takes an argument twice and returns the first argument. Since two

parameters have different names, one can easily conclude that the first

argument is the result. The first parameter is named x, and the second

parameter is named y. Therefore, x in the function body denotes the first

parameter.

Naming variables is an intuitive and practically useful way to represent

variables. However, it becomes problematic in some cases like formalizing

the semantics of languages and implementing interpreters and compilers,

which take source code as input.

First, two variables may not be distinguished when their names are the

same. Environments can easily deal with variables of the same name

well, but substitution is often used instead of environments to define the

semantics of languages. For instance, defining the semantics of function

applications with substitutions is as follows: evaluating (�x.x + x) 1 is

the same as evaluating 1 + 1, which is obtained by substituting xwith 1

in the function body x + x.1 In fact, it is difficult to define the semantics

correctly with substitutions. Consider the expression (�f.�x.f) �y.x. By
applying the same principle, evaluating the expression is the same as

evaluating �x.�y.x, which is obtained by substituting f with �y.x in

�x.f. Alas, it is wrong. x in the original argument �y.x is a free identifier,

while x in �x.�y.x is a bound occurrence. The meaning of x before and

after the substitution is completely different. This example shows that

the current semantics is incorrect, and the root cause of the problem is

two different variables of the same name x.

Second, names hinder us from checking the semantic equivalence of

expressions. For example, both �x.x and �y.y are identity functions.

However, a naïve syntactic check cannot prove the semantic equivalence

of them, i.e. that their behaviors are the same, because the first expression

names the parameter x, while the second expression names the parameter

y. The ability to check semantic equivalence is valuable in many places.

Consider optimization of expressions.

val f = �x.x;

val g = �y.y;

(f 1) + (g 2)

The above expression defined the functions f and g and, then, evaluate

(f 1) + (g 2). f and g are semantically equivalent, but the names of their

parameters are different. If a compiler is aware of their equivalence, it

can reduce the size of the program by modifying the expression like

below:

18 Nameless Representation of Expressions 216

val f = �x.x;

(f 1) + (f 2)

As the example shows, comparing the semantic equivalence of expres-

sions is an important problem, but naming variables is not a good way

for this purpose.

For these reasons, names are often problematic in programming lan-

guages. Multiple solutions have been proposed to resolve the issue. This

chapter introduces de Bruĳn indices, which are one of those solutions.De
Bruĳn indices represent variables with indices, not names. This chapter

shows how de Bruĳn indices can be used in FAE. Note that FAE is just

one possible use case of de Bruĳn indices. De Bruĳn indices can be used

anywhere names lead to a problem.

18.1 De Bruĳn Indices

De Bruĳn indices represent variables with indices, which are natural

numbers. The number of � between a bound occurrence and the cor-

responding binding occurrence represents the binding occurrence. For

instance, �.0 is the nameless version of �x.x. �.0 is a function with one

parameter. Its body is 0, which differs from a natural number 0. 0 denotes

a variable whose distance from its definition is zero. The distance means

the number of �. Therefore, the parameter of �.0 is the one that 0 is

bound to. In a similar fashion, �.�.1 is the nameless version of �x.�y.x.
�.�.1 is a function with one parameter and the body expression �.1. �.1
also is a function with one parameter. Its body is 1, which is a variable

whose distance from the definition is one. Thus, the parameter of �.1
cannot be denoted by 1. There is no � between the parameter and 1. 1

denotes the parameter of �.�.1 because there is one � in between. The

following table shows various examples of de Bruĳn indices.

With names Without names

�x.x �.0
�x.�y.x �.�.1
�x.�y.y �.�.0

�x.�y.x + y �.�.1 + 0

�x.�y.x + y + 42 �.�.1 + 0 + 42

�x.(x �y.(x y)) �.(0 �.(1 0))
�x.((�y.x) (�z.x)) �.((�.1) (�.1))

It is important to notice that different indices can denote the same variable,

and the same indices can denote different variables. Consider the second

example from the bottom. The first 0 in �.(0 �.(1 0)) denotes x of the

original expression. At the same time, 1 also denotes x of the original

expression. On the other hand, the second 0 denotes y of the original

expression. The distance from the definition depends on the location of a

variable. Since de Bruĳn indices represent variables with their distances,

the indices of a single variable can vary among places.

Note that expressions should be treated as trees, not strings, to calculate

the distances. Consider the last example. There are two �’s between

18 Nameless Representation of Expressions 217

2: This chapter uses 4 to denote both

named expressions and nameless expres-

sions. Strictly speaking, two different

metavariables should be introduced to

denote each sort of an expression sepa-

rately. However, for brevity, we abuse the

notation and use 4 for both sorts of an

expression.

the last x and its definition when the expression is written as a string.

However, when the abstract syntax tree representing the expression is

considered, there is only one � in between. Therefore, the index of the

last x is 1, not 2. We usually write expressions as strings for convenience,

but they always have tree structures in fact.

De Bruĳn indices successfully resolve the issues arising from names.

Consider the comparison of expressions. �x.x and �y.y are semantically

equivalent but syntactically different expressions. Both become �.0 when

de Bruĳn indices are used. By the help of de Bruĳn indices, a simple

syntactic check will find out that two expressions are equal.

Now, let us define the procedure that transforms named expressions into

nameless expressions. It helps readers understand de Bruĳn indices. At

the same time, the procedure is practically valuable. Use of names is the

best way to denote variables for programmers. Therefore, expressions

written by programmers have names. On the other hand, programs

like interpreters and compilers sometimes need to use de Bruĳn indices

to represent variables. In such cases, the procedure is a part of the

interpreter/compiler implementation.

First, we define indices as follows:

8 ∈ ℕ

where the metavariable 8 ranges over indices.

Then, we can define nameless expressions as follows:
2

4 ::= 8 | �.4 | 4 4 | = | 4 + 4

In nameless expressions, natural numbers represent variables. Those

numbers haveunderlines and, therefore, cannot be confusedwith integers.

A lambda abstraction �.4 lacks the name of its parameter. Note that �.4
does have a single parameter. It is not a function with zero parameters.

A context, which is a finite partial function from names to natural

numbers, takes an important role during the transformation. A context

gives the distance between a variable and its definition.

" ∈ Id fin↦→ ℕ

The metavariable " ranges over contexts.

Let [4]" be a nameless expression representing 4 under a context ". The
definition of [4]" is as follows:

[G]" = 8 if "(G) = 8
[�G.4]" = �.[4]"′ where "′ = (↑ ")[G ↦→ 0]
[41 42]" = [41]" [42]"
[=]" = =

[41 + 42]" = [41]" + [42]"

[G]" is the result of transforming G. A natural number represents a

variable, and the natural number can be found in ". Therefore, when

18 Nameless Representation of Expressions 218

"(G) is 8, G is transformed into 8.

[�G.4]" is the result of transforming �G.4 and should look like �.4.
However, 4 uses names and, thus, needs to be transformed. " is not the

correct context for the transformation of 4. First, it lacks the information

of G. If G appears in 4 without any function definitions, there is no �
between the use and the definition. The context must know that the

index of G is 0. In addition, indices in " need changes. Suppose that G′

is in " and its index is 0. If G′ occurs in 4, its index is not 0 anymore.

Since 4 is the body of �G.4, there is one � between G′ and its definition.

During the transformation of 4, the index of G′ is 1, not 0. Similarly, if

there is a variable whose index is 1 in ", its index must be 2 during the

transformation of 4. In conclusion, every index in " has to increase by

one. ↑ " denotes the context same as " but whose indices are one larger.

The context used during the transformation of 4 is (↑ ")[G ↦→ 0]. [�G.4]"
is �.[4]"′ where "′ is (↑ ")[G ↦→ 0].

The remaining cases are straightforward. The transformations of 41 42
and 41 + 42 are recursively defined. Since = does not contain variables, =

itself is the result.

Below shows how �x.�y.x + y is transformed by the procedure. In the

beginning, the context is empty because there is no variable yet.

[�x.�y.x + y]∅
= �.[�y.x + y][x ↦→ 0]
= �.�.[x + y][x ↦→ 1, y ↦→ 0]
= �.�.[x][x ↦→ 1, y ↦→ 0] + [y][x ↦→ 1, y ↦→ 0]
= �.�.1 + [y][x ↦→ 1, y ↦→ 0]
= �.�.1 + 0

Now, let us implement the procedure in Scala. For named expressions,

we can reuse the previous implementation. The following code defines

nameless expressions:

object Nameless {

sealed trait Expr

case class Num(n: Int) extends Expr

case class Add(l: Expr, r: Expr) extends Expr

case class Id(i: Int) extends Expr

case class Fun(e: Expr) extends Expr

case class App(f: Expr, a: Expr) extends Expr

}

Id(8) represents 8, and Fun(4) represent �.4.

Note that nameless expressions are defined in the Nameless singleton

object. Therefore, outside the object, Expr denotes the type of named

expressions, while Nameless.Expr denotes the type of nameless expres-

sions. Similarly, Id represents a variable represented by a name, while

Nameless.Id represents a variable represented by an index.

type Ctx = Map[String, Int]

Ctx, the type of a context, is a map from strings to integers.

18 Nameless Representation of Expressions 219

The following transform function recursively transforms a named ex-

pression into a nameless expression:

def transform(e: Expr, ctx: Ctx): Nameless.Expr = e match {

case Id(x) => Nameless.Id(ctx(x))

case Fun(x, e) =>

val nctx = ctx.map{ case (x, i) => x -> (i + 1) } + (x -> 0)

Nameless.Fun(transform(e, nctx))

case App(f, a) =>

Nameless.App(transform(f, ctx), transform(a, ctx))

case Num(n) => Nameless.Num(n)

case Add(l, r) =>

Nameless.Add(transform(l, ctx), transform(r, ctx))

}

The function exactly looks like its mathematical definition, so it is easy to

understand the code.

Lists can replace maps in the implementation. A context is a list of names,

and the index of a name is the location of the name in the list. Lists

simplify the implementation. When a name is added to a context, its

index is always zero. It means that the name is the head of the list. Adding

a name is the same as making the head of the list be the name. Increasing

every index by one is the same as moving each name backward by one

slot. Therefore, if a context is a list, prepending a new name in front of the

list does everything we need to extend the context. For example, consider

a context containing x and y. Let the indices of x and y, respectively, be

0 and 1. The context is represented by List("x", "y"). It is enough to

prepend z to the list to add z to the context. The resulting list is List("z",

"x", "y")—z at index 0, x at index 1, and y at index 2. Since z is the

new name, its index should be 0. At the same time, the indices of x and y

should be greater by one than before. The new list does represent the

new context well.

To use lists instead, we change the definition of Ctx.

type Ctx = List[String]

Now, Ctx is a list of strings. Then, we can revise transform accordingly.

def transform(e: Expr, ctx: Ctx): Nameless.Expr = e match {

case Id(x) => Nameless.Id(locate(x, ctx))

case Fun(x, e) => Nameless.Fun(transform(e, x :: ctx))

case App(f, a) =>

Nameless.App(transform(f, ctx), transform(a, ctx))

case Num(n) => Nameless.Num(n)

case Add(l, r) =>

Nameless.Add(transform(l, ctx), transform(r, ctx))

}

def locate(x: String, ctx: Ctx): Int = ctx match {

case Nil => error()

case h :: t => if (h == x) 0 else 1 + locate(x, t)

}

18 Nameless Representation of Expressions 220

The Id case needs to calculate the location of a given variable in a given

context. For this purpose, we define locate. In the Fun case, x :: ctx is

everything we need to add x to ctx.

18.2 Evaluation of Nameless Expressions

Evaluation of nameless expressions is similar to evaluation of named

expressions. The definition of a value has a minor difference:

E ::= = | 〈�.4 , �〉

As lambda abstractions lack parameter names, closures also lack param-

eter names.

The definition of an environment also has an insignificant difference:

� ∈ ℕ fin↦→ +

Environments are finite partial functions from indices, which are natural

numbers, to values.

Now, let us define the inference rules.

Rule Id

If 8 is in the domain of �,
then 8 evaluates to �(8) under �.

8 ∈ Domain(�)
� ` 8 ⇒ �(8)

[Id]

The value of a variable can be found in a given environment.

Rule Fun

�.4 evaluates to 〈�.4 , �〉 under �.

� ` �.4 ⇒ 〈�.4 , �〉 [Fun]

A lambda abstraction evaluates to a closure without evaluating any-

thing.

Rule App

If

41 evaluates to 〈�.4 , �′〉 under �,
42 evaluates to E2 under �, and
4 evaluates to E under (↑ �′)[0 ↦→ E2],

then

41 42 evaluates to E under �.

� ` 41 ⇒ 〈�.4 , �′〉 � ` 42 ⇒ E2 (↑ �′)[0 ↦→ E2] ` 4 ⇒ E

� ` 41 42 ⇒ E
[App]

18 Nameless Representation of Expressions 221

3: Assume that the equality of closures is

defined properly.

4: At this point, we do not consider named

expressions, so we omit the Nameless sin-

gleton object.

Evaluation of 41 42 evaluates both 41 and 42. Then, the body of the closure

is evaluated under the environment captured by the closure with the

value of the argument. If the parameter is used in the body, there is no �
between the use and the definition. Its index is 0. Therefore, the value of

the argument has the index 0 in the new environment. In addition, every

index in the environment of the closure needs a change. Let a value E

correspond to the index 0. The value is not the value of the argument, so

it cannot correspond to the index 0 anymore. As � from the closure exists

between the use and the definition, the index should increase by one.

By the same principle, every index in the environment increases by one.

Since ↑ �′ denotes the environment same as �′ but whose indices are one

larger, the body of the closure is evaluated under (↑ �′)[0 ↦→ E2].

The rules for integers and addition are omitted because they are the same

as those of FAE.

This new semantics for nameless expressions is equivalent to the previous

semantics for named expressions. Let 4 be a named expression. The result

of evaluating 4 is the same as evaluating 4′ where 4′ is the nameless

expression obtained by transforming 4. 3 Mathematically, the following

proposition is true:

∀4.∀E.(∅ ` 4 ⇒ E) ↔ (∅ ` [4]∅ ⇒ E).

Let us implement an interpreter of nameless expressions in Scala. Below

is the definitions of values and environments.
4

type Env = List[Value]

sealed trait Value

case class NumV(n: Int) extends Value

case class CloV(e: Expr, env: Env) extends Value

An environment is a list of values. As shown by the implementation of

transform, lists are simpler than maps from integers to values.

def interp(e: Expr, env: Env): Value = e match {

case Id(i) => env(i)

case Fun(e) => CloV(e, env)

case App(f, a) =>

val CloV(b, fenv) = interp(f, env)

interp(b, interp(a, env) :: fenv)

case Num(n) => NumV(n)

case Add(l, r) =>

val NumV(n) = interp(l, env)

val NumV(m) = interp(r, env)

NumV(n + m)

}

The App case is the only interesting case. The others are the same as before.

Since a closure lacks its parameter name and an environment does not

need the name, it is enough to prepend the value of the argument in

front of the list.

18 Nameless Representation of Expressions 222

18.3 Exercises

Exercise 18.1 Write the nameless representation of the following expres-

sion:

(�x.�y.�z.(z − x) + y) 42 0 10

Exercise 18.2 Write an expression whose nameless representation is as

follows:

�.�.�.0 1 0

Typed Languages

Type Systems 19

19.1 Run-Time Errors 224

19.2Detecting Run-Time Errors . 225

19.3 Type Errors 227

19.4 Type Checking 228

19.5 TFAE 231

Syntax 231

Dynamic Semantics 232

Interpreter 232

Static Semantics 233

Type Checker 235

19.6 Extending Type Systems . . 237

Local Variable Definitions . 237

Pairs 238

19.7 Exercises 239

This chapter is the first chapter about typed languages. This chapter

explains the motivation of type checking and introduces a simple type

system by defining TFAE, a typed variant of FAE.

19.1 Run-Time Errors

In FAE, expressions can be classified into three groups according to their

behaviors. Let us see what those three groups are. Note that in most

languages, expressions can be classified into three groups in the same

manner. Thus, the discussion of this section can be applied to various

real-world languages. Just for brevity, this section uses FAE.

The first group includes every expression that evaluates to a value. For

example, (1 + 2) − 3 and (�x.�y.x + y) 1 2 belong to the first group

because (1 + 2) − 3 evaluates to 0, and (�x.�y.x + y) 1 2 evaluates to 3.

Expressions in this group correspond to programs that terminate without

any problem. When we write a program, the program usually belongs to

the first group.

The second group includes every expression that never teminates. For

instance, (�x.x x) (�x.x x) belongs to the second group. The expression

is function application. The first �x.x x is a function, and the seceond

�x.x x is an argument. To evaluate the function application, the body, x x,

is evaluated under the environment that maps x to �x.x x. Following the

content of the environment, evaluating x x is equivalent to evaluating

(�x.x x) (�x.x x), which is the original expression. Thus, we can say that

the evaluation of (�x.x x) (�x.x x) leads to the evaluation of the exactly

same expression. The evaluation runs forever and never terminates. There

are many nonterminating programs in real world. If a language supports

recursive functions or loops, writing nonterminating programs becomes

much easier. Some of them are created by programmers’ mistakes. Wrong

use of recursive functions or loops makes programs run forever, contrary

to the expectation of the programmers. However, programmers some-

times intentionally write nonterminating programs. Consider operating

systems, web servers, and shells. They do not finish their execution unless

a user inputs a termination command. If an operating system terminates

although a user has not given any commands, such a behavior should

be considered as a bug. These examples clearly show the necessity of

writing nonterminating programs.

The third group includes every expression that terminates but fails

to produce a result. For example, (�x.x) + 1, 1 0, and 2 − x belong to

the third group. The first example, (�x.x) + 1 adds a function to an

integer. Since such addition is impossible, the evaluation cannot proceed

beyond the addition. Thus, the evaluation terminates at the middle of the

computation rather than reaching the final stage and producing a result.

19 Type Systems 225

The second example, 1 0, applies an integer to a value. Functions can be

applied to values, but intgers cannot. Such an application expression also

makes the evaluation terminate abnormally. In the last example, x is a

free identifier. Its value is unknown, so there is no way to subtract the

value of x from 2. Expressions in this group correspond to programs that

incur run-time errors.

Run-time errors are always unintentional. The only reason to write

expressions that incur run-time errors is programmers’ mistakes. Run-

time errors terminate programs abnormally before the programs produce

meaningful results. Programmers write programs to achieve their goals:

getting particular results or performing certain tasks forever. Run-time

errors hinder programmers from achieving the goals. Run-time errors

are problematic not only to programmers but also to other people. In

commercial software, run-time errors are unpleasant experiences for

users and harm the profits and reputations of the company. Moreover,

people use programs for various purposes these days, so run-time errors

can cause much more serious problems. Programs control cars, airplanes,

andmedical devices. Improper operations of such devicesmay kill or hurt

people. A device will operate in a weird way if the program controlling

the device terminates abnormally. Programmers surely need a way to

check the existence of run-time errors before they deploy programs.

19.2 Detecting Run-Time Errors

The simplest way to detect run-time errors is to run a program. This

strategy is called dynamic analysis. The term dynamic means “with

execution” (or “during execution”). In general, analysis of a program

means to determine whether the program satisfies a certain property. In

this chapter, we are interested in existence of run-time errors, so analysis

means to detect run-time errors. It is straightforward to find run-time

errors in a program with dynamic analysis. If execution finishes due to

a run-time error, the program needs revision. Otherwise, the program

may be usable without any problems.

However, dynamic analysis often fails to detect run-time errors. Execution

can take a long time or run forever. Programmers want to deploy their

programs; they cannot wait for the execution forever to finish. The

dynamic analysis must stop at some point. It makes complete prevention

of run-time errors impossible. Even though a program runs one hundred

hours without any run-time errors, it can incur a run-time error after

one more hour of execution. Moreover, most programs take inputs from

users, and there are infinitely many possible inputs. Dynamic analysis

cannot cover all the cases. Even if a program runs fine for every input

being tried, the program can result in a run-time error for another

input. In addition, some programs are nondeterministic. For example,

multithreaded programs can produce different results among multiple

runs because the execution of threads is interleaved arbitrarily. Even

when run-time errors are not found during a few trials, the absence of

run-time errors cannot be guaranteed. Dynamic analysis is a simple and

popular way to find run-time errors but cannot ensure the nonexistence

of run-time errors. To rule out run-time errors in programs, we need a

better way than dynamic analysis.

19 Type Systems 226

1: %(�) denotes the output of % when � is

an input.

2: It is the contrapositive of the second

property.

3: It is the contrapositive of the third prop-

erty.

Since executing programs cannot prove the absence of run-time errors,

we should explore a way to detect run-time errors without executing

programs. This approach is called static analysis. The term static means

“without execution” (or “before execution”). We want to make a program

that automatically checks whether a given program can cause a run-time

error. More precisly, we want a program % that satisfies the following

conditions:

I For any program � given as an input, % outputs OK or NOT OK in a

finite time.

I If � never incurs run-time errors, %(�) = OK.1

I If � can incur a run-time error, %(�) = NOT OK.

The first property implies that % always terminates, which is different

from dynamic analysis. The second property is called completeness, which

implies that % never detects run-time errors by mistake, i.e., there is no

false positive—a false positive is to incorrectly say that there is a run-time

error (NOT OK). If %(�) is NOT OK, � must be able to incur a run-time

error.
2
The third property is called soundness, which implies that % never

misses run-time errors, i.e., there is no false negative—a false negative is to
incorrectly say that there is no run-time error (OK). If %(�) is OK, � must

be free from run-time errors.
3 % can liberate programmers from the

burden of detecting run-time errors. If % says OK, then the programmers

do not need to worry about run-time errors at all. If % says NOT OK, then
the program is certainly wrong, and the programmers should fix the

problem.

Alas, such a program % does not exist. It has not existed so far and will

not exist in the future as well. In other words, the problem of deciding

whether a certain program can incur a run-time error is proven to be

undecidable. The undecidability can be proved in a similar fashion to

Turing’s proof of the undecidability of the halting problem. We do not

explain the proof because the proof is outside the scope of this book.

Fortunately, there is a tolerable solution. If we give up either completeness

or soundness, we can find such a program %. The most common choice is

to forgo completeness. Dynamic analysis is complete because a run-time

error found during execution always indicates a real bug. Dynamic

analysis does not suffer from false positives. The limitation of dynamic

analysis is its unsoundness; it can miss run-time errors. It would be better

to design static analysis as a complementary technique.%, which performs

static analysis, should be sound at the cost of losing completeness. Now,

% satisfies the following conditions:

I For any given program � as an input, % outputs OK or NOT OK in a

finite time.

I If � never incurs run-time errors, both %(�) = OK and %(�) =
NOT OK are possible.

I If � can incur a run-time error, %(�) = NOT OK.

If % says OK, it still guarantees the absence of run-time errors; there is no

false negative. However, if % says NOT OK, we cannot get any information.

False positives are possible, so % can say NOT OK even when a given

program never causes a run-time error in fact.

After giving up completness, % should satisfy two more conditions in

order to be practically useful. First, the number of false positives must

19 Type Systems 227

be modest. If not, programmers cannot get useful information from

%. For example, we can design % to output NOT OK in any case. Such

% surely satisfies the above conditions because producing NOT OK is

allowed when a given program never incurs run-time errors. Of course,

programmers cannot get any help from such %. Therefore, the number

of false positives must be modest. Second, when % says NOT OK, it must

provide additional information to let programmers know why it says

so. The information can help programmers decide whether NOT OK is a

false positive or not.

Sadly, it is difficult to make % that satisfies the original three conditions

and the new two conditions. It is still possible but extremely challenging.

Therefore, people forgo the detection of all the run-time errors and try to

catch a subset of them. They classify run-time errors into two categories:

type errors and the others. Type errors are run-time errors due to use of

values of wrong types. The other run-time errors are irrelevant to types.

Now, the goal of % is to detect every type error. % satisfies the following

conditions:

I For any given program � as an input, % outputs OK or NOT OK in a

finite time.

I If � never incurs type errors, both %(�) = OK and %(�) = NOT OK
are possible.

I If � can incur a type error, %(�) = NOT OK.
I The number of false positives is modest.

I When %(�) = NOT OK, % provides additional information about its

decision.

Currently, there is no notion of a type. To distinguish type errors from

the others, we first need to define what a type is.

19.3 Type Errors

A type is a set of values. We use types to categorize values according to

their ability and structures. Values with the same ability and structure

belong to the same type, and values with different ability or structures

belong to different types. There are various values in each programming

language, and each value has its own ability and structure. For instance,

integers can be used for addition and subtraction, while functions can

be applied to values. Thus, it is natural to classify values according to

their characteristics. In TFAE, the easiest way to categorize values is

to split them into numbers and functions. For example, 1, 42, 0, and

−1 are numbers and belong to the type num. On the other hand, �x.x,
�x.x + x, and �x.x 1 are functions and belong to the type fun. Actually,
this classification is too coarse, and we will refine it later. For now, num
and fun are quite enough to introduce the notion of a type.

Now, we can explain what a type error is. When a value of an unexpected

type appears, a type error happens. More precisely, if a value of the

fun type appears where a value of the num type is required, or vice

versa, then a type error happens. Consider (�x.x) + 1. The first operand

belongs to fun, and the second operand belongs to num. Addition expects

both operands to be num. Since a value of fun appears where a value

of num is expected, evaluation of the expression incurs a type error. As

19 Type Systems 228

4: In fact, Java classifies types into primi-

tive types and reference types, and null

is a value of any reference type.

another example, consider 1 0. The first operand belongs to num. However,

function application expects the first operand to be fun. A type error

happens during the evaluation because a value of num appears where a

value of fun is expected.

Sometimes, it is unclear to determine whether a certain run-time error is

a type error or not. The definition of a type error can vary among people.

For example, recall the expression 2−x. The expression incurs a run-time

error because x is a free identifier. One may say this error is irrelevant

to types. From this perspective, such an error is just a free identifier

error, not a type error. However, another may say the error is relevant

to types because x, whose value is unknown, cannot belong to any type

and, therefore, is not a value of num although subtraction requires both

operands to be num. From this perspective, free identifiers are just a

subset of type errors. There is no single correct answer; both perspectives

make sense. This book follows the latter, i.e., that free identifiers are type

errors, because it fits the purpose of our discussion better.

Even if we classify free identifier errors as type errors, not all run-time

errors are type errors. Some run-time errors happen even when the types

of values are correct, so they cannot be classified as type errors.We cannot

find such examples in FAE. Type errors are all of possible run-time errors

in FAE. However, in many real-world languages, which provide various

features FAE excludes, we can find run-time errors irrelevant to types.

One of the most famous examples is NullPointerException of Java. In

Java, null is a value that belongs to any type.
4
Thus, null is a value of

the String type. Java strings provide various methods, including length,

which computes the length of the string. However, the following code

incurs NullPointerException, which is one sort of a run-time error in

Java, because computing the length of null is impossible:

String s = null;

s.length();

NullPointerException is not a type error since a value of String is

expected in front of .length(), and s, which denotes null, does belong

to String.

19.4 Type Checking

%, which detects type errors in a given program, is called a type checker. A
type error happenswhen a value of an unexpected type occurs. Therefore,

to find type errors, a type checker predicts the type of the result of an

expression and compares the predicted type with the expected type.

For example, consider 41 + 42. To evaluate 41 + 42 without type errors, the

following conditions must be satisfied:

I 41 does not incur a type error.

I 41 evaluates to a value of num or does not terminate.

I 42 does not incur a type error.

I 42 evaluates to a value of num or does not terminate.

When the conditions are true, not only the absence of type errors in 41+ 42

19 Type Systems 229

is guaranteed, but also we can predict the result of 41 + 42: it evaluates to
a value of num or does not terminate.

Now, let us say that “the type of 4 is �” when the following conditions

are true:

I 4 does not incur a type error.

I 4 evaluates to a value of � or does not terminate.

where the metavariable � ranges over types. Then, we can restate the

finding of the above paragraph: when the type of 41 is num and the type

of 42 is num, the type of 41 + 42 is num.

This example shows what a type checker does. A type checker computes

the type of an expression. When the type is successfully computed, it

ensures that the expression does not incur type errors. In this case, we

say that the expression is well-typed. Then, the type can be used to check

whether an expression containing the previously checked expression can

cause type errors. This process is repeated until the whole program is

checked. We call this process type checking.

A type checker requires different strategies to predict the types of dif-

ferent sorts of an expression. In the above example, addition requires

both subexpressions to have num as their types. However, it is clear that

function application requires different types. It requires the first subex-

pression to have fun as its type because only functions can be applied to

values. These examples show that a type checker needs a separate rule

for each sort of an expression to predict the type of the expression. We

call such rules typing rules.

There are multiple typing rules in a single language, and we call the

collection of all the typing rules in a language the type system of the

language. Static semantics is another name of a type system since type

systems explain the behaviors of expressions by predicting their types

without execution. To distinguish the semantics so far, which explains

the behaviors of expressions by defining their values from execution,

from static semantics, we use the term dynamic semantics.

The following table compares dynamic semantics and static semantics:

Dynamic semantics Static semantics

What it is for Evaluation Type checking

Which program implements it Interpreter Type checker

Result Value Type

Dynamic semantics defines how expressions are evaluated. By evaluation,

expressions result in values. An interpreter is a program that takes

an expression and computes its result. Static semantics defines how

expressions are type-checked. By type checking, the types of expressions

are computed. A type checker is a program that takes an expresion,

predicts its type, and checks whether run-time errors are possible. We

can consider static semantics as overapproximation of dynamic semantics.

For example, dynamic semantics lets us know that 1+2 results in 3, while

static semantics lets us know that 1 + 2 results in an integer without any

run-time errors or does not terminate.

Asmentionedbefore, the goal of a type checker,%, is soundness. Therefore,

the most important property of type systems is type soundness, or simply,

19 Type Systems 230

just soundness. If a type checker says OK for a given program, then

the program must never incur type errors. In this case, we say that

the program passes type checking or that the type checker accepts the

program. On the other hand, if a type checker says NOT OK for a given

program, we cannot conclude anything, but the program might incur a

type error. In this case, we say that the type checker rejects the program.

It is nontrivial to design a sound type system for a given language.

Proving the soundness of a type system ismore challenging. Proving type

soundness is beyond the scope of this book. This book introduces various

type systems whose type soundness has been proved by researchers

already.

Since designing a type system and implementing a type checker are

difficult tasks, those tasks are the jobs of language designers, not language

users in most cases. Some languages come out with type systems. We

call such languages typed languages or statically typed languages. The terms

imply that the languages have the notion of a type whose correct use

is verified statically. In such languages, only programs that pass type

checking can be executed. Programs rejected by the type checker are

disallowed to be exectued because their safety is not ensured. Therefore,

any execution is guaranteed to be type error free. Java, Scala, and Rust

are well-known statically typed languages in real world.

On the other hand, some languages do not provide type systems. We call

such languages untyped languages or dynamically typed languages. The term
untyped languages implies that they do not have type checking. The term

dynamically typed languages implies that they have the notion of a type

only at run time. Note that a type is a natural concept that exists anywhere

because values can be classified according to their characteristics in any

languages. However, in dynamically typed languages, types exist only

during execution since there are no static type checking. In such languages,

programs may incur type errors during execution. Python and JavaScript

are well-known dynamically typed languages in real world.

Statically typed languages and dynamically typed languages have their

own pros and cons. Statically typed languages have the following advan-

tages:

I Errors can be detected early. Programmers can find errors before

execution.

I Static type checking gives type information to compilers, and the

compilers can optimize programs with the information. For these

reasons, programs in statically typed languages usually outperform

programs in dynamically typed languages.

I Some statically typed languages require programmers to write

types explicitly on the source code. Such types on the code are

called type annotations. Type checkers verify the correctness of the

type annotations. Thus, type annotations are automatically verified

comments, which never become outdated, and help programmers

understand the programs easily.

On the other hand, statically typed languages have the following disad-

vantages:

I Statically typed languages attain type soundness by giving up

completeness. Type checkers may reject programs that never incur

19 Type Systems 231

type errors. Therefore, programmers may waste their time in

making type checkers agree that given programs do not result in

type errors.

I Type annotations make code unnecessarily verbose despite their

usefulness. In addition, programmers spend their time on writing

correct type annotations.

Due to these characteristics, statically typed languages are attractive

when one writes complex programs whose error detection is difficult. In

addition, programs that have to be highly trustworthy or require high

performance are typical use cases of statically typed languages. Programs

that need long-term maintenance also are good clients of statically typed

languages.

The characteristics of dynamically typed languages are the opposite of

statically typed languages. Due to the lack of static type checking, errors

are discovered during execution, and programs lose some chances of

optimization. However, inconvenience due to the incompleteness of type

systems disappears. Dynamically typed languages liberate programmers

from the burden of fighting against type checking and allow them to

save their time.

Therefore, dynamically-typed languages are ideal for the early stage of

development. Programmers can easilymake prototypes of their programs

and try various changes in the prototypes. They do not waste their time

arguing with type checkers. Also, programs that are very small and used

only a few times are where dynamically typed languages should be used.

In such applications, the advantages of statically typed languages are

worthless.

19.5 TFAE

This section defines TFAE, a statically typed version of FAE.

Syntax

The syntax of TFAE is as follows:

4 ::= = | 4 + 4 | 4 − 4 | G | �G:�.4 | 4 4

The only difference from FAE is the type annotation of a lambda ab-

straction. �G:�.4 is a function whose parameter is G, parameter type is �,
and body is 4. The parameter type annotation is required during type

checking, which will be explained soon.

Now, we need to define types. Classifying values into num and fun like so

far is too imprecise. We need more fine-grained types for functions for

a few reasons. First, functions require arguments to belong to specific

types. Consider �x.x + x. When the function is applied to a value, the

value must be a number to avoid a type error. If a function is given as an

argument, the evaluation of the body incurs a type error. Each function

has its own requirement. Therefore, the type of a function must describe

the type of an argument expected by the function. Second, different

19 Type Systems 232

functions return different values. Some functions return numbers, while

others return functions. To predict the type of a function application

expression, the type checker must be able to predict the type of the return

value. Thus, the type of a function must describe the type of the return

value as well.

Based on the above observations, we define types as follows:

� ::= num | �→ �

The type num is the type of every number. A type �1 → �2 is the type of a

function that takes a value of �1 as an argument and returns a value of �2.

For example,�x:num.x takes a value of num and returns the value. Its type

is num → num. �x:num.�y:num.x + y takes a value of num and returns

�y:num.x + y. �y:num.x + y also takes a value of num. Since both x and y

are numbers, x + y also is a number, whose type is num. Therefore, the

type of �y:num.x + y is num→ num, and the type of �x:num.�y:num.x+y
is num → (num → num). Because arrows in function types are right

associative, we can write num→ num→ num instead.

A type is either num or �1 → �2 for some �1 and �2. Every value belongs

to at most one type. No value is an integer and a function at the same

time. No function takes an integer as an argument and a function as

an argument at the same time. In this chapter, every value has at most

one type, and, therefore, every expression has at most one type as well.

However, in some type systems, a single value or a single expression can

have multiple types. Chapter 23 shows such an example.

Dynamic Semantics

The dynamic semantics of TFAE is similar to that of FAE. The only differ-

ence is type annotations in lambda abstractions. Since type annotations

are used only for type checking and do not have any role at run time,

they are simply ignored when closures are constructed.

Rule Fun

�G:�.4 evaluates to 〈�G.4 , �〉 under �.

� ` �G:�.4 ⇒ 〈�G.4 , �〉 [Fun]

Interpreter

An interpreter of TFAE is similar to that of FAE. Since lambda abstractions

have type annotations, the Fun case class needs a change.

sealed trait Expr

...

case class Fun(x: String, t: Type, b: Expr) extends Expr

Fun(G, �, 4) represents �G:�.4.

In addition, we define types as an ADT.

19 Type Systems 233

sealed trait Type

case object NumT extends Type

case class ArrowT(p: Type, r: Type) extends Type

NumT represents num, and ArrowT(�1, �2) represents �1 → �2.

The interp function needs only one fix in the Fun case.

case Fun(x, _, b) => CloV(x, b, env)

Type annotations are ignored.

Static Semantics

Now, we define the static semantics of TFAE. One naïve approach is

to define the static semantics as a relation over expressions and types

because static semantics defines the type of each expression. However,

this approach does not work. Recall that the dynamic semantics is a

relation over environments, expressions, and values. An environment

stores the values of variables. Since variables exist both before and at run

time, the static semantics needs information about variables. While the

dynamic semantics requires the values of variables, the static semantics

requires the types of variables. To fulfill this requirement, we introduce a

type environment, which is a finite partial function from identifiers to

types. Let) be the set of every type and TEnv be the set of every type

environment.

TEnv = Id
fin↦→ T

Γ ∈ TEnv

The metavariable Γ ranges over type environments.

The static semantics defines a relation over type environments, expres-

sions, and types.

:⊆ TEnv × � ×)

Γ ` 4 : �denotes that the typeof an expression 4 under a type environment

Γ is �. If ∅ ` 4 : � is true for some �, then 4 is well-typed, and the type

system accepts the expression. If ∅ ` 4 : � is false for every �, then 4 is
ill-typed, i.e. not well-typed, and the type system rejects the expression.

Let us define the typing rule for each sort of an expression.

Rule Typ-Num

The type of = is num under Γ.

Γ ` = : num [Typ-Num]

The type of a number is num.

Rule Typ-Add

19 Type Systems 234

5: Since ↦→ looks similar to arrows in

types, we use : instead of ↦→ to prevent

confusion.

If the type of 41 is num under Γ and the type of 42 is num under Γ,

then the type of 41 + 42 is num under Γ.

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 + 42 : num
[Typ-Add]

If the types of 41 and 42 are both num, then the type of 41 + 42 is num.

Rule Typ-Sub

If the type of 41 is num under Γ and the type of 42 is num under Γ,

then the type of 41 − 42 is num under Γ.

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 − 42 : num
[Typ-Sub]

The rule for subtraction is similar to that for addition.

Rule Typ-Id

If G is in the domain of Γ,

then the type of G is Γ(G) under Γ.

G ∈ Domain(Γ)
Γ ` G : Γ(G)

[Typ-Id]

The dynamic semantics finds the value of a variable from an environment.

Similarly, the static semantics finds the type of a variable from a type

environment. This rule allows the type system to detect free identifier

errors.

Rule Typ-Fun

If the type of 4 is �2 under Γ[G : �1],5
then the type of �G:�1.4 is �1 → �2 under Γ.

Γ[G : �1] ` 4 : �2

Γ ` �G:�1.4 : �1 → �2

[Typ-Fun]

The rule for a lambda abstraction needs to compute the type of a closure

created by the lambda abstraction. The type of an argument is given as �1

by the type annotation. The rule should determine the type of the return

value of the function as well. The return type equals the type of 4, the

function body. The value of an argument is unknown, but the type is

known as �1. It shows why a lambda abstraction needs a parameter type

annotation. It gives information to compute the type of the body. Since

a closure captures the environment when it is created, evaluation of its

body can use variables in the environment. Thus, computation of the

type of 4 needs every information in Γ and that the type of G is �1. The

computation uses Γ[G : �1]. If the type of 4 is �2, the return type of the

function also is �2. Finally, the type of the lambda abstraction becomes

�1 → �2.

19 Type Systems 235

Rule Typ-App

If the type of 41 is �1 → �2 under Γ and the type of 42 is �1 under Γ,

then the type of 41 42 is �2 under Γ.

Γ ` 41 : �1 → �2 Γ ` 42 : �1

Γ ` 41 42 : �2

[Typ-App]

A function application expression 41 42 is well-typed only if 41 is a

function. Let the type of 41 be �1 → �2. The type of the argument, 42
must be �1. The type of the return value is �2, so the type of 41 42 is �2.

The following proof tree proves that the type of (�x:num.�y:num.x+y) 1 2

is num:

x ∈ Domain(Γ2)
Γ2 ` x : num

y ∈ Domain(Γ2)
Γ2 ` y : num

Γ2 ` x + y : num

Γ1 ` �y:num.x + y : num→ num

∅ ` 4 : num→ num→ num
∅ ` 1 : num

∅ ` 4 1 : num→ num
∅ ` 2 : num

∅ ` 4 1 2 : num

where

4 = �x:num.�y:num.x + y
Γ1 = [x : num]
Γ2 = [x : num, y : num]
Wecall a proof tree that proves the type of an expression a type derivation.

This type system is sound; it rejects every expression producing a type

error. For example, consider (�x:num → num.x 1) 1. Evaluation of the

expression results in evaluation of 1 1, which causes a type error. Since

the type of x 1 is num, the type of the function is (num→ num) → num.

The function takes an argument of type num → num. However, 1, the

argument, has the type num, which differs from num→ num. Therefore,

the type checker rejects the expression, which is a correct decision.

Any sound type system is incomplete. Therefore, this type system is

incomplete. The type system can reject a type-error-free expression.

Various such expressions exist. Consider (�x:num.x) (�x:num.x). The
expression evaluates to 〈�x.x, ∅〉 without any type error. However, the

type system rejects the expression. �x:num.x takes an argument of the

type num. However, �x:num.x, the argument, has the type num→ num,

which differs from num. As a result, the type system rejects the expression

even though it evaluates to a value without any type error.

Type Checker

To implement a type checker of TFAE, we first define the TEnv type, which

is the type of a type environment.

19 Type Systems 236

type TEnv = Map[String, Type]

TEnv is a map from strings to TFAE types.

The following mustSame function compares given two types:

def mustSame(t1: Type, t2: Type): Unit =

if (t1 != t2)

throw new Exception

If the types are different, it throws an exception.

The following typeCheck function type-checks a given expression under

a given type environment.

def typeCheck(e: Expr, env: TEnv): Type = e match {

case Num(n) => NumT

case Add(l, r) =>

mustSame(typeCheck(l, env), NumT)

mustSame(typeCheck(r, env), NumT)

NumT

case Sub(l, r) =>

mustSame(typeCheck(l, env), NumT)

mustSame(typeCheck(r, env), NumT)

NumT

case Id(x) => env(x)

case Fun(x, t, b) =>

ArrowT(t, typeCheck(b, env + (x -> t)))

case App(f, a) =>

val ArrowT(t1, t2) = typeCheck(f, env)

mustSame(t1, typeCheck(a, env))

t2

}

If type checking succeeds, the function returns the type of the expression.

Otherwise, it throws an exception. Therefore, if the function throws

an exception for a given expression, the expression is ill-typed. If the

function terminates without throwing an exception, the expression is

well-typed.

Each case of the pattern matching coincides with the corresponding

typing rule. In the Num case, the type is NumT. In the Add and Sub cases, the

subexpressions of the expression must have the type NumT. The type of

the expression also is NumT. The Fun case checks the type of the function

body under the extended type environment. The type of the function is

a function type. The parameter type is the same as the type annotation,

and the return type is the type of the body. The App case checks the types

of the function and the argument positions. The parameter type of the

function position must equal the type of the argument position. The type

of the application expression is the return type of the function position.

19 Type Systems 237

19.6 Extending Type Systems

Type system designers extend type systems to enhance their usability.

Type systems can be extended in various ways. Adding new sorts of an

expression or a type is a typical way. On the other hand, it is possible to

refine typing rules without changing the syntax of a language. Chapter

23 illustrates an example of refining typing rules by adding subtyping.

There are multiple reasons to extend type systems. First, people extend

type systems tomake them less incomplete. Incompleteness is an inherent

limitation of type systems. Type systems reject some expressions that do

not incur type errors. False positives cannot be eliminated completely.

However, we can extend type systems to reduce the number of false

positives. By doing so, programmers can suffer less from the misfortune

that type-error-free programs are rejected. Reducing false positives is the

most common reason of extending type systems. The subsequent four

chapters show famous and practically useful type system extensions of

this kind.

Second, type systems are extended just for the convenience of program-

mers. Extensions of this kind do not reduce the number of false positives.

However, by adding useful language constructs, programmers become

easily able to express their high-level ideas in source code. It is the same

as extensions of dynamically typed languages described by previous

chapters. For example, it is possible to define recursive functions in FAE.
However, defining recursive functions in FAE is difficult and complex. To

resolve the problem, we define RFAE by extending FAE with primitive

support for recursive functions. Recursive functions can be defined much

easily in RFAE than FAE. Statically typed languages can be improved in

similar ways.

Third,more run-time errors can be considered as type errors by extending

type systems. In most real-world languages, some run-time errors are

not type errors. For example, recall NullPointerException of Java.

Since Java does not classify NullPointerException as a type error, the

Java type checker does not detect NullPointerException, and every

Java program suffers from the possibility of NullPointerException.

NullPointerException is one of the most commonly occuring run-time

errors in Java. Kotlin introduces the notion of an explicit null type by

extending the type system of Java. In Kotlin, null is not a value of

String, and NullPointerException is considered as a type error. If a

Kotlin programpasses type checking, it is free of NullPointerException.

Extending type systems to detect more run-time errors is valuable but

can increase false positives. Thus, type system designers always consider

the tradeoff between enlarging the set of type errors and reducing false

positives.

Now, let us consider two simple extensions of TFAE: local variable
definitions and pairs.

Local Variable Definitions

Local variable definitions (val expressions) are the first kind of extension.

Even without local variable definitions, programmers can write the

19 Type Systems 238

6: Strictly speaking, the correct desugar-

ing is (�x.�y.�f.f x y) 41 42 in eager lan-

guages like FAE, but we use the simpler

one here.

equivalent code with functions. However, local variable definitions help

them write code concisely.

The syntax and dynamic semantics of local variable definitions follow

VAE. The static semantics is as follows:

Rule Typ-Val

If the type of 41 is �1 under Γ and the type of 42 is �2 under Γ[G : �1],
then the type of val G=41 in 42 is �2 under Γ.

Γ ` 41 : �1 Γ[G : �1] ` 42 : �2

Γ ` val G=41 in 42 : �2

[Typ-Val]

Note that local variable definitions do not require type annotations, while

lambda abstractions do. Therefore, local variable definitions are more

convenient than lambda abstractions for binding.

Pairs

Pairs are the second kind of extension. In FAE, we can desugar pairs to

functions:

I (41 , 42), which creates a new pair, is desugared to �f.f 41 42.6

I 4.1, which acquires the first element of a pair, is desugared to

4 �x.�y.x.
I 4.2, which acquires the second element of a pair, is desugared to

4 �x.�y.y.

However, such expressions are ill-typed in TFAE. When the type of 41
is num and the type of 42 is num → num, �f.f 41 42 is a function that

returns num in some cases and num→ num in some other cases. There is

no way to represent the type of such a function. Thus, programs using

pairs cannot be written in TFAE.

To overcome the limitation, we extend TFAE to support pairs. We add

pair types as follows:

� ::= · · · | � × �

A type �1 × �2 is the type of (E1 , E2) if the type of E1 is �1 and the type of

E2 is �2. The following rules define the static semantics:

Rule Typ-Pair

If the type of 41 is �1 under Γ and the type of 42 is �2 under Γ,

then the type of (41 , 42) is �1 × �2 under Γ.

Γ ` 41 : �1 Γ ` 42 : �2

Γ ` (41 , 42) : �1 × �2

[Typ-Pair]

Rule Typ-Fst

If the type of 4 is �1 × �2 under Γ,

then the type of 4.1 is �1 under Γ.

19 Type Systems 239

Γ ` 4 : �1 × �2

Γ ` 4.1 : �1

[Typ-Fst]

Rule Typ-Snd

If the type of 4 is �1 × �2 under Γ,

then the type of 4.2 is �2 under Γ.

Γ ` 4 : �1 × �2

Γ ` 4.2 : �2

[Typ-Snd]

19.7 Exercises

Exercise 19.1 If we change the typing rule for addition as follows, the

type system is not sound any longer:

Γ ` 41 : num

Γ ` 41 + 42 : num

Write a TFAE expression that passes type checking but incurs a run-time

error.

Exercise 19.2 This exercise extends TFAE with lists.

4 ::= · · · | nil[�] | cons 4 4 | head 4 | tail 4
� ::= · · · | list �

Write the typing rules of the added expressions.

Exercise 19.3 This exercise extends TFAE with boxes.

4 ::= · · · | box 4 | !4 | 4:=4 | 4; 4
� ::= · · · | box �

The dynamic semantics of boxes is the same as BFAE.

1. Write the typing rules of the added expressions. Assignments

should not change the types of the values at given locations.

2. Draw the type derivation of the following expression:

val x=box 3 in
val y=!x + 7 in
x:=8;

y+!x

Exercise 19.4 This exercise extends TFAE with mutable variables.

4 ::= · · · | G:=4

The dynamic semantic of mutable variables is the same as MFAE.

1. Write the typing rule of the added expression.

19 Type Systems 240

Now, we extend the language again with pointers.

4 ::= · · · | ∗ 4 | &G | ∗ 4:=4
� ::= · · · | �∗

The dynamic semantic of pointers is the same as Exercise 12.4. A type �∗
denotes the address type of a type �. For example, for a given address 0,

if the value at 0 is a number, then the type of 0 is num∗.

2. Write the typing rules of the added expressions.

1: Actually, the Tait’s proof is about the

lazy version of TFAE, but the same tech-

nique can be applied to TFAE, which is

eager, as Pierce discussed [Pie02].

Typing Recursive Functions 20

20.1 Syntax 241

20.2Dynamic Semantics 242

20.3 Interpreter 242

20.4Static Semantics 242

20.5Type Checker 244

20.6Exercises 245

In FAE, recursive functions can be considered as syntactic sugar. For

example, a function that computes the sum from one to a given integer

can be implemented as the following:

/ (�f.�v.if0 v 0 (v + f (v − 1)))

where

/ = �f.(�x.f (�v.x x v)) (�x.f (�v.x x v))

Thus, RFAE has the exactly same expressive power as FAE.

However, we cannot implement recursive functions in TFAE. Why cannot

we use the same approach as FAE? See the body of /. We can find x x.

Unfortunately, such an expression is ill-typed in TFAE. Let us try to find

the type of x. It is sure that the type cannot be num because x is applied

to a value. Therefore, the type must be �1 → �2 for some �1 and �2. Since

a function of �1 → �2 is applied to x, the type of xmust be �1. It implies

that the type of x is �1 → �2 and �1 at the same time. Since a value has

at most one type in TFAE, �1 → �2 must be the same as �1. However, it

is impossible. In TFAE, such a type does not exist. A type cannot be the

same as a part of itself. Since the fixed point combinator is ill-typed, we

cannot desugar recursive functions to nonrecursive functions in TFAE.

More interestingly, not only recursive functions, but also any nonter-

minating programs cannot be written in TFAE. In other words, every

well-typed TFAE expression evaluates to a value in a finite time. This is

called the normalization property of TFAE. The normalization property of

TFAE was proved by Tait in 1967 [Tai67].
1

This chapter defines TRFAE, which extends TFAEwith recursive functions.

By adding recursive functions to the language, programmers become

able to implement recursive functions and nonterminating programs,

which are impossible in TFAE. Thus, while the extension from FAE to

RFAE does not increase the expressivity, the extension from TFAE to

TRFAE does.

20.1 Syntax

The following is the syntax of TRFAE:

4 ::= · · · | if0 4 4 4 | def G(G:�):�=4 in 4

def G1(G2:�1):�2=41 in 42 defines a recursive function. It is similar to a

recursive function in RFAE but additionally has type annotations �1 and

�2. �1 denotes the parameter type of the function, and �2 denotes the

return type of the function. They are used for type checking, just like

type annotations in TFAE.

20 Typing Recursive Functions 242

20.2 Dynamic Semantics

The dynamic semantics of TRFAE is similar to that of RFAE, but type
annotations are ignored during closure construction.

Rule Rec

If 42 evaluates to E under �′, where �′ = �[G1 ↦→ 〈�G2.41 , �′〉],
then def G1(G2:�1):�2=41 in 42 evaluates to E under �.

�′ = �[G1 ↦→ 〈�G2.41 , �
′〉] �′ ` 42 ⇒ E

� ` def G1(G2:�1):�2=41 in 42 ⇒ E
[Rec]

20.3 Interpreter

The following Scala code implements the syntax:

sealed trait Expr

...

case class If0(c: Expr, t: Expr, f: Expr) extends Expr

case class Rec(

f: String, x: String, p: Type, r: Type, b: Expr, e: Expr

) extends Expr

If0(41, 42, 43) represents if0 41 42 43, and Rec(G1, G2, �1, �2, 41,

42) represents def G1(G2:�1):�2=41 in 42.

The interp function is similar to that of RFAE, but type annotations are
ignored during closure construction.

def interp(e: Expr, env: Env): Value = e match {

...

case Rec(f, x, _, _, b, e) =>

val cloV = CloV(x, b, env)

val nenv = env + (f -> cloV)

cloV.e = nenv

interp(e, nenv)

}

20.4 Static Semantics

We need to define typing rules for conditional expressions and recursive

functions. Let us consider conditional expressions first.

Rule Typ-If0

If

the type of 41 is num under Γ,

the type of 42 is � under Γ, and

the type of 43 is � under Γ,

then

the type of if0 41 42 43 is � under Γ

20 Typing Recursive Functions 243

Γ ` 41 : num Γ ` 42 : � Γ ` 43 : �

Γ ` if0 41 42 43 : �
[Typ-If0]

The condition of a conditional expression must be a value of num. The

rule cannot determine which branch will be evaluated at run time. Since

every expression has at most one type, 42 and 43 must have the same

type, �. The type of the whole expression also is �.

Actually, the condition can have any type. If the result of the condition

is 0, then the true branch is evaluated. If the result is a nonzero integer

or a closure, then the false branch is evaluated. A value of any type can

be safely used as the condition. Therefore, the type system may use the

following rule instead of Rule Typ-If0:

Rule Typ-If0’

If

the type of 41 is �′ under Γ,
the type of 42 is � under Γ, and

the type of 43 is � under Γ,

then

the type of if0 41 42 43 is � under Γ

Γ ` 41 : �′ Γ ` 42 : � Γ ` 43 : �

Γ ` if0 41 42 43 : �
[Typ-If0’]

Both rules make the type system sound, but they are different from each

other. Rule Typ-If0 rejects more expressions than Rule Typ-If0’ because

the former allows only integers to be conditions, while the latter allows

functions as well. Therefore, from the perspective of reducing false

positives, Rule Typ-If0’ is better than Rule Typ-If0. However, if the type of

the condition is a function type, it is highly likely to be a mistake of the

programmer. When the condition evaluates to a function, the conditional

expression always evaluates its false branch. The use of a conditional

expression is totally meaningless. Thus, from the perspective of detecting

programmers’ mistakes, Rule Typ-If0 is better than Rule Typ-If0’.

Now, we define the typing rule of a recursive function.

Rule Typ-Rec

If

the type of 41 is �2 under Γ[G1 : �1 → �2 , G2 : �1] and
the type of 42 is � under Γ[G1 : �1 → �2],

then

the type of def G1(G2:�1):�2=41 in 42 is � under Γ.

Γ[G1 : �1 → �2 , G2 : �1] ` 41 : �2 Γ[G1 : �1 → �2] ` 42 : �

Γ ` def G1(G2:�1):�2=41 in 42 : �
[Typ-Rec]

The principle of the rule is the same as the typing rule of a lambda

abstraction: given type annotations are used during the type checking of

the function body. Since the function itself can be used in the body, the

type checking of the body requires the type of the function. This is the

20 Typing Recursive Functions 244

reason that the expression needs the return type annotation in addition

to the parameter type annotation. To type-check the body, the return type

must be known. For the type checking of the body, the type environment

is extended with the type of the function, �1 → �2, and the type of the

parameter, �1. Since the type of the body is the return type, it must be �2.

After the type checking of the body, 42 is type-checked. For 42, only the

type of the function is required; the parameter can be used only in the

body.

The followingproof treesprove that the typeofdeff(x:num):num=if0x 0 (x+
f (x − 1)) in f 3 is num:

x ∈ Domain(Γ1)
Γ1 ` x : num

f ∈ Domain(Γ1)
Γ1 ` f : num→ num

x ∈ Domain(Γ1)
Γ1 ` x : num

Γ1 ` 1 : num

Γ1 ` x − 1 : num

Γ1 ` f (x − 1) : num

Γ1 ` x + (f (x − 1)) : num

x ∈ Domain(Γ1)
Γ1 ` x : num

Γ1 ` 0 : num Γ1 ` x + (f (x − 1)) : num

Γ1 ` if0 x 0 (x + f (x − 1)) : num

Γ1 ` if0 x 0 (x + f (x − 1)) : num

f ∈ Domain(Γ2)
Γ2 ` f : num→ num

Γ2 ` 3 : num

Γ2 ` f 3 : num

∅ ` def f(x:num):num=if0 x 0 (x + f (x − 1)) in f 3 : num

where Γ1 = [f : num→ num, x : num] and Γ2 = [f : num→ num].

20.5 Type Checker

To implement a type checker, we need to add the If0 and Rec cases to

the typeCheck function for TFAE.

case If0(c, t, f) =>

mustSame(typeCheck(c, env), NumT)

val tt = typeCheck(t, env)

val tf = typeCheck(f, env)

mustSame(tt, tf)

tt

The condition of an expression must belong to num. The type of c

is computed with typeCheck and compared to NumT with mustSame.

The types of the branches must be the same. The typeCheck function

computes the types of t and f, and the mustSame function compares them.

If they are the same, then the type is the type of the whole expression.

case Rec(f, x, p, r, b, e) =>

val t = ArrowT(p, r)

val nenv = env + (f -> t)

mustSame(typeCheck(b, nenv + (x -> p)), r)

typeCheck(e, nenv)

20 Typing Recursive Functions 245

The parameter type is p, and the return type is r. Thus, the type of f is

the function type from p to r. The type of x is p. To type-check b, the type

environment must have the types of f and x. The type of bmust equal

r. The mustSame function compares the types. The function can be used

not only in b, which is the body of the function, but also in e. On the

other hand, the parameter x cannot be used in e. Therefore, it is enough

to add only the type of f to the type environment used to type-check e.

The type of the whole expression is equal to the type of e.

20.6 Exercises

Exercise 20.1 Write a TRFAE expression 4 such that only one of 4 and

�x:num.(4 x) terminates, while both 4 and �x:num.(4 x) are well-typed.

Exercise 20.2 Consider the following language:

4 ::= = 2 ::= skip 1 ::= true
| 1 | G:=4 | false
| G | if 4 2 2 E ::= =

| 4 + 4 | while 4 2 | 1

| 4 < 4 | 2; 2 � ::= num
| bool

The metavariable 2 ranges over commands.

Under a given environment �, evaluation of an expression yields a value

and does not change �. The following is the operational semantics of the

expressions:

� ` = ⇒ = � ` 1 ⇒ 1
G ∈ Domain(�)
� ` G ⇒ �(G)

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 < 42 ⇒ =1 < =2

1. Write the typing rules of the form Γ ` 4 : � .

Evaluation of a command produces a new environment. The following is

the operational semantics of the commands:

� ` skip⇒ �
� ` 4 ⇒ E

� ` G:=4 ⇒ �[G ↦→ E]

� ` 4 ⇒ true � ` 21 ⇒ �1

� ` if 4 21 22 ⇒ �1

� ` 4 ⇒ false � ` 22 ⇒ �1

� ` if 4 21 22 ⇒ �1

� ` 4 ⇒ true � ` 2 ⇒ �1 �1 ` while 4 2 ⇒ �2

� ` while 4 2 ⇒ �2

� ` 4 ⇒ false

� ` while 4 2 ⇒ �

� ` 21 ⇒ �1 �1 ` 22 ⇒ �2

� ` 21; 22 ⇒ �2

2. Write the typing rules of the form Γ ` 2 : Γ . The following com-

20 Typing Recursive Functions 246

mand must be well-typed: x := 1; x := 2. However, the follow-

ing command must be ill-typed: x := 1; x := true.

1: Here, TFAEmeans the extended version

defined in Section 19.6.

Algebraic Data Types 21

21.1 Syntax 249

21.2Dynamic Semantics 250

21.3 Interpreter 252

21.4 Static Semantics 254

Well-Formed Types 254

Typing Rules 255

21.5 Type Checker 257

21.6 Type Soundness of TVFAE . 260

21.7 Exercises 261

Algebraic Data Types (ADTs) are ubiquitous in functional programming.

Chapter 5 explains the concept of an ADT and how programmers can

use ADTs in Scala. ADTs are useful when a single type includes values

of different structures. Such types are common in computer science. For

example, lists and options, which almost every programming language

provides, are typically implemented as ADTs. In addition, ASTs, which

all the compilers, interpreters, and static analyzers need, can be easily

implemented as ADTs as well.

Nonrecursive ADTs can be considered as syntactic sugar in TFAE.1 Let us

see how they can be desugared with an example. Consider the following

Scala code:

sealed trait Fruit

case class Apple(radius: Int) extends Fruit

case class Banana(radius: Int, height: Int) extends Fruit

A fruit is either an apple or a banana. In this example, we are interested

in the sizes of fruits. An apple is approximated as a sphere and, therefore,

parametrized by its radius. A banana is approximated as a cylinder and,

therefore, parametrized by its radius and height.

We can easily create values that represent apples and bananas like

below.

val apple = Apple(5)

val banana = Banana(2, 6)

In the above code, apple represents an apple whose radius is 5, and

banana represents a banana whose radius is 2 and height is 6.

In TFAE, we can represent a fruit as a value of num×(num×(num× num)).
Thus, a fruit value is a pair. The first value of the pair indicates which

fruit it is. If the value is 0, it is an apple. Otherwise, it is a banana. The

second value of the pair is another pair, which represents the size of the

fruit. If the fruit is an apple, only the first value of the second pair is

meaningful. The value denotes the radius of the apple. Therefore, the

following value represents an apple whose radius is 5:

(0, (5, (0, 0)))

Note that (0, 0) can be replaced with any pair of integers. On the other

hand, if the fruit is a banana, only the second value, which is a pair again,

of the pair is meaningful. The pair consists of the radius and height of

the banana. The following value represents a banana whose radius is 2

and height is 6:

(1, (0, (2, 6)))

21 Algebraic Data Types 248

Note that 1 can be replaced with any nonzero integer, and 0 can be

replaced with any integer.

It is tedious and error-prone to make fruit values like the above, while

Scala provides a simple way to construct fruit values. In TFAE, we can

define functions to mimic constructors in Scala.

val Apple=�x:num.(0, (x, (0, 0))) in
val Banana=�x:(num × num).(1, (0, x)) in
· · ·
Apple is a function that takes an integer as an argument and returns an

apple whose radius is the given integer. Similarly, Banana is a function

that takes a pair of integers as an argument and returns a banana whose

size is represented by the given pair. We can now easily create fruit values

with Apple and Banana.

val apple=Apple 5 in
val banana=Banana (6, 2) in
· · ·
In Scala, a typical way to use a value of an ADT is pattern matching. For

instance, consider a function that computes the radius of a given fruit.

The function can be implemented like below.

def radius(f: Fruit): Int = f match {

case Apple(r) => r

case Banana(r, _) => r

}

TFAE does not have pattern matching, but we can exploit the fact that the

first value of a given pair indicates which fruit it is. We use a conditional

expression to perform a certain operation when the fruit is an apple, i.e.

the first value is 0, and another opertaion when the fruit is a banana, i.e.

the first value is nonzero. The following expression defines the radius

function:

val radius=�x:(num × (num × (num × num))).if0 x.1 x.2.1 x.2.2.1 in · · ·

This example shows that we can desugar ADTs and pattern matching to

pairs, functions, and conditional expressions in TFAE. The ADT of the

example has only two variants, which have one or two parameters. ADTs

can have any number of variants, and vairants can have any number of

parameters. The same strategy can be used to desugar ADTs with more

variants and variants with more parameters.

Although nonrecursive ADTs can be desugared in TFAE, there are a

few flaws. First, desugared programs have unnecessary values. Even

when we make an apple, we need (0, 0), which is a pair for the size of a

banana. Similarly, a banana value requires the size of an apple. They add

unessential complexity and computation to the code. Second, a single

type may represent conceptually different types when a single program

uses multiple ADTs. In practice, it is common to use multiple ADTs in a

single program. Recall that the type of a fruit is num×(num×(num×num)).
The same type may represent other types as well. For example, the type

of an electronic product can also be num × (num × (num × num)). In this

case, the type system allows a function intended to take a fruit to take an

electronic product as an argument. It does not incur any type errors at

21 Algebraic Data Types 249

2: For the rest of the chapter, local vari-

able definitions and types are not parts of

TFAE. However, we may keep using them

in examples.

run time but can cause undesirable behaviors.

These flaws can be resolved by adding primitive support for ADTs to

the language. After adding ADTs, programs do not require unnecessary

values to construct values of ADTs. In addition, each ADT can be defined

as a separate type, so conceptually different types can be correctly

distinguished even when they share the same structure.

The most critical limitation of the current desugaring strategy is the

missing support for recursive ADTs. Consider the following Scala code:

sealed trait List

case object Nil extends List

case class Cons(h: Int, t: List) extends List

which implements an integer list type. A list is one of the most famous

recursive types. Look at the definition of Cons. Cons is one variant of

List, so it defines List. At the same time, the definition uses List as the

type of the second parameter. Thus, List is a recursively defined type,

whose definition depends on itself.

Can we desugar the definition of a list in TFAE? For desugaring, the first
thing to do is to determine the type of a list. Let the type of a list be

�. Then, � equals (num, �′) for some �′. The first element is an integer

that indicates which variant the value denotes. When the integer is 0,

the value is Nil; otherwise, the value is Cons. When the value is Nil, no

other data is required since Nil does not have any parameters. Thus, the

second element of a type �′ is for Cons. Since Cons has two parameters,

an integer and a list, �′ equals (num, �). Then, we obtain the equation

� = (num, (num, �)). However, as discussed in the previous chapter, no

type in TFAE can be the same as a part of itself. Therefore, there is no

such �. We can conclude that we cannot desugar lists in TFAE. In general,

recursive ADTs cannot be expressed in TFAE.

This chapter defines TVFAE by extending TFAE 2
with ADTs, each of

which can be either nonrecursive or recursive. It allows programmers to

represent ADTs efficiently and concisely. In addition, many interesting

recursive data types become able to be used in programs.

21.1 Syntax

First, we introduce type identifiers, which are the names of types defined

by programmers. For example, Fruit of the previous example is a type

identifier. Let TId be the set of every type identifier.

C ∈ TId

The metavariable C ranges over type identifiers. Since TId includes only
the names of user-defined types, num is not a member of TId.

The names of user-defined types can be used as types. For example, Fruit,

which is a type name, is used as a type in def radius(f: Fruit): Int

= Therefore, we extend the syntax of types as follows:

21 Algebraic Data Types 250

� ::= · · · | C

where C is a type that includes every value of an ADT whose name is C.

Now, we define the syntax of expressions:

4 ::= · · · | type C = G@� + G@� in 4 | 4 match G(G) → 4 , G(G) → 4

I type C = G1@�1+ G2@�2 in 4 is an expression that defines a new type.

The name of the type is C, and the type has two variants. The name

of the first variant is G1, and it has a single parameter whose type

is �1. Similarly, the name of the second variant is G2, and it has a

single parameter whose type is �2. The names of the variants serve

as constructors in 4. The type name C can be used in 4 as a type. In

addition, since types can be recursively defined, C can appear also

in �1 and �2.

I 4 match G1(G3) → 41 , G2(G4) → 42 is a pattern matching expression.

4 is the target of the pattern matching. G1 is the name of the variant

handled by the first case, and G2 is the name of the variant handled

by the second case. In the first case, G3 denotes the value held by

the match target, and 41 determines the result. Similarly, in the

second case, G4 denotes the value held by the match target, and 42
determines the result.

Note that each type can have only two variants, and each variant can have

only one parameter. This restriction can be easily removed. For brevity,

this chapter keeps the restriction.

Let us see some example expressions. The following expression defines

the Fruit type and the radius function:

type Fruit = Apple@num + Banana@(num × num) in
val radius=�x:Fruit.x match Apple(y) → y, Banana(y) → y.1 in
· · ·

The following expression defines the List type:

type List = Nil@num + Cons@(num × List) in · · ·

Note that Nil has one parameter since every variant of TVFAE must have

a parameter. Nil can have any value because the value is not used at all

anyway.

Recursive data types are typically used with recursive functions. If we

add recursive functions of TRFAE to the language, we can implement the

following sum function, which calculates the sum of every integer in a

given list:

defsum(x:List):num=xmatchNil(y) → 0, Cons(y) → y.1+(sumy.2) in · · ·

21.2 Dynamic Semantics

We should introduce two new sorts of a value: a variant value and a

constructor.

21 Algebraic Data Types 251

E ::= · · · | G(E) | 〈G〉

I G(E) is a value of a variant named G. It contains one value E. A

variant value can be the target of pattern matching.

I 〈G〉 is a constructor of a variant named G. A constructor can be

considered as a special kind of a function because it can be applied

to a value. When a constructor is applied to a value, a variant value

is constructed.

For example,Apple(5) is an applevaluewhose radius is 5, andBanana((2, 6))
is a banana value whose radius is 2 and height is 6. Both 〈Apple〉
and 〈Banana〉 are constructors. When 〈Apple〉 is applied to 5, the re-

sult is Apple(5), and when 〈Banana〉 is applied to (2, 6), the result is

Banana((2, 6)).

Now, let us define the dynamic semantics of the added expressions. First,

consider an expression that defines a new type.

Rule TypeDef

If 4 evaluates to E under �[G1 ↦→ 〈G1〉, G2 ↦→ 〈G2〉],
then type C = G1@�1 + G2@�2 in 4 evaluates to E under �.

�[G1 ↦→ 〈G1〉, G2 ↦→ 〈G2〉] ` 4 ⇒ E

� ` type C = G1@�1 + G2@�2 in 4 ⇒ E
[TypeDef]

The result of type C = G1@�1 + G2@�2 in 4 equals the result of 4. The

constructors of the variants have to be available during the evaluation

of 4. For example, if the expression defines Fruit, then 4 should be

able to construct values with the constructors, 〈Apple〉 and 〈Banana〉.
Programmers can use the names of the variants to denote the constructors.

They can write code like Apple 5 and Banana (2, 6). It shows that the

identifier Apple must denote the value 〈Apple〉 and that the identifier

Bananamust denote the value 〈Banana〉. For this reason, the environment

used for the evaluation of 4 contains a mapping from G1 to 〈G1〉 and a

mapping from G2 to 〈G2〉.

The other new expression is a pattern matching expression. Like the

dynamic semantics of a conditional expression, we define two rules: one

for when the target is handled by the first case and the other for when

the target is handled by the second case.

Rule Match-L

If 4 evaluates to G1(E′) under � and 41 evaluates to E under �[G3 ↦→ E′],
then 4 match G1(G3) → 41 , G2(G4) → 42 evaluates to E under �.

� ` 4 ⇒ G1(E′) �[G3 ↦→ E′] ` 41 ⇒ E

� ` 4 match G1(G3) → 41 , G2(G4) → 42 ⇒ E
[Match-L]

For pattern matching, the target has to be evaluated first. Therefore, 4

is the first expression to be evaluated. If the result of 4 is G1(E′), then it

matches the first case. Thus, 41 is the next expression to be evaluated.

During the evaluation of 41, G3 denotes E
′
. Therefore, the environment

has a mapping from G3 to E
′
. The result of 41 is the result of the whole

21 Algebraic Data Types 252

pattern matching expression.

Rule Match-R

If 4 evaluates to G2(E′) under � and 42 evaluates to E under �[G4 ↦→ E′],
then 4 match G1(G3) → 41 , G2(G4) → 42 evaluates to E under �.

� ` 4 ⇒ G2(E′) �[G4 ↦→ E′] ` 42 ⇒ E

� ` 4 match G1(G3) → 41 , G2(G4) → 42 ⇒ E
[Match-R]

On the other hand, if 4 evaluates to G2(E′), it matches the second case.

Then, 42 is evaluated under the environment that contains a mapping

from G4 to E′. The result of 42 is the result of the whole pattern matching

expression.

In addition, we should define a new rule for function application. In

TFAE, closures are the only values that can be applied to values. However,

TVFAE has constructors, which also can be applied to values. We need a

rule to handle such cases.

Rule App-Cnstr

If 41 evaluates to 〈G〉 under � and 42 evaluates to E under �,
then 41 42 evaluates to G(E) under �.

� ` 41 ⇒ 〈G〉 � ` 42 ⇒ E

� ` 41 42 ⇒ G(E)
[App-Cnstr]

If 41 evaluates to the constructor of a variant named G, the application

expression constructs a value of the variant.

Let 4 be typeFruit = Apple@num+Banana@(num×num) in (Apple 5)matchApple(y) →
y, Banana(z) → z.1. The following proof tree proves that 4 evaluates to

5:

Apple ∈ Domain(�1)
�1 ` Apple⇒ 〈Apple〉

�1 ` 5⇒ 5

�1 ` Apple 5⇒ Apple(5)
y ∈ Domain(�2)
�2 ` y⇒ 5

�1 ` (Apple 5) match Apple(y) → y, Banana(z) → z.1⇒ 5

∅ ` 4 ⇒ 5

where

�1 = [Apple ↦→ 〈Apple〉, Banana ↦→ 〈Banana〉]
�2 = �1[y ↦→ 5]

21.3 Interpreter

The following code implements expressions of TVFAE:

sealed trait Expr

...

case class TypeDef(

21 Algebraic Data Types 253

t: String, v1: String, vt1: Type,

v2: String, vt2: Type, b: Expr

) extends Expr

case class Match(

e: Expr, v1: String, x1: String, e1: Expr,

v2: String, x2: String, e2: Expr

) extends Expr

TypeDef(C, G1, �1, G2, �2, 4) represents type C = G1@�1+ G2@�2 in 4,
and Match(4, G1, G3, 41, G2, G4, 42) represents 4 match G1(G3) →
41 , G2(G4) → 42.

The following code implements values of TVFAE:

sealed trait Value

...

case class VariantV(x: String, v: Value) extends Value

case class ConstructorV(x: String) extends Value

VariantV(G, E) represents G(E), andConstructorV(G) represents 〈G〉.

case TypeDef(_, v1, _, v2, _, b) =>

interp(b, env + (v1 -> ConstructorV(v1)) + (v2 -> ConstructorV(v2)))

An expression defining a type evaluates its body under the environment

with the constructors.

case Match(e, v1, x1, e1, v2, x2, e2) =>

interp(e, env) match {

case VariantV(`v1`, v) => interp(e1, env + (x1 -> v))

case VariantV(`v2`, v) => interp(e2, env + (x2 -> v))

}

A pattern matching expression evaluates the target expression first. If

the result is a variant value and its name is the same as v1, then e1 is

evaluated under the environment with the value of x1. If the name is the

same as v2, then e2 is evaluated under the environment with the value

of x2.

case App(f, a) =>

val fv = interp(f, env)

val av = interp(a, env)

fv match {

case CloV(x, b, fEnv) =>

interp(b, fEnv + (x -> av))

case ConstructorV(x) =>

VariantV(x, av)

}

Function application allows a constructor to occur at the function position.

If a constructor appears, the result is a variant value that contains the

value denoted by the argument.

21 Algebraic Data Types 254

21.4 Static Semantics

To define the static semantics, the definition of a type environment

should be revised first. In TFAE, type environments store the types of

variables. They are finite partial functions from identifiers to types. In

TVFAE, type environments have more things to do. They have to store

the information about user-defined types. The type checking process

uses the information. Let Γ be the type environment when type C =
G1@�1 + G2@�2 in 4 is type-checked. Adding the information of C to Γ

yields Γ[C : {(G1 , �1), (G2 , �2)}]. The variants are elements of a set since

the order between them is unimportant. We will write C = G1@�1 + G2@�2

to denote C : {(G1 , �1), (G2 , �2)} just for the sake of intuitive notation. The
domain of a type environment now needs to include C, which is a type

identifier. Also, the codomain has to contain G1@�1 + G2@�2. Below is the

revised definition. Note that P(�) denotes the power set of �.

TEnv = (Id ∪ TId) fin↦→ () ∪P(Id ×)))

Well-Formed Types

An arbitrary type identifier can be a type in TVFAE. For example, Fruit

is a type. It is true regardless of whether the type Fruit is bound by

a type definition. Programmers can write �x:Fruit.xwithout defining

Fruit. Such a function does not make sense at all since Fruit is a free

type identifier, whose information is missing. Expressions with free type

identifiers are weird and useless. Furthermore, they can break the type

soundness of the type system.

To prevent free type identifiers, we introduce the notion of a well-formed

type. A well-formed type is a type that does not contain any free type

identifiers. The opposite of a well-formed type is an ill-formed type, which

contains a free type identifier.

When a type appears in an expression, the type must be well-formed.

Any expression that contains an ill-formed type is rejected by the type

system. In this way, weird programs like �x:Fruit.x can be effectively

prevented by type checking.

Now, we defined well-formed types. The well-formedness relation is

a relation over type environments and types because we need type

information in a type environment to decide whether a certain type

identifier is free or not.

`⊆ TEnv ×)

Γ ` � denotes that � is well-formed under Γ.

Well-formedness rules prescribe which types are well-formed.

Rule Wf-NumT

num is well-formed under Γ.

Γ ` num [Wf-NumT]

21 Algebraic Data Types 255

The first well-formedness rule states that num is always well-formed. num
is neither a type identifier nor the name of a user-defined type. It is a

built-in type, which always exists. Thus, num is well-formed under any

type environment.

Rule Wf-ArrowT

If �1 is well-formed under Γ and �2 is well-formed under Γ,

then �1 → �2 is well-formed under Γ.

Γ ` �1 Γ ` �2

Γ ` �1 → �2

[Wf-ArrowT]

If both �1 and �2 are well-formed, then �1 → �2 also is well-formed. The

reason is clear: if both �1 and �2 lack free type identifiers, then �1 → �2

also does.

Rule Wf-IdT

If C is in the domain of Γ,

then C is well-formed under Γ.

C ∈ Domain(Γ)
Γ ` C

[Wf-IdT]

If a type identifier canbe found in the type environment, the type identifier

is a well-formed type. For example, if �x:Fruit.x is the whole expression,

Fruit is ill-formed since there is no Fruit in the type environment. How-

ever, in type Fruit = Apple@num + Banana@(num × num) in �x:Fruit.x,

Fruit is well-formed since the expression puts the definition of Fruit

into the type environment.

Typing Rules

Before defining the typing rules, we need to classify newly introduced

values. The type of a variant value is the type that defines the variant.

For example, if G is a variant of C, then G(E) is a value of C. The type of

a constructor is a function type because constructors can be applied to

values. Each constructor takes a value of the type that is specified in the

type definition and returns a value of the type that constructor belongs

to. For instance, if G is a variant of C and C defines the parameter type of

G to be �, then the type of G is �→ C.

Now, let us define the typing rules. First, consider expressions that define

types.

Rule Typ-TypeDef

If

Γ′ denotes Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C],
�1 is well-formed under Γ′,
�2 is well-formed under Γ′, and
the type of 4 is � under Γ′,

then

the type of type C = G1@�1 + G2@�2 in 4 is � under Γ.

21 Algebraic Data Types 256

Γ′ = Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C]
Γ′ ` �1 Γ′ ` �2 Γ′ ` 4 : �

Γ ` type C = G1@�1 + G2@�2 in 4 : �
[Typ-TypeDef]

Rule Typ-TypeDef defines the type of an expression that defines a new

type. First, the definition of C must be added to the type environment. In

addition, since 4 can use the constructors, the type environment should

also contain the types of G1 and G2. Γ
′
denotes the type environment

after adding the type definition and the constructors. Since �1 and �2 are

user-written type annotations, they can be ill-formed types. To rule out

ill-formed types, the well-formedness of �1 and �2 is checked. For the

well-formedness checking, Γ′ is used instead of Γ. The use of Γ′ allows

recursively defined types. Since Γ′ contains the definition of C, �1 and �2

can be well-formed even when C occurs in them. Finally, 4 is type-checked

under Γ′. The type of 4 is the type of the whole type-defining expression.

Note that the type of 4 does not need well-formedness checking since

it is the result of type checking, not a user-written type annotation. The

same principle can be applied to all the other typing rules in TVFAE.

Rule Typ-Match

If

the type of 4 is C under Γ,

C is in the domain of Γ,

Γ(C) equals G1@�1 + G2@�2,

the type of 41 is � under Γ[G3 : �1], and
the type of 42 is � under Γ[G4 : �2],

then

the type of 4 match G1(G3) → 41 , G2(G4) → 42 is � under Γ.

Γ ` 4 : C C ∈ Domain(Γ)
Γ(C) = G1@�1 + G2@�2 Γ[G3 : �1] ` 41 : � Γ[G4 : �2] ` 42 : �

Γ ` 4 match G1(G3) → 41 , G2(G4) → 42 : �
[Typ-Match]

Rule Typ-Match defines the type of a pattern matching expression. First,

the type of 4, which is the target, is computed. Since pattern matching in

TVFAE can be used for only user-defined types, the type of the target must

be C, which is a type identifier. In addition, its definition must be found

in the type environment. Since G1 and G2 in the cases denote the names of

variants, the names of C’s variants must be G1 and G2. Note that the order

does not need to be the same. The pattern matching expression can place

G1 firstwhile the type definition places G2 first. The fact that the order does

not matter is reflected in the rule by representing variant information as

G1@�1 + G2@�2, which actually denotes a set {(G1 , �1), (G2 , �2)}. Finally,
41 and 42 are type-checked. The type of G3 is �1 during the type checking

of 41, and the type of G4 is �2 during the type checking of 42. The type of

41 must be the same as the type of 42 because an expression can have at

most one type. It is similar to the typing rule of a conditional expression.

The common type to 41 and 42 is the type of the whole pattern matching

expression.

In addition, one typing rule from TFAE needs a revision: Rule Typ-Fun.

21 Algebraic Data Types 257

Rule Typ-Fun

If �1 is well-formed under Γ and the type of 4 is �2 under Γ[G : �1],
then the type of �G:�1.4 is �1 → �2 under Γ.

Γ ` �1 Γ[G : �1] ` 4 : �2

Γ ` �G:�1.4 : �1 → �2

[Typ-Fun]

A lambda abstraction also has a user-written type annotation, which

might be ill-formed. To rule out ill-formed types, the well-formedness of

the type annotation must be checked.

Let 4 be typeFruit = Apple@num+Banana@(num×num) in (Apple 5)matchApple(y) →
y, Banana(z) → z.1. The following proof trees prove that the type of 4 is

num:

Apple ∈ Domain(Γ1)
Γ1 ` Apple : num→ Fruit

Γ1 ` 5 : num

Γ1 ` Apple 5 : Fruit

y ∈ Domain(Γ2)
Γ2 ` y : num

z ∈ Domain(Γ3)
Γ3 ` z : num × num

Γ3 ` z.1 : num

Γ1 ` Apple 5 : Fruit

Fruit ∈ Domain(Γ1) Γ1(Fruit) = Apple@num + Banana@(num × num)
Γ2 ` y : num Γ3 ` z.1 : num

Γ1 ` (Apple 5) match Apple(y) → y, Banana(z) → z.1 : num

Γ1 = Γ1 Γ1 ` num
Γ1 ` num Γ1 ` num

Γ1 ` num × num
Γ1 ` (Apple 5) match Apple(y) → y, Banana(z) → z.1 : num

∅ ` 4 : num

where

Γ1 = [Fruit = Apple@num + Banana@(num × num), Apple : num→ Fruit, Banana : (num × num) → Fruit]
Γ2 = Γ1[y : num]
Γ3 = Γ1[z : num × num]

21.5 Type Checker

First, we extend the definition of a type since TVFAE has a new sort of a

type.

sealed trait Type

...

case class IdT(t: String) extends Type

21 Algebraic Data Types 258

IdT(C) represents C.

In TVFAE, type environments store type definitions and the types of

variables. Thus, they cannot be represented by simple maps any longer.

Now, they are represented by TEnv instances, each of which contains two

maps.

case class TEnv(

vars: Map[String, Type],

tbinds: Map[String, Map[String, Type]]

) {

def add(x: String, t: Type): TEnv =

TEnv(vars + (x -> t), tbinds)

def add(x: String, m: Map[String, Type]): TEnv =

TEnv(vars, tbinds + (x -> m))

def contains(x: String): Boolean =

tbinds.contains(x)

}

TEnv has two fields: vars and tbinds. The field vars, which is a map

from strings to TVFAE types, contains the types of variables. The field

tbinds, which is a map from strings to maps, contains type definitions.

Each map in tbinds maps strings, which are the names of variants, to

TVFAE types, which are the parameter types of variants. For example,

tbinds containing the Fruit type is as follows:

Map("Fruit" -> Map("Apple" -> NumT, "Banana" -> PairT(NumT, NumT)))

For the ease of adding typedefinitions andvariables to type environments,

the TEnv class has two methods named add. Adding that the type of a

variable x is num to env can be written like below.

env.add("x", NumT)

Adding the Fruit type to env can be written like below.

env.add("Fruit", Map("Apple" -> NumT, "Banana" -> PairT(NumT, NumT)))

The containsmethod of the TEnv class checks whether a particular type

identifier is a bound type identifier. For instance, the following code

checks whether Fruit is bound:

env.contains("Fruit")

Now let usdefine a function that checks thewell-formedness of a type. The

following wfType function checks whether a given type is well-formed

under a given type environment:

def wfType(t: Type, env: TEnv): Unit = t match {

case NumT =>

21 Algebraic Data Types 259

case ArrowT(p, r) =>

wfType(p, env)

wfType(r, env)

case IdT(t) =>

if (!env.contains(t))

throw new Exception

}

If the type is ill-formed under the type environment, the function throws

an exception.

Now, we add the TypeDef and Match cases to the typeCheck function.

case TypeDef(t, v1, vt1, v2, vt2, b) =>

val nenv = env

.add(t, Map(v1 -> vt1, v2 -> vt2))

.add(v1, ArrowT(vt1, IdT(t)))

.add(v2, ArrowT(vt2, IdT(t)))

wfType(vt1, nenv)

wfType(vt2, nenv)

typeCheck(b, nenv)

First, the function adds the type definition and the constructors to the

type environment. Then, it checks the well-formedness of the parameter

types of the variants under the new type environment. If both are well-

formed, it type-checks the body expression. The type of the body is the

type of the whole type-defining expression.

case Match(e, v1, x1, e1, v2, x2, e2) =>

val IdT(t) = typeCheck(e, env)

val tdef = env.tbinds(t)

val t1 = typeCheck(e1, env.add(x1, tdef(v1)))

val t2 = typeCheck(e2, env.add(x2, tdef(v2)))

mustSame(t1, t2)

t1

First, the function type-checks the target expression. The type must be a

type identifier. The definition of the type should be found in the type

environment. The definition gives the parameter type of each variant.

The function type-checks e1 and e2 under the type environments with

the type of x1 and with the type of x2, respectively. The types must be

the same, and if it is the case, the common type is the type of the whole

pattern matching expression.

case Fun(x, t, b) =>

wfType(t, env)

ArrowT(t, typeCheck(b, env.add(x, t)))

As discussed already, the Fun case needs a revision. The well-formedness

of the parameter type annotation needs to be checked.

case Id(x) => env.vars(x)

The Id case also has a small change. Due to the new definition of a type

environment, a way to find the type of a variable is a bit different.

21 Algebraic Data Types 260

21.6 Type Soundness of TVFAE

Actually, TVFAE is not type sound. If an expression defines multiple types

of the same name, the expression can be well-typed and incur a run-time

error at the same time. Consider the following expression:

type Fruit = Apple@num + Banana@(num × num) in (
(�f:Fruit→ num.

type Fruit = Cherry@num + Durian@(num × num) in
f (Cherry 1)
) (�x:Fruit.x match
Apple(y) → y,

Banana(z) → z.1
)
)

The expression defines Fruit twice in a nested manner. The outer Fruit

has Apple and Banana as variants, and the inner Fruit has Cherry

and Durian as variants. The expression applies a function of (Fruit→
num) → num to a value of Fruit→ num, so it is well-typed. However, the

expression causes a run-time error. The function of (Fruit→ num) →
num applies a given function to a value of the Cherry variant because

Fruit has Cherry and Durian inside the function. However, the inner

definition of Fruit is unavailable outside the function, so the argument

given to the function is a function that expects a value of Apple or Banana.

Thus, at run time, the pattern matching fails and incurs a run-time

error.

The reason of broken type soundness is that the language allowsmultiple

different types of the same name, while its type checking depends solely

on the names of types to distinguish different types. Two different types

may incorrectly considered as the same type when they have the same

name.

There aremultiple ways to fix the problem. The first solution is to prohibit

local type definitions. Every type definition should be at top level, just like

functions in F1VAE. Then, types cannot be nested, and every type must

have a different name from each other. Since there cannot be different

types of the same name, the problem is resolved.

The second solution is to prevent interaction between different types of

the same name. It can be achieved by changing Rule Typ-TypeDef like

below.

Rule Typ-TypeDef’

If

C is not in the domain of Γ,

Γ′ denotes Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C],
�1 is well-formed under Γ′,
�2 is well-formed under Γ′,
the type of 4 is � under Γ′, and
� is well-formed under Γ,

then

the type of type C = G1@�1 + G2@�2 in 4 is � under Γ.

21 Algebraic Data Types 261

C ∉ Domain(Γ) Γ′ = Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C]
Γ′ ` �1 Γ′ ` �2 Γ′ ` 4 : � Γ ` �
Γ ` type C = G1@�1 + G2@�2 in 4 : �

[Typ-TypeDef’]

The rule has two new premises:

I C ∉ Domain(Γ)
I Γ ` �

The first one prevents nested types from having the same name. The

second one prevents each locally defined type from escaping its scope.

In this way, we can effectively solve the issue. A program still can have

different types of the same name, but different types of the same name

cannot meet each other, i.e. they cannot be used in the same place.

The third solution is to rename types before type checking in order to

remove any duplication in type names. Since the bound-bind relation

between identifiers can be easily determined with simple syntactic

checking, it is possible to rename typeswithout changing the semantics of

a given program. For instance, the above example becomes the following

expression after renaming:

type Fruit = Apple@num + Banana@(num × num) in (
(�f:Fruit→ num.

type Fruit1 = Cherry@num + Durian@(num × num) in
f (Cherry 1)
) (�x:Fruit.x match
Apple(y) → y,

Banana(z) → z.1
)
)

This expression is certainly ill-typed because Cherry 1 is a value of

Fruit1, while f, which is applied to Cherry 1, is a function that expects

a value of Fruit. This solution is desirable in the sense that it does not

need any change in the language. It only requires one additional step of

transformation, which can be easily implemented. On the other hand,

the first solution changes the language at syntax level, and the second

solution changes the static semantics of the language.

21.7 Exercises

Exercise 21.1 What does each of the following expressions evaluate to?

If it is a run-time error, describe where the error occurs.

1. type Fruit = Apple@num + Banana@num in
type Animal = Apple@(num→ num) + Banana@(num→ num) in
(�x:Fruit.x match Apple(y) → y, Banana(y) → y) (Banana 10)

2. type Fruit = Apple@num + Banana@num in
type Fruit = Apple@(num→ num) + Banana@(num→ num) in
(�x:Fruit.x match Apple(y) → y, Banana(y) → y) (Banana 10)

21 Algebraic Data Types 262

Exercise 21.2 Suppose that Rule Typ-TypeDef has been changed as the

following:

Γ′ = Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C]
Γ ` �1 Γ ` �2 Γ′ ` 4 : �

Γ ` type C = G1@�1 + G2@�2 in 4 : �

It checks the well-formedness of �1 and �2 under Γ, instead of Γ′.

1. Explain why the new typing rule is problematic.

2. Write a TVFAE expression that

I is accepted by the original type system, but

I is rejected by the new type system.

Exercise 21.3 Suppose that Rule Typ-TypeDef has been changed as the

following:

Γ′ = Γ[C = G1@�1 + G2@�2 , G1 : �1 → C , G2 : �2 → C]
Γ′ ` �2 Γ′ ` 4 : �

Γ ` type C = G1@�1 + G2@�2 in 4 : �

It lacks the well-formedness check of �1. Write a TVFAE expression that

I is rejected by the original type system, but

I is accepted by the new type system, and

I results in a run-time error when evaluated.

Exercise 21.4 Consider the following expression:

type Fruit = Apple@num + Banana@num in
(type Color = Apple@num + Banana@num in
�x:Fruit.x match
Apple(y) → Apple (y + 1),
Banana(y) → Banana (y + 1)
) (Banana 10)
What is the result of type-checking the expression? If the result is Fruit,

explain why in detail. Otherwise, revise the typing rules to make it Fruit.

Exercise 21.5 This exercise extends TVFAE to have

I functions with multiple parameters

I types with more than two variants

I variants with multiple parameters

4 ::= · · ·
| �(G:�, · · · , G:�).4
| 4(4 , · · · , 4)
| type C = G@(�, · · · , �) + · · · + G@(�, · · · , �) in 4
| 4 match G(G, · · · , G) → 4 , · · · , G(G, · · · , G) → 4

� ::= · · ·
| (�, · · · , �) → �

1. Write the well-formedness rule for the added type.

2. Write the typing rules for the added expressions.

3. Draw the type derivation of the following expression:

21 Algebraic Data Types 263

type Fruit = Apple@() + Banana@((Fruit) → num, Fruit) + Cherry@(num) in
Apple() match
Apple() → 42,

Banana(f, x) → f(x),
Cherry(x) → x

Exercise 21.6 It is known that every TFAE expression terminates. On

the other hand, TRFAE expressions can run forever by using def. Then,
how about TVFAE? Is it possible to write a non-terminating TVFAE
expression? The answer is yes, and this exercise asks you to construct

such an expression.

For simplicity, we extend TVFAE to allow a type of a single variant:

4 ::= · · · | type C = G@�; 4 | 4 match G(G) → 4

The following TVFAE expression passes type checking and runs forever:

type X = toX@(X→ X);
val fromX : X→ (X→ X) =???;

val f : X =???;

???

Complete the expression. Use the fact that the following FAE expression

runs forever:

val f=�x.(x x) in f f

1: Suppose that we extends FAE with

booleans.

2: Suppose that the type of a boolean is

bool.

Parametric Polymorphism 22

22.1 Syntax 266

22.2Dynamic Semantics 267

22.3Static Semantics 268

Well-Formed Types 268

Typing Rules 269

22.4Exercises 271

A function in TFAE is more restrictive than a function in FAE. Consider
�x.x in FAE. It is an identity function, which takes a value as an argument

and returns the value without changing it. Any value can be an argument

for this function. Since the body of the function does nothing with the

argument, the evaluation of the body never causes a run-time error.

On the other hand, �x:num.x in TFAE is an identity function that takes

only an integer. The parameter type annotation restricts the type of an

argument to be only num. The type system rejects a program that passes

a value other than an integer to the function. However, since the body

simply returns the argument, a run-time error never happens even when

the argument is not an integer. This example shows that a single identity

function can be applied to a value of every type in FAE, while a different

identity function is required for each type in TFAE.

Because of this restrictiveness, programmers have to define more func-

tions in TFAE than in FAE to implement the same program. For example,

the following FAE expression does not incur run-time errors:
1

val f=�x.x in
val y=f 1 in
f true

On the other hand, the following TFAE expression is rejected by the type

system:

val f=�x:num.x in
val y=f 1 in
f true

The expression is ill-typed because f true on the last line applies a

function of num→ num to a value that does not belong to num. To make

an equivalent and well-typed expression, we should define one more

function like below.
2

val f=�x:num.x in
val g=�x:bool.x in
val y=f 1 in
g true

Now, the expression is well-typed since g, whose type is bool→ bool,

is applied to a value of bool.

Because of this problem, writing programs in TFAE is inconvenient.

Programmers should define multiple functions of the same functionality

to convince the type checker that their programs do not incur any run-

time errors. Such functions of an overlapping role lead to duplicated

code, which increases the code length and harms maintainability. When

a program has plenty of functions and types, the amount of duplicated

code will become huge.

Polymorphism can resolve the problem. Polymorphism is to use a single

22 Parametric Polymorphism 265

entity as multiple types. For example, it may allow �x.x to have mul-

tiple types: num→ num and bool→ bool. There are three widely-used

ways to realize polymorphism in a language: parametric polymorphism,

subtype polymorphism, and ad-hoc polymorphism. The topic of this

chapter is parametric polymorphism. Chapter 23 introduces subtype

polymorphism, and ad-hoc polymorphism is beyond the scope of this

book.

To introduce parametric polymorphism, we first need to discuss what

parameterization is. Functions are well-known examples of parameter-

izing entities. Each function parameterizes an expression with a value

(or an expression in the case of lazy languages). Consider �x.x + x. In
this function, x is the parameter. The body, x + x is parameterized by

x. This function is the most general form of adding a value to the same

value. By applying the function, we can express any expresion that adds

a value to the same value. For example, 1+ 1 is equivalent to (�x.x+ x) 1,
and 42 + 42 is equivalent to (�x.x + x) 42. A function abstracts an expres-

sion by replacing some portion of the expression with a parameter. By

applying a function to values, multiple expressions can be expressed

without repeating the common constituents. Only different parts should

be written as an argument in each case.

Parametric polymorphism allows entities to be parameterized by types.

It is a new form of parameterization, which functions do not provide.

Parametric polymorphism allows parameterizing an expression with a

type, insteadof a value. Todistinguish this newnotionof parameterization

from functions, we use the term type abstraction. While functions are

applied to values to replace their parameters with real values, type

abstractions are applied to types to replace their type parameters with real

types. To differentiate application of type abstractions from application

of functions, we use the term type application. Since type abstractions

parameterize expressions, the results of type application are values,

just like functions. The following table compares functions and type

abstractions:

Function Type abstraction

What is parameterized? Expression Expression

With what? Value Type

Applied to what? Value Type

Result of application Value Value

Consider �x:num.x and �x:bool.x. The only difference is the type annota-

tion: num and bool. We can parameterize both expressions with a type by

introducing a type parameter
. By replacing numwith
 in�x:num.x, we

obtain �x:
.x. Similarly, by replacing bool with
 in �x:bool.x, we obtain

�x:
.x. The results are exactly identical to each other. We can make a

type abstraction that takes a type � as a type argument and returns �x:�.x
as a result. This book uses Λ to denote type abstractions. Thus, the type

abstraction we want is Λ
.�x:
.x. The type abstraction can be applied

to types to recover the original expressions. This book uses [] to denote

type application. Then, (Λ
.�x:
.x)[num] is equivalent to �x:num.x, and
(Λ
.�x:
.x)[bool] is equivalent to �x:bool.x.

After adding parametric polymorphism, we can make the previous

example well-typed while defining a function only once.

22 Parametric Polymorphism 266

val f=Λ
.�x:
.x in
val y=f[num] 1 in
f[bool] true
It is still more complex than the FAE version but defines a function only

once, unlike the TFAE version.

Traditionally, parametric polymorphism was supported by only func-

tional languages. For example, OCaml andHaskell have beenwell-known

for their support for parametric polymorphism. On the other hand,

object-oriented languages provided only subtype polymorphism. For

instance, Java lacked parametric polymorphism until Java 4. However,

programmers in these days require languages to provide more advanced

features because their programs become more complicated. For this

reason, Java has been supporting parametric polymorphism since Java

5. Many recent languages, such as Scala, provide both parametric and

subtype polymorphism. In the context of object-oriented programming,

parametric polymorphism is often called generics since it allows generic

programming.

This chapter defines PTFAE by extending TFAE with parametric poly-

morphism. PTFAE is known as System F in the programming language

community. System F was first discovered by Girard in the context of

logic in 1972 [Gir72]. Later, Reynolds independently discovered the

equivalent system in the context of computer science in 1974 [Rey74].

System F, or PTFAE, is the most foundational formulation of parametric

polymorphism, and its metatheory and variants are widely studied even

in these days.

22.1 Syntax

First, we introduce type identifiers like in TVFAE. Type identifiers are

used as type parameters. Let TId be the set of every type identifier. The

metavariable
 ranges over type identifiers.

 ∈ TId

We add two sorts of an expression: type abstraction and type applica-

tion.

4 ::= · · · | Λ
.4 | 4[�]

I Λ
.4 is a type abstraction.
 is the type parameter, and 4 is the

body.
 in Λ
.4 is a binding occurrence whose scope is 4.

I 4[�] is a type application expression. 4 denotes the type abstraction

applied to �.

In addition, we add two sorts of a type.

� ::= · · · |
 | ∀
.�

I
 is a type identifier as a type. Like in TVFAE, a type identifier can

be used as a type. For example, in Λ
.�x:
.x, the second
 is the

22 Parametric Polymorphism 267

3: We do not discuss substitution in detail

here. Interested readers can refer to Exer-

cise 9.15, which introduces substition of

an identifier with a value in an expression.

The same principle applies to substition

of a type identifier with a type in an ex-

pression.

type of x.

I ∀
.� is a universally quantified type. It is the type of a type abstraction
that takes a type as a type argument and returns a value of the type

obtained by replacing every
 with the given type in �.
 in ∀
.�
is a binding occurrence whose scope is �. For instance, the type of
Λ
.�x:
.x is ∀
.
→
 since applying the type abstraction to num
results in a function of num→ num and applying to bool results in
a function of bool→ bool.

22.2 Dynamic Semantics

The addition of type abstractions adds a new sort of a value to the

language.

E ::= · · · | 〈Λ
.4 , �〉

〈Λ
.4 , �〉 is a type abstraction value. It is similar to a closure. A closure

is a function value, which contains the definition of a function and the

environment of when the function is defined. Similarly, a type abstraction

value contains the definition of a type abstraction and the environment

of when the type abstraction is defined.

Now, we define the dynamic semantics of PTFAE. We should define the

rules for the added expressions.

Rule TyAbs

Λ
.4 evaluates to 〈Λ
.4 , �〉 under �.

� ` Λ
.4 ⇒ 〈Λ
.4 , �〉 [TyAbs]

A type abstraction evaluates to a type abstraction value. It is almost the

same as Rule Fun.

Rule TyApp

If

4 evaluates to 〈Λ
.4′, �′〉 under � and

4′[
← �] evaluates to E under �′,
then

4[�] evaluates to E under �.

� ` 4 ⇒ 〈Λ
.4′, �′〉 �′ ` 4′[
← �] ⇒ E

� ` 4[�] ⇒ E
[TyApp]

To evaluate a type application expression, its only subexpression is

evaluated. The result must be a type abstraction value. 4′[
← �] denotes
an expression obtained by substituting every free occurrence of
 with �
in 4′.3 Thus, the rule states that every occurrence of the type parameter is

replacedwith the given type argument in the body of the type abstraction.

Finally, the expression obtained by the substitution is evaluated under

the environment held by the type abstraction value. Its result is the result

of the whole type application expression.

22 Parametric Polymorphism 268

One may wonder why Rule TyApp needs substitution because types do

not have any roles at run time. We can omit substitution in the dynamic

semantics of PTFAE. However, if we extend the language to support any

form of dynamic type testing, substitution is mandatory. In addition, if

we want to prove type soundness, we should prove that every expression

of a certain type evaluates to a value of the same typewhen the evaluation

terminates. This property is called type preservation, and evaluation will

not preserve the type of an expression if the rule omits substitution. For

these reasons, Rule TyApp requires substitution.

The following proof trees prove that (Λ
.�x:
.x)[num] 1 evaluates to

1:

∅ ` Λ
.�x:
.x⇒ 〈Λ
.�x:
.x, ∅〉 ∅ ` �x:num.x⇒ 〈�x.x, ∅〉
∅ ` (Λ
.�x:
.x)[num] ⇒ 〈�x.x, ∅〉

∅ ` (Λ
.�x:
.x)[num] ⇒ 〈�x.x, ∅〉 ∅ ` 1⇒ 1

x ∈ Domain(�1)
�1 ` x⇒ 1

∅ ` (Λ
.�x:
.x)[num] 1⇒ 1

where �1 = [x ↦→ 1].

22.3 Static Semantics

Like in TVFAE, the definition of a type environment needs to be revised.

Type environments should be able to store type identifiers in addition to

the types of variables. Unlike type definitions in TVFAE, type identifiers in
PTFAE do not have any further information. However, the type checking

procedure needs to know whether a certain type identifier is free or not

to determine the well-formedness of types. Thus, type environments

store type identifiers to record their existence.

TEnv = (Id ∪ TId) fin↦→ () ∪ {·})

Now, the codomain of a type environment contains ·, which is a mean-

ingless mathematical object. For brevity, let Γ[
] denote Γ[
 : ·].

Well-Formed Types

The well-formedness checking of PTFAE is similar to that of TVFAE. The
following three rules are the same as those of TVFAE:

Rule Wf-NumT

num is well-formed under Γ.

Γ ` num [Wf-NumT]

22 Parametric Polymorphism 269

Rule Wf-ArrowT

If �1 is well-formed under Γ and �2 is well-formed under Γ,

then �1 → �2 is well-formed under Γ.

Γ ` �1 Γ ` �2

Γ ` �1 → �2

[Wf-ArrowT]

Rule Wf-IdT

If
 is in the domain of Γ,

then
 is well-formed under Γ.

 ∈ Domain(Γ)
Γ `

[Wf-IdT]

One remaining sort of a type is a universally quantified type, which is

new in PTFAE.

Rule Wf-ForallT

If � is well-formed under Γ[
],
then ∀
.� is well-formed under Γ.

Γ[
] ` �
Γ ` ∀
.�

[Wf-ForallT]

In ∀
.�,
 is a binding occurrence and, thus, can appear in �. Therefore,

 must be in the type environment when the well-formedness of � is

checked. For example, ∀
.
 is well-formed under the empty type envi-

ronment, while ∀
.� is ill-formed under the same type environment.

Typing Rules

Now, let us define the typing rules of PTFAE.

Rule Typ-TyAbs

If the type of 4 is � under Γ[
],
then the type of Λ
.4 is ∀
.� under Γ.

Γ[
] ` 4 : �

Γ ` Λ
.4 : ∀
.�
[Typ-TyAbs]

The type of Λ
.4 is ∀
.� if the type of 4 is �. Since
 is a binding

occurrence whose scope is 4, 4 should be type-checked under the type

environment containing
.

Rule Typ-TyApp

If � is well-formed under Γ and the type of 4 is ∀
.�′ under Γ,
then the type of 4[�] is �′[
← �] under Γ.

22 Parametric Polymorphism 270

Γ ` � Γ ` 4 : ∀
.�′

Γ ` 4[�] : �′[
← �]
[Typ-TyApp]

If the type of 4 is ∀
.�′, the type of 4[�] is �′[
 ← �], which is a type

obtained by substituting
 with � in �′. Since � is a user-written type

annotation, the well-formeness of �must be checked.

In addition, like in TVFAE, Rule Typ-Fun has to check the well-formedness

of the parameter type annotation.

Rule Typ-Fun

If �1 is well-formed under Γ and the type of 4 is �2 under Γ[G : �1],
then the type of �G:�1.4 is �1 → �2 under Γ.

Γ ` �1 Γ[G : �1] ` 4 : �2

Γ ` �G:�1.4 : �1 → �2

[Typ-Fun]

The following proof tree proves that the type of (Λ
.�x:
.x)[num] 1 is

num:

∅ ` num

 ∈ Domain([
])
[
] `

x ∈ Domain([
, x :
])
[
, x :
] ` x :

[
] ` �x:
.x :
→

∅ ` Λ
.�x:
.x : ∀
.
→

∅ ` (Λ
.�x:
.x)[num] : num→ num
∅ ` 1 : num

∅ ` (Λ
.�x:
.x)[num] 1 : num

The current type system of PTFAE has two problems. First, multiple type

parameters of the same name breaks the type soundness, as multiple

type definitions of the same name does in TVFAE. Second, syntactic
comparison of types makes the type checking too restrictive. For example,

if Λ�.�x:�.x is given to a function that expects a value of ∀
.
 →
,
syntactically comparing ∀
.
 →
 and ∀�.� → � judges them to be

different and makes the type checking reject the program. However,

∀
.
→
 and ∀�.�→ � denote the same type semantically.

The best solution to both of the problems is de Bruĳn indices, introduced

in Chapter 18. Chapter 18 shows use of de Bruĳn indices for expressions.

However, de Bruĳn indices are not limited to expressions; they can be

applied to types. For instance, both ∀
.
 →
 and ∀�.� → � can be

represented with ∀.0→ 0, so their semantic equivalence can be verified

with syntactic comparison. In addition, de Bruĳn indices preventmultiple

types from being considered as the same type because of their names.

De Bruĳn indices seem to be the best solution, but, still, other solutions

can be used. The three solutions described in Chapter 21 can be applied

to PTFAE in the same manner to resolve the first issue. The second issue

can be fixed by renaming type parameters before the comparison. For

example, simple syntactic transformation can transform ∀
.
→
 into

∀�.�→ �.

22 Parametric Polymorphism 271

22.4 Exercises

Exercise 22.1 Draw the type derivation of each of the following expres-

sions:

1. (�f:∀
.
→
.f[num] 10) (Λ
.�x:
.x)
2. (Λ
.Λ�.�f:
→ �.�x:
.f x)[num][num] (�y:num.17 − y) 9

Exercise 22.2 In PTFAE, types have type variables. Chapter 18 shows

how we can replace symbols in expressions with numbers. Similarly, we

can replace symbols in types with numbers. For example, ForallT("a",

ArrowT(VarT("a"), VarT("a"))),which is∀
.
→
, becomesForallT(

ArrowT(VarT(0), VarT(0))).

Complete the following implementation:

sealed trait Type

case object NumT extends Type

case class ArrowT(p: Type, r: Type) extends Type

case class ForallT(a: String, t: Type) extends Type

case class VarT(a: String) extends Type

object Nameless {

sealed trait Type

case object NumT extends Type

case class ArrowT(???) extends Type

case class ForallT(???) extends Type

case class VarT(???) extends Type

}

type Ctx = List[String]

def transform(t: Type, ctx: Ctx): Nameless.Type =

t match {

case NumT => ???

case ArrowT(p, r) => ???

case ForallT(a, t) => ???

case VarT(a) => ???

}

Exercise 22.3 This exercise extends PTFAE with polymorphic recursive

type definitions.

4 ::= · · · | type C[
] = G@� + G@�; 4 | 4 match G(G) → 4 , G(G) → 4

E ::= · · · | Λ
.〈G〉 | 〈G〉 | G(E)
� ::= · · · | C[�]
Γ ∈ (Id ∪ TId ∪ TN) fin↦→ () ∪ {·} ∪ (TId × Id ×) × Id ×)))

22 Parametric Polymorphism 272

�[G1 ↦→ Λ
.〈G1〉, G2 ↦→ Λ
.〈G2〉] ` 4 ⇒ E

� ` type C[
] = G1@�1 + G2@�2; 4 ⇒ E

� ` 4 ⇒ Λ
.〈G〉
� ` 4[�] ⇒ 〈G〉

� ` 41 ⇒ 〈G〉 � ` 42 ⇒ E

� ` 41 42 ⇒ G(E)

� ` 4 ⇒ G1(E′) �[G3 ↦→ E′] ` 41 ⇒ E

� ` 4 match G1(G3) → 41 , G2(G4) → 42 ⇒ E

� ` 4 ⇒ G2(E′) �[G4 ↦→ E′] ` 42 ⇒ E

� ` 4 match G1(G3) → 41 , G2(G4) → 42 ⇒ E

For example, programmers can write the following code, which defines

a polymorphic option type:

type option[
] = None@num + Some@
;

val getOrElse = Λ
.�x:option[
].�y:
.(
x match
None(z) → y,

Some(z) → z

);
getOrElse[num] (Some[num] 1) 2

1. Write the typing rules of the form Γ ` 4 : � of type C[
] = G1@�1 +
G2@�2 in 4 and 4 match G1(G3) → 41 , G2(G4) → 42.

2. Write the well-formedness rule of the form Γ ` � of C[�].
3. Write the type of getOrElse in the above example.

Subtype Polymorphism 23

23.1 Records 273

Syntax 273

Dynamic Semantics 274

Static Semantics 275

23.2Subtype Polymorphism . . . 276

23.3Subtyping of Record Types . 278

23.4Subtyping of Function Types281

23.5Top and Bottom Types 282

23.6Exercises 283

This chapter introduces subtype polymorphism. Subtype polymorphism

is often found in object-oriented languages, but some functional lan-

guages also support subtype polymorphism these days. For example,

OCaml, which stands for Objective Caml, is a functional language that

provides subtype polymorphism. Understanding subtype polymorphism

is important in many real-world languages.

This chapter defines STFAE by extending TFAE with subtype polymor-

phism. To illustrate the need of subtype polymorphism, we start with

adding records to TFAE. We can add subtype polymorphism to TFAE
without adding records together, but examples with records can clearly

show the benefits of subtype polymorphism.

23.1 Records

A record is a value that consists of multiple values. Records are similar

to tuples, but users can designate the names of the elements in a record.

When we talk about the elements of records, we often use the term fields.
From the perspective of their expressivity and roles in programming,

records are the same as tuples. However, records help programmers

express their high-level ideas in the code more directly than tuples and

prevent mistakes.

For example, consider a tuple representing the height, score, and schol-

arship state of a student. The tuple (180, 91, true) represents a student

who is 180-centimeter-tall, got 91 points from the recent exam, and is

currently receiving a scholarship. One disadvantage of using tuples is

that programmers may use wrong elements bymistake.When st denotes

the previously mentioned tuple, one should write st.1 to get the height.

However, there is no reason to associate the first element with the height.

If he or she writes st.2 instead st.1, then the wrong conclusion—the

student is 91-centimeter-tall—will be obtained.

Records effectively prevent such mistakes. We can represent the same

student with the record {height = 180, score = 91, scholarship =

true}. This record has three fields: height, score, and scholarship.

Then, the height can be found by st.height. In this case, there is a logical

reason to associate the field whose name is height with the height of

the student. It is clear that st.score does not denote the height of the

student.

Syntax

First, we introduce labels, which are the names of fields in records. Let

Lbe the set of every label and the metavariable ; ranges over labels.

23 Subtype Polymorphism 274

; ∈ L

Now, we define the syntax of expressions related to records.

4 ::= · · · | {; = 4 , · · · , ; = 4} | 4.;

I {;1 = 41 , · · · , ;= = 4=} is an expression that creates a record. A

record has zero or more fields. ;’s are the names of the fields. We

assume that the fields of a single record have distinct names. Since

a record can have zero fields, {} is an expression.

I 4.; is an expression that gives the value of a certain field from a

record. It is usually called a projection. 4 determines the record, and

; is the name of the field whose value is acquired.

Dynamic Semantics

To make a language support records, we should add record values to the

language.

E ::= · · · | {; = E, · · · , ; = E}

A value {;1 = E1 , · · · , ;= = E=} is a record value. ;’s are the names

of the fields. E8 is the value of the field ;8 . For example, the result of

{a = 1 + 2, b = 3 + 4} is {a = 3, b = 7}. The record has two fields: a and

b. The value of a is 3, and the value of b is 7. The result of {} is {}, which

is the empty record value.

Now, we add rules to define the dynamic semantics of the added expres-

sions.

Rule Record

If 41 evaluates to E1 under �, · · · , and 4= evaluates to E= under �,
then {;1 = 41 , · · · , ;= = 4=} evaluates to {;1 = E1 , · · · , ;= = E=} under �.

� ` 41 ⇒ E1 · · · � ` 4= ⇒ E=

� ` {;1 = 41 , · · · , ;= = 4=} ⇒ {;1 = E1 , · · · , ;= = E=}
[Record]

Every 48 has to be evaluated for the evaluation of {;1 = 41 , · · · , ;= = 4=}.
If the value of 48 is E8 , the value of the field ;8 is E8 . The result is

{;1 = E1 , · · · , ;= = E=}.

Rule Proj

If 4 evaluates to {· · · , ; = E, · · · } under �,
then 4.; evaluates to E under �.

� ` 4 ⇒ {· · · , ; = E, · · · }
� ` 4.; ⇒ E

[Proj]

23 Subtype Polymorphism 275

For the evaluation of 4.;, 4 has to be evaluated first. If the result of 4 is a

record that contains a field named ;, then 4.; results in the value of the

field. If 4 evaluates to a nonrecord value or a record value that does not

contain ;, 4.; incurs a run-time error.

Static Semantics

Since records are a new sort of a value, exsiting types cannot include

records. We need to add new types that records can belong to.

� ::= · · · | {; : �, · · · , ; : �}

A type {;1 : �1 , · · · , ;= : �=} is a record type that includes records whose

fields follow the designated names and types. In other words, if a record

value has fields named ;1 from ;= and the value of a field ;8 is a value of

�8 , then the value belongs to {;1 : �1 , · · · , ;= : �=}. For example, the type

of the value {a = 3, b = 7} is {a : num, b : num}. In addition, the type of

the expression {a = 1 + 2, b = 3 + 4}, which evaluates to {a = 3, b = 7},
also is {a : num, b : num}. Similarly, the type of the empty record is {}.

Let us define the typing rules for the added expressions.

Rule Typ-Record

If the type of 41 is �1 under Γ, · · · , the type of 4= is �= under Γ,

then the type of {;1 = 41 , · · · , ;= = 4=} is {;1 : �1 , · · · , ;= : �=} under Γ.

Γ ` 41 : �1 · · · Γ ` 4= : �=

Γ ` {;1 = 41 , · · · , ;= = 4=} : {;1 : �1 , · · · , ;= : �=}
[Typ-Record]

Let the type of 48 be �8 . Then, 48 evaluates to a value of �8 . Thus, {;1 =
41 , · · · , ;= = 4=} evaluates to a value of {;1 : �1 , · · · , ;= : �=}, and the type

of {;1 = 41 , · · · , ;= = 4=} is {;1 : �1 , · · · , ;= : �=}.

Rule Typ-Proj

If the type of 4 is {· · · , ; : �, · · · } under Γ,
then the type of 4.; is � under Γ.

Γ ` 4 : {· · · , ; : �, · · · }
Γ ` 4.; : �

[Typ-Proj]

4.; can be evaluated without an error only if 4 evaluates to a record

containing a field named ;. Therefore, the type of 4 has to be a record

type that contains a field ;. Then, the type of 4.; is the type of ;.

For example, the type of {a = 1 + 2, b = 3 + 4}.a is num since the type

of {a = 1 + 2, b = 3 + 4} is {a : num, b : num}. On the other hand,

{a = 1 + 2, b = 3 + 4}.c is ill-typed because {a : num, b : num} lacks a
field named c.

23 Subtype Polymorphism 276

23.2 Subtype Polymorphism

The current type system is sound but not expressive enough. It rejects

many expressions that do not cause any run-time errors. Consider the

following expression:

(�x:{a : num}.x.a) {a = 1, b = 2}

The expression evaluates {a = 1, b = 2}.a, which yields 1 without any

error. However, the type system rejects the expression. The type of

{a = 1, b = 2} is {a : num, b : num}, while the parameter type of the

function is {a : num}. Since the argument type is different from the

designated parameter type, the application expression is ill-typed.

Currently, the type {a : num} denotes the set of every record that has

only the integer-valued field a. However, this definition is too restrictive.

The type implies that its value can be used for any place that accesses the

field a and expects the value of the field to be an integer. Thus, the type

does not need to exclude values that have other fields in addition to the

field a.

To resolve the problem, we extend the meaning of {a : num}. Now, the

type includes any records that have an integer-valued field a. Records

that have additional fields also can be values of {a : num}. This change
can be attained by modifying Rule Typ-Record like below.

Rule Typ-Record’

If the type of 41 is �1 under Γ, · · · , the type of 4= is �= under Γ, · · · , the
type of 4=+< is �=+< under Γ,

then the type of {;1 = 41 , · · · , ;= = 4= , · · · , ;=+< = 4=+<} is {;1 :

�1 , · · · , ;= : �=} under Γ.

Γ ` 41 : �1 · · · Γ ` 4= : �= · · · Γ ` 4=+< : �=+<

Γ ` {;1 = 41 , · · · , ;= = 4= , · · · , ;=+< = 4=+<} : {;1 : �1 , · · · , ;= : �=}
[Typ-Record’]

The rule allows forgetting the types of some fields if they are unnecessary.

Now, {a = 1, b = 2} is a value of {a : num}. Thus, the previous example,

(�x:{a : num}.x.a) {a = 1, b = 2}, is well-typed.

Does this fix solve all the problems? Unfortunately, no. Consider the

following expression:

val x={a = 1, b = 2} in
val y=(�x:{a : num}.x.a) x in
(�x:{a : num, b : num}.x.a + x.b) x

This expression is still ill-typed though it does not incur any run-time

errors. If we say the type of x is {a : num}, the first function application

is well-typed. However, the second function application is ill-typed. If

we say the type of x is {a : num, b : num} instead, the second function

application becomes well-typed. However, the first function application

becomes ill-typed. There is no way to make both application expressions

well-typed. We need a way to consider x as an expression of {a : num}
and as an expression of {a : num, b : num} at the same time. In other

words, we should assign multiple types to a single entity, and this is the

23 Subtype Polymorphism 277

notion of polymorphism.

Subtype polymorphism is one way of polymorphism, which is based on

the notion of subtyping. Recall that a type is a set of values. Sometimes,

one type is a subset of another type. For example, any values that belong

to {a : num, b : num} are values of {a : num}, so {a : num, b : num} is a
subset of {a : num}. When �1 is a subset of �2, we say that �1 is a subtype
of �2 and �2 is a supertype of �1. For example, {a : num, b : num} is a

subtype of {a : num} and {a : num} is a supertype of {a : num, b : num}.
This is the notion of subtyping.

Roughly speaking, subtyping is an “A is a B” relation betwen types. As

an example, consider Animal and Cat, which denote the type of every

animal and the type of every cat, respectively. We know that a cat is an

animal. Then, we can say that Cat is a subtype of Animal. On the other

hand, can we say that an animal is a cat? No, because there is an animal

that is not a cat. For instance, a dog is an animal, but not a cat. Thus,

Animal is not a subtype of Cat. We can do the same thing for record types.

A record that has fields a and b is a record that has a. (For brevity, ignore

the types of the fields here.) Therefore, {a : num, b : num} is a subtype

of {a : num}. On the other hand, a record that has a is not a record that

has both a and b since it may lack b. As a consequence, {a : num} is not a
subtype of {a : num, b : num}.

Mathematically, subtyping is a relation over types and types.

<:⊆) ×)

We write �1 <: �2 to denote that �1 is a subtype of �2. For example, both

Cat <: Animal and {a : num, b : num} <: {a : num} are true.

Now, let us see how subtyping induces polymorphsim. The key insight

is that any expression of �1 can be treated as an expression of �2 without

breaking type soundnesswhen �1 is a subtype of �2. For example, suppose

that there is an animal hospital that cures any animal. We can consider

the hospital as a function that takes a value of Animal. A cat is an animal,

so any cat can be cured in the hospital. Thus, if an expression evaluates

to a value of Cat, it can be considered as an expression that evaluates

to a value of Animal and safely given to the function representing the

hospital. On the other hand, the inverse is false. If a hospital cures only

cats and we know only that someone has an animal, then we cannot say

to him or her to carry the animal to the hospital. There is no guarantee

that the hospital will be able to cure the animal. Thus, the fact that �1 is a

subtype of �2 does not imply that any expression of �2 can be treated as an

expression of �1. In a similar fasion, any expression of {a : num, b : num}
can be treated as an expression of {a : num}, but the inverse is false. We

can express this idea with the following typing rule:

Rule Typ-Sub

If the type of 4 is �′ under Γ and �′ is a subtype of �,
then the type of 4 is � under Γ.

Γ ` 4 : �′ �′ <: �

Γ ` 4 : �
[Typ-Sub]

23 Subtype Polymorphism 278

The rule states that if 4 is an expression of �′, then it is an expression of �
at the same time when �′ is a subtype of �.

Subtyping has two important characteristics. It is reflexive and transitive.

The reason is clear. Every set is a subset of itself. Thus, every type is a

subtype of itself. In addition, if � is a subset of � and � is a subset of

�, then � is a subset of �. Therefore, if �1 is a subtype of �2 and �2 is

a subtype of �3, then �1 is a subtype of �3. We can formally state these

properties with the following subtyping rules, which describe when two

types are in the subtype relation.

Rule Sub-Refl

� is a subtype of �.

� <: � [Sub-Refl]

Rule Sub-Trans

If �1 is a subtype of �2 and �2 is a subtype of �3,

then �1 is a subtype of �3.

�1 <: �2 �2 <: �3

�1 <: �3

[Sub-Trans]

If we have only Rule Sub-Refl and Rule Sub-Trans, we cannot prove

any interesting subtype relationships, e.g. {a : num, b : num} <: {a :

num}, even though both of the rules can help us prove interesting

subtype relationships by being used with other subtyping rules. Thus,

we introduce subtyping rules for record types in the next section.

23.3 Subtyping of Record Types

Consider the previous example again. The type system should be able to

prove {a : num, b : num} <: {a : num}. To achieve the goal, we define the

following subtyping rule:

Rule Sub-Width

{;1 : �1 , · · · , ;= : �= , ; : �} is a subtype of {;1 : �1 , · · · , ;= : �=}.

{;1 : �1 , · · · , ;= : �= , ; : �} <: {;1 : �1 , · · · , ;= : �=} [Sub-Width]

Any value of {;1 : �1 , · · · , ;= : �= , ; : �} is a value of {;1 : �1 , · · · , ;= : �=}
because a record that has fields from ;1 to ;= and ; additionally is a record

that has fields from ;1 to ;= . Therefore, the rule is valid.

Now, {a : num, b : num} <: {a : num} is true. Using this fact, the following

proof tree proves that {a : num} is a type of {a = 1, b = 2}:

23 Subtype Polymorphism 279

∅ ` 1 : num ∅ ` 2 : num

∅ ` {a = 1, b = 2} : {a : num, b : num}
{a : num, b : num} <: {a : num}

∅ ` {a = 1, b = 2} : {a : num}

In addition, the following expression is now well-typed:

val x={a = 1, b = 2} in
val y=(�x:{a : num}.x.a) x in
(�x:{a : num, b : num}.x.a + x.b) x

{a : num, b : num} is a type of x, so the second function application is

well-typed. At the same time, by Rule Typ-Sub, {a : num} also is a type of

x, so the first function application is well-typed as well.

If we use Rule Sub-Width and Rule Sub-Trans together, other interesting

subtype relationships can be proven. For example, the following proof

tree proves that {a : num, b : num, c : num} is a subtype of {a : num}.

{a : num, b : num, c : num} <: {a : num, b : num} {a : num, b : num} <: {a : num}
{a : num, b : num, c : num} <: {a : num}

By the same principle, {}, which is the empty record type, is a supertype

of every record type. In other words, every record type is a subtype of

{}.

Alas, the type system is still restrictive. The following expression is

ill-typed but does not cause run-time errors:

val x={a = 1, b = 2} in
val y=(�x:{b : num, a : num}.x.a + x.b) x in
(�x:{a : num, b : num}.x.a + x.b) x

The type of x is {a : num, b : num}. Therefore, the second function

application is well-typed, while the first function application is not.

We need to make x be a value of {a : num, b : num} and a value of

{b : num, a : num} at the same time. Like before, fixing Rule Typ-Record

cannot be a proper solution. The correct solution is to add anew subtyping

rule.

The key idea to define a new subtyping rule is that the order between

fields does not matter at all. For example, a record that has fields a

and b is a record that has fields b and a. Thus, it is safe to consider

{a : num, b : num} as a subtype of {b : num, a : num}. By generalizing

this observation, we define the following subtyping rule:

Rule Sub-Perm

If (;1 , �1), · · · , (;= , �=) is a permutation of (;′
1
, �′

1
), · · · , (;′= , �′=),

then {;1 : �1 , · · · , ;= : �=} is a subtype of {;′
1

: �′
1
, · · · , ;′= : �′=}.

(;1 , �1), · · · , (;= , �=) is a permutation of (;′
1
, �′

1
), · · · , (;′= , �′=)

{;1 : �1 , · · · , ;= : �=} <: {;′
1

: �′
1
, · · · , ;′= : �′=}

[Sub-Perm]

The rule states that altering the order between the fields of a record type

results in a subtype of the record type.

23 Subtype Polymorphism 280

1: If we strengthen a type, a subtype is ob-

tained in the sense that a subtype imposes

a stronger condition on its value than the

original type.

The following proof tree proves that {a : num, b : num} is a subtype of

{b : num, a : num}:

(a, num), (b, num) is a permutation of (b, num), (a, num)
{a : num, b : num} <: {b : num, a : num}

If we use multiple subtyping rules together, other interesting subtype

relationships can be proven. For example, the following proof tree proves

that {a : num, b : num} is a subtype of {b : num}.

(a, num), (b, num) is a permutation of (b, num), (a, num)
{a : num, b : num} <: {b : num, a : num}

{b : num, a : num} <: {b : num}

{a : num, b : num} <: {b : num}

Even after the addition of Rule Sub-Width and Rule Sub-Perm, the type

system still can be improved more. Consider the following expression:

val x={a = {a = 1, b = 2}} in
val y=(�x:{a : {a : num}}.x.a.a) x in
(�x:{a : {a : num, b : num}}.x.a.a + x.a.b) x

The above expression does not incur any run-time errors. However,

the first function application is ill-typed, while the second function

application is well-typed. We need to make {a = {a = 1, b = 2}} be a

value of {a : {a : num}} and a value of {a : {a : num, b : num}} at the
same time by adding a subtyping rule.

The current type system is too strict about the types of fields in records.

For example, consider {a : {a : num, b : num}} and {a : {a : num}}. A
value of {a : {a : num, b : num}} has at least one field, whose name is a.

The value of the field is a value of {a : num, b : num}. We already know

that any value of {a : num, b : num} is a value of {a : num}. Therefore,
we can say that a value of {a : {a : num, b : num}} has at least one field,
whose name is a and type is {a : num}. In fact, it is the characteristic of a

value of {a : {a : num}}. As a result, any value of {a : {a : num, b : num}}
is a value of {a : {a : num}} at the same time, so {a : {a : num, b : num}}
must be a subtype of {a : {a : num}}. By generalizing this observation,

we define the following subtyping rule:

Rule Sub-Depth

If �1 is a subtype of �′
1
, · · · , �= is a subtype of �′= ,

then {;1 : �1 , · · · , ;= : �=} is a subtype of {;1 : �′
1
, · · · , ;= : �′=}.

�1 <: �′
1

· · · �= <: �′=

{;1 : �1 , · · · , ;= : �=} <: {;1 : �′
1
, · · · , ;= : �′=}

[Sub-Depth]

The rule states that strengthening
1
the type of each field in a record type

results in a subtype of the record type.

By using Rule Sub-Width and Rule Sub-Depth together, we can prove

that {a : {a : num, b : num}} is a subtype of {a : {a : num}}.

23 Subtype Polymorphism 281

{a : num, b : num} <: {a : num}
{a : {a : num, b : num}} <: {a : {a : num}}

23.4 Subtyping of Function Types

It is time to consider a subtyping rule for function types. A function type

consists of a parameter type and a return type. Let us discuss return

types first.

Consider two function types: �1 → �2 and �1 → �′
2
. Assume that �2 is a

subtype of �′
2
. A value of �1 → �2 is a function that takes a value of �1

and returns a value of �2. Since �2 is a subtype of �′
2
, any value of �2 is a

value of �′
2
. Therefore, we can say that a function of �1 → �2 returns a

value of �′
2
. It implies that the function is a value of �1 → �′

2
at the same

time. Thus, any value of �1 → �2 is a value of �1 → �′
2
, and �1 → �2 is a

subtype of �1 → �′
2
. The following rule formalizes this fact:

Rule Sub-Ret

If �2 is a subtype of �′
2
,

then �1 → �2 is a subtype of �1 → �′
2
.

�2 <: �′
2

�1 → �2 <: �1 → �′
2

[Sub-Ret]

Function types preserve the subtype relationship between their return

types. Suppose that there are two function types. If their parameter types

are the same and the return type of the former is a subtype of the return

type of the latter, then the former is a subtype of the latter. For example,

num→ {a : num, b : num} is a subtype of num→ {a : num}.

Now, let us discuss parameter types. Consider two function types: �1 →
�2 and �′

1
→ �2. Assume that �′

1
is a subtype of �1. A value of �1 → �2 is

a function that takes a value of �1 and returns a value of �2. Since �′
1
is a

subtype of �1, any value of �′
1
is a value of �1. Therefore, a function of

�1 → �2 should work properly when a value of �′
1
is given. We can say

that the function takes a value of �′
1
and returns a value of �2. It implies

that the function is a value of �′
1
→ �2 at the same time. Thus, any value

of �1 → �2 is a value of �′
1
→ �2, and �1 → �2 is a subtype of �′

1
→ �2.

The following rule formalizes this fact:

Rule Sub-Param

If �′
1
is a subtype of �1,

then �1 → �2 is a subtype of �′
1
→ �2.

�′
1
<: �1

�1 → �2 <: �′
1
→ �2

[Sub-Param]

Function types reverse the subtype relationship between their parameter

types. Suppose that there are two function types. If their return types

are the same and the parameter type of the former is a supertype of the

parameter type of the latter, then the former is a subtype of the latter. For

23 Subtype Polymorphism 282

example, {a : num} → num is a subtype of {a : num, b : num} → num.

We can combine Rule Sub-Ret and Rule Sub-Param to form a single rule.

Rule Sub-ArrowT

If �′
1
is a subtype of �1 and �2 is a subtype of �′

2
,

then �1 → �2 is a subtype of �′
1
→ �′

2
.

�′
1
<: �1 �2 <: �′

2

�1 → �2 <: �′
1
→ �′

2

[Sub-ArrowT]

23.5 Top and Bottom Types

Now, we add two types to STFAE.

� ::= · · · | top | bottom

top is the top type. The type denotes the set of every value. The set is

a superset of any set of values. Thus, the top type is a supertype of

every type. In other words, every type is a subtype of the top type. The

following is the subtyping rule for the top type:

Rule Sub-TopT

� is a subtype of top.

� <: top [Sub-TopT]

The top type can be used to give a single type to two or more com-

pletely irrelevant expressions. Suppose that the language has conditional

expressions. Then, the type of the following expression is {a : num}:

if0 0 {a = 1} {a = 1, b = 2}

However, the following expression is ill-typed in STFAE when the top

type does not exist:

if0 0 {a = 1} 1

By extending STFAE with the top type, the type of the above expression

can be top.

bottom is the bottom type, which is the dual of the top type. The bottom

type denotes the empty set. Since the empty set is a subset of any set, the

bottom type is a subtype of every type, and every type is a supertype

of the bottom type. The following is the subtyping rule for the bottom

type:

Rule Sub-BottomT

bottom is a subtype of �.

bottom <: � [Sub-BottomT]

23 Subtype Polymorphism 283

Even though no value is a value of the the bottom type, the bottom type

is useful. It can be the type of expressions that throw exceptions or call

first-class continuations. Those expressions do not evaluate to any values.

They just change control flows. Thus, it is quite natural to say that the

type of such an expression is the bottom type.

23.6 Exercises

Exercise 23.1 Write whether each expression is well-typed in STFAE
without the top type, If so, draw the type derivation. Otherwise, explain

why.

1. if0 1 {} 2

2. if0 1 {} {a = 2}

Exercise 23.2 If we change Rule Sub-ArrowT like below, the language is

not type sound.

�1 <: �′
1

�2 <: �′
2

�1 → �2 <: �′
1
→ �′

2

Write an expression that is accepted by the new type system but causes a

run-time error.

Exercise 23.3 Complete the following implementation of an STFAE
subtype checker:

sealed trait Type

case object TopT extends Type

case object BottomT extends Type

case object NumT extends Type

case class ArrowT(p: Type, r: Type) extends Type

case class RecordT(fs: Map[String, Type]) extends Type

def subtype(t1: Type, t2: Type): Boolean = (t1, t2) match {

case ??? => true

case ??? => true

case ??? => true

case (ArrowT(p1, r1), ArrowT(p2, r2)) => ???

case (RecordT(fs1), RecordT(fs2)) => ???

case _ => false

}

whereRecordT(Map(;1 -> �1, · · · , ;= -> �=))denotes {;1 : �1 , · · · , ;= :

�=}.

The specification of subtype is as follows:

I subtype(�1, �2) is truewhen �1 <: �2 is true.

I subtype(�1, �2) is falsewhen �1 <: �2 is false.

Exercise 23.4 Complete the following implementation of a STFAE type

checker:

sealed trait Type

23 Subtype Polymorphism 284

case object NumT extends Type

case class ArrowT(p: Type, r: Type) extends Type

case object TopT extends Type

case object BottomT extends Type

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

case Num(n) => NumT

case Add(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

???

case Id(x) => tenv(x)

case Fun(x, t, b) =>

ArrowT(t, typeCheck(b, tenv + (x -> t)))

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

ft match {

case NumT => ???

case ArrowT(pt, rt) => ???

case TopT => ???

case BottomT => ???

}

case Throw => BottomT

}

We say that � is the minimal type of 4 under Γ if and only if the following

conditions are satisfied:

I Γ ` 4 : �
I for every �′ satisfying Γ ` 4 : �′, � <: �′

If � is the minimal type of 4 under Γ, typeCheck(4, Γ) returns �. If there
is no � satisfying Γ ` 4 : �, typeCheck(4, Γ) throws an exception.

You may use the following helper function without defining it:

// returns true if t1 is a subtype of t2

// returns false otherwise

def subtype(t1: Type, t2: Type): Boolean

Exercise 23.5 Type is defined as the same as Exercise 23.3. Consider the

following implementation:

def lub(t1: Type, t2: Type): Type = (t1, t2) match {

case (BottomT, t) => ???

case (t, BottomT) => ???

case (NumT, NumT) => ???

case (ArrowT(p1, r1), ArrowT(p2, r2)) => ???

case (RecordT(fs1), RecordT(fs2)) => ???

case _ => TopT

}

def glb(t1: Type, t2: Type): Type = (t1, t2) match {

23 Subtype Polymorphism 285

case (TopT, t) => ???

case (t, TopT) => ???

case (NumT, NumT) => ???

case (ArrowT(p1, r1), ArrowT(p2, r2)) => ???

case (RecordT(fs1), RecordT(fs2)) => ???

case _ => BottomT

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case If0(c, t, f) => ???

}

lub and glb compute the least upper bound and the greatest lower bound of

given types, respectively. The least upper bound of �1 and �2 is �3 if and

only if the following three conditions are satisfied:

I �1 <: �3

I �2 <: �3

I for every �, if �1 <: � and �2 <: �, then �3 <: �

The greatest lower bound of �1 and �2 is �3 if and only if the following

three conditions are satisfied:

I �3 <: �1

I �3 <: �2

I for every �, if � <: �1 and � <: �2, then � <: �3

typeCheck satisfies the same condition as that of Exercise 23.4.

Complete the implementation.

Exercise 23.6 Consider TFAE with boxes in Exercise 19.3. When can

box �1 be a subtype of box �2? Write a new subtyping rule for box types.

Exercise 23.7 Consider TFAE with lists in Exercise 19.2.

1. When can list �1 be a subtype of list �2? Write a new subtyping rule

for list types.

2. Suppose that we extend the language as follows:

4 ::= · · · | 4[4] := 4

� ::= · · · | top
The typing rule for the new expression, which mutates an element

of a list, is as follows:

Γ ` 41 : list � Γ ` 42 : num Γ ` 43 : �

Γ ` 41[42] := 43 : �

When can list �1 be a subtype of list �2? Write a new subtyping rule

for list types.

Exercise 23.8 This exercise extends STFAE with first-class continuations.

4 ::= · · · | (vcc G in 4):�

The type of (vcc G in 4):� is � when it is well-typed.

23 Subtype Polymorphism 286

1. Write the typing rule of (vcc G in 4):� of the form Γ ` 4 : � .

2. Draw the type derivation tree of (vcc x in (x 1) 42):num.

Exercise 23.9 Many real-world languages, such as Scala and TypeScript,

provide intersection types. The intersection type of two types is a type

containing values that belong to both of the types. In other words, E is

an element of �1 ∧ �2, the intersection type of �1 and �2, if and only if E is

an element of both �1 and �2.

1. Write one or more subtyping rules each of which has �1 ∧ �2 <: �3

as a conclusion.

2. Write one or more subtyping rules each of which has �3 <: �1 ∧ �2

as a conclusion.

3. Draw a subtype derivation tree proving that �1 ∧ �2 <: �2 ∧ �1.

Exercise 23.10 Many real-world languages, such as Scala and TypeScript,

provide union types. The union type of two types is a type containing

values that belong to at least one of the types. In other words, E is an

element of (�1 ∨ �2), the union type of �1 and �2, if and only if E is an

element of either �1 or �2.

1. Write one or more subtyping rules each of which has (�1∨�2) <: �3

as a conclusion.

2. Write one or more subtyping rules each of which has �3 <: (�1∨�2)
as a conclusion.

3. Draw a subtype derivation tree proving that ((�1 ∨ �2) ∨ �3) <:

(�1 ∨ (�2 ∨ �3)).

Exercise 23.11 This exercise extends TVFAE to allow types with any

number (including zero) of variants.

4 ::= · · · | type C = G@� + · · · + G@�; 4 | 4 match G(G) → 4 , · · · , G(G) → 4

For example, you can write the following code in the extended language:

type fruit = apple@num + banana@num + cherry@num;

· · ·

Suppose that the operational semantics and the typing rules are the same

as those of TVFAE except that some rules are revised to handle zero or

more variants properly.

Some expressions are rejected by the type system even though they do

not cause run-time errors. The following expression is such an example:

type abc = apple@num + banana@num + cherry@num;

val f = �x:abc.(
x match
apple(a) → a

banana(b) → b

cherry(c) → c

);
type ab = apple@num + banana@num;

f (apple 42)

We want to add subtyping to the language to allow more expressions

including the above one. Add subtyping rule(s) of the form Γ ` � <: �

23 Subtype Polymorphism 287

to the language. Assume that the following rules already exist:

Γ ` � <: �
Γ ` �1 <: �2 Γ ` �2 <: �3

Γ ` �1 <: �3

Γ ` �′
1
<: �1 Γ ` �2 <: �′

2

Γ ` �1 → �2 <: �′
1
→ �′

2

Γ ` 4 : �′ Γ ` �′ <: �

Γ ` 4 : �

Exercise 23.12 Consider a language with exceptions. Its syntax and

semantics are as follows:

4 ::= = | 4 + 4 | G | �G:�.4 | 4 4 | throw 4 | try 4 catch 4
E ::= = | 〈�G.4 , �〉
A ::= E | ↑ E
� ::= num | �→ �/↑ � | top | bottom

� ` = ⇒ =
� ` 41 ⇒↑ E

� ` 41 + 42 ⇒↑ E
� ` 41 ⇒ E1 � ` 42 ⇒↑ E2

� ` 41 + 42 ⇒↑ E2

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

G ∈ Domain(�)
� ` G ⇒ �(G)

� ` �G:�.4 ⇒ 〈�G.4 , �〉
� ` 41 ⇒↑ E
� ` 41 42 ⇒↑ E

� ` 41 ⇒ E1 � ` 42 ⇒↑ E2

� ` 41 42 ⇒↑ E2

� ` 41 ⇒ 〈�G.4 , �′〉 � ` 42 ⇒ E2 �′[G ↦→ E2] ` 4 ⇒ A

� ` 41 42 ⇒ A

� ` 4 ⇒↑ E
� ` throw 4 ⇒↑ E

� ` 4 ⇒ E

� ` throw 4 ⇒↑ E

� ` 41 ⇒↑ E1 � ` 42 ⇒↑ E2

� ` try 41 catch 42 ⇒↑ E2

� ` 41 ⇒↑ E1 � ` 42 ⇒ 〈�G.4 , �′〉 �′[G ↦→ E1] ` 4 ⇒ A

� ` try 41 catch 42 ⇒ A

� ` 41 ⇒ E

� ` try 41 catch 42 ⇒ E

where

I � ` 4 ⇒ E implies that 4 evaluates to E under �, and
I � ` 4 ⇒↑ E implies that 4 throws an exception carrying E under �.

Note that each exception carries a single value, which can be used by

exception handlers.

A type �1 → �2/↑ �3 is a type of a function that takes a value of �1 as

an argument and either returns a value of �2 or throws an exception

23 Subtype Polymorphism 288

carrying a value of �3. The following subtyping rules are given:

� <: �
�1 <: �2 �2 <: �3

�1 <: �3

�′
1
<: �1 �2 <: �′

2
�3 <: �′

3

�1 → �2/↑ �3 <: �′
1
→ �′

2
/↑ �′

3

� <: top bottom <: �

Γ ` 4 : �1 ↑ �2 implies that 4 either evaluates to a value of �1 or throws an

exception carrying a value of �2. Write the typing rules of this language,

where one typing rule is given as follows:

Γ ` 4 : �′
1
↑ �′

2
�′

1
<: �1 �′

2
<: �2

Γ ` 4 : �1 ↑ �2

Type Inference 24

24.1 Syntax 290

24.2Type Inference as Decision Prob-

lem 290

Type Recovery 290

Non-Algorithmic Type Sys-

tem 291

24.3 Type Variables and Con-

straints 293

24.4Type Checker 295

Collecting Constraints 296

Solving Constraints 298

24.5 Improving Type Checker . . 302

Solving while Collecting . . 302

Removing Names of Type Vari-

ables 303

24.6Exercises 306

While type checking helps programmers by preventing run-time errors, it

gives programmers the burden of attaching type annotations to function

parameters. Compare the following code snippets:

def f(x: Int): Int =

x + 1

def f(x):

return x + 1

They arewritten in Scala and Python, respectively.While Scala, a statically

typed language, requires type annotations, Python, a dynamically typed

language, does not. Writing correct type annotations requires program-

mers’ time and effort. Besides, type annotations make code verbose. The

necessity of type annotations is a crucial downside of statically typed

languages.

For this reason, many languages provide type inference, which recovers

omitted type annotations. Under the presence of type inference, pro-

grammers can selectively write type annotations. When a particular type

annotation is beneficial for documentation purpose, they can leave it in

the code. Otherwise, they can omit the type annotation and save their

time. Then, the type checker will infer correct types for missing type

annotations.

Each real-world language has a different capability of type inference. For

example, Scala’s type checker can infer the parameter types of anonymous

functions used as arguments. The following code passes type checking:

def f(g: Int => Int): Int = g(0)

f(x => x + 1)

The type checker infers the type of x to Int. However, parameter types

cannot be inferred in other cases. Both lines of the following code do not

pass type checking:

def f(x) = x + 1

(x => x + 1)(0)

As these examples show, Scala’s type inference is quite limited. On the

other hand, OCaml and Haskell’s type inference is much more powerful.

They allow programmers to omit all the parameter type and return

type annotations. For example, the following code snippets pass type

checking:

I OCaml:

24 Type Inference 290

let f x = x + 1

I Haskell:

f x = x + 1

This chapter introduces a basic implementation of type inference by

implementing a type checker of TIFAE, which extends TFAE with type

inference.

24.1 Syntax

The syntax of TIFAE is as follows:

4 ::= = | 4 + 4 | G | �G.4 | 4 4

The only difference from TFAE is the absence of type annotations. TIFAE
allows omission of every type annotation, just like OCaml and Haskell,

so the syntax does not require type annotations.

24.2 Type Inference as Decision Problem

The usual type checking problem is formulated as the following decision

problem on an expression 4:

Is 4 well-typed?

A type checking algorithm is an algorithm solving this decision problem.

Our typeCheck function, which is an implementation of a type checking

algorithm, terminates without an exception if the answer is “yes” and

throws an exception if the answer is “no.”

This section formulates the type inference problem as a decision problem

in two different ways. While they reflect two different perspectives on

type inference, they define the same problem.

Type Recovery

We first define the type erasure of TFAE. Type erasure removes type

annotations from expressions. The type erasure of TFAE is defined as the

following function erase:

erase(=) = =
erase(41 + 42) = erase(41) + erase(42)

erase(G) = G
erase(�G:�.4) = �G.erase(4)
erase(41 42) = erase(41) erase(42)

It takes a TFAE expression as an input and outputs a TIFAE expression.

For example, erase(�x:num.x + x) is �x.x + x.

24 Type Inference 291

The type inference problem of TIFAE is the following decision problem

on a TIFAE expression 4:

Is there a well-typed TFAE expression 4′ such that erase(4′) = 4?

For example, when �x.x + x is given, the answer is “yes” because

�x:num.x + x is such a TFAE expression. On the other hand, when �x.x x
is given, the answer is “no” because there is no such expression. An

algorithm solving this decision problem is the type inference algorithm

of TIFAE.

From this perspective, type inference is to figure out whether there

are type annotations that can make a given expression become a well-

typed, fully type-annotated expression. If such type annotations exist,

the expression passes type checking. Otherwise, it is rejected by the

type checker. This formulation fits our intuitive understanding of type

inference.

Non-Algorithmic Type System

Consider the following static semantics of TIFAE:

Rule Typ-Num

The type of = is num under Γ.

Γ ` = : num [Typ-Num]

Rule Typ-Add

If the type of 41 is num under Γ and the type of 42 is num under Γ,

then the type of 41 + 42 is num under Γ.

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 + 42 : num
[Typ-Add]

Rule Typ-Id

If G is in the domain of Γ,

then the type of G is Γ(G) under Γ.

G ∈ Domain(Γ)
Γ ` G : Γ(G)

[Typ-Id]

Rule Typ-Fun

If the type of 4 is �2 under Γ[G : �1] for some �1,

then the type of �G:4. is �1 → �2 under Γ.

Γ[G : �1] ` 4 : �2

Γ ` �G.4 : �1 → �2

[Typ-Fun]

Rule Typ-App

24 Type Inference 292

If the type of 41 is �1 → �2 under Γ and the type of 42 is �1 under Γ,

then the type of 41 42 is �2 under Γ.

Γ ` 41 : �1 → �2 Γ ` 42 : �1

Γ ` 41 42 : �2

[Typ-App]

It is mostly the same as the type system of TFAE. The only difference is

in Rule Typ-Fun. While the expression does not have �1, it is used in the

premise. �1 just comes out of thin air. How can it be possible?

A type system does not necessarily let us know how to implement a type

checker. Its goal is to declare whether a certain expression is well-typed

or not. Therefore, �1 coming out of thin air cannot be any problem. This

type system still tells us the well-typedness of each TIFAE expression.

For example, we can prove that �x.x + x is well-typed with the type

system:

x ∈ Domain([x : num])
[x : num] ` x : num

x ∈ Domain([x : num])
[x : num] ` x : num

[x : num] ` x + x : num

∅ ` �x.x + x : num→ num

Why have we chosen num as �1? So far, it is just our intuition. The type

system does not let us know how we can choose a type for �1, and we

do not have any systematic explanation. However, if we choose num
somehow, we can prove that the type of �x.x + x is num → num. In

addition, if we try to prove that the type of �x.x x is � for some �, we will

conclude that it is impossible after a few attempts. As these examples

show, the type system allows us to determine the well-typedness of each

expression, while it does not tell us how.

We say that this type system is non-algorithmic, or declarative, because it
only declares well-typed expressions but does not directly give us an

algorithm to check the well-typedness of each expression. It is different

frommost of the type systems we saw before this chapter. Except the type

system of STFAE, which also is non-algorithmic, all the other type systems

are algorithmic, or syntax-directed. They let us know how to implement

type checking algorithms in a syntax-directed fashion, i.e., by giving an

exact type-checking procedure for each syntactic form of an expression.

The type inference problem of TIFAE is the following decision problem

on a TIFAE expression 4:

Is 4 well-typed under this non-algorithmic type system?

Like before, the answer to �x.x + x is “yes,” and the answer to �x.x x

is “no.” The type inference algorithm of TIFAE is the same as the type

checking algorithm of this non-algorithmic type system.

From this perspective, the type inference problem asks us to design

a type checking algorithm of a non-algorithmic type system. Since a

non-algorithmic type system is literally non-algorithmic, finding a type

checking algorithm is a nontrivial problem.

24 Type Inference 293

24.3 Type Variables and Constraints

Now, our goal is to design and implement a type inference algorithm

of TIFAE. We mostly focus on the first perspective on type inference.

Therefore, the decision problem we want to solve is as follows:

Is there a well-typed TFAE expression 4′ such that erase(4′) = 4?

Our type checker must terminate without an exception if the answer is

“yes” and throw an exception if the answer is “no.” Before going into the

detailed implementation, this section gives you a high-level idea of type

inference.

The goal of type inference is to find proper types for missing type anno-

tations in a given expression. If such types exist, the type checker accepts

the expression. Otherwise, it rejects the expression. For this purpose, the

type checker attaches a type variable to each function parameter before

starting type inference. For example, �x.x + x becomes �x:X.x + x where

X is a type variable. Similarly, �x.�y.x + y becomes �x:X.�y:Y.x + y, and
((�x.x) 1) + ((�x.x) 2) becomes ((�x:X.x) 1) + ((�x:Y.x) 2). During type

inference, each type variable acts as a type, just like ordinary types such

as num and num→ num. Now, the goal of the type inference is to find a

correct type for each type variable.

Note that type variables are different from program variables and type

parameters. They are similar to variables in mathematical equations.

Consider the following system of equations:

G + H = 3

2G + 3H = 7

By solving this system, we get G = 2 and H = 1 as the solution. Similarly,

the type checker creates a system of equations for type variables. The

following system of equations is an example:

X = num
X→ num = Y→ num

By solving the system, the type checker gets X = num and Y = num. In

the context of type inference, each equation consisting a system is called

a constraint.

How does the type checker construct such a system of equations? It

collects constraints by checking how each subexpression is used in a

given expression. Let us consider various examples.

Single Solution: Number Consider �x:X.x + x. This expression uses

x for addition. Addition is possible for only integers. Thus, the type of

xmust be num. Since the type of x is X, the type checker concludes that

X = num. This is the only constraint that can be found. Therefore, the

type checker gets the following system:

X = num

24 Type Inference 294

The solution to this system is X = num. By applying this solution to the

original expression, we get �x:num.x + x, which is a well-typed TFAE
expression.

Single Solution: Function Consider �x:X.(x 0) + 1. The expression

applies x to 0. The type of x must be a function type. In addition, the

parameter type of x must be num because the type of its argument, 0,

is num. On the other hand, there is no information to decide the return

type of x yet. Thus, the type checker introduces a new type variable Y

and uses it as the return type. This results in the constraint X = num→ Y.

In addition, the type of x 0 is Y. The return value, whose type is Y, is

used for addition. Therefore, The type checker gets one more constraint,

Y = num, and completes the following system:

X = num→ Y

Y = num

The solution to this system is X = num→ num and Y = num. By applying

this solution to the original expression, we get �x:num→ num.(x 0) + 1,

which is a well-typed TFAE expression.

Multiple Solutions In mathematics, there is a system of equations with

multiple solutions. The following system is such an example:

G − 2H = 0

3G − 6H = 0

G = 2 and H = 1 are one possible solution. G = 4 and H = 2 are also a

solution. Any G and H satisfying G = 2H are a solution to this system.

Similarly, there is an expression generating a system with multiple

solutions. Consider �x:X.�y:Y.x y. This expression applies x to y, whose

type is Y. Therefore, the type of x is Y→ Z, where Z is a new type variable.

This gives X = Y→ Z, which is the only constraint. Thus, the type checker

gets the following system:

X = Y→ Z

This system has multiple solutions. One solution is X = num → num,

Y = num, and Z = num. It is easy to find more solutions. The existence of

multiple solutions is not a problem at all. If at least one solution exists, we

have type annotations making a given expression well-typed. Therefore,

expressions with multiple solutions also pass type checking.

No Solution: Conflicting Requirements In mathematics, there is a

system of equations without any solutions. One example is below.

G − 2H = 1

3G − 6H = 0

Similarly, there is an expression generating a system with no solutions.

24 Type Inference 295

Consider�x:X.(x 0)+x. Because of x 0, the type checker gets X = num→ Y,

where Y is a new type variable. At the same time, using x 0 and x for

addition gives Y = num and X = num. The resulting system is as follows:

X = num→ Y

Y = num
X = num

By inlining the second constraint in the first constraint, we can simplify

the system as follows:

X = num→ num
X = num

To satisfy both constraints, Xmust be num→ num and num at the same

time. Such conflicting requirements cannot be satisfied. It is impossible to

annotate the original expression to make a well-typed TFAE expression.

Thus, the type checker rejects the expression.

No Solution: Cyclic Constraint Consider �x:X.x x. The only constraint

is X = X→ Y, obtained from x x. Therefore, the type checker constructs

the following system:

X = X→ Y

This system does not have any solutions either. The reason is that X occurs

in X→ Y. If a type occurs in another type, the two types cannot be the

same.

24.4 Type Checker

This section implements a type checker of TIFAE.

We define type variables as follows:

sealed trait Type

...

case class VarT(x: String) extends Type

For instance, VarT("X") denotes the type variable X. We implement the

abstract syntax is as usual:

sealed trait Expr

...

case class Fun(x: String, t: Type, b: Expr) extends Expr

This allows the type checker to attach type variables to parameters. For ex-

ample, Fun("x", VarT("X"), Add(Id("x"), Id("x"))) corresponds

to �x:X.x + x. Note that it is still possible for programmers to attach type

annotations to parameters because the type of t is still Type. However, to

24 Type Inference 296

focus on type inference, this chapter does not consider expressions with

type annotations.

Following the high-level idea illustrated in the previous section, the type

checker consists of two steps: collecting constraints and solving them.

Collecting Constraints

The constraints-collecting procedure is similar to the usual type checking

procedure. The type of each subexpression in a given expression is

computed. However, while the usual procedure immediately checks

whether the type of each subexpression fits the required type, the new

procedure adds constraints to a global constraint list in order to solve

them later.

For this purpose, we define the global constraint list as follows:

import scala.collection.mutable.ListBuffer

val constraints: ListBuffer[(Type, Type)] = ListBuffer()

A ListBuffer is a mutable list. While we can avoid mutation by using a

strategy similar to store-passing style, we simply use mutable collections

because the main focus of this chapter is type inference, not mutation.

Adding (�1, �2) to the list corresponds to adding the constraint �1 =

�2.

We implement the typeCheck function, which collects the constraints

from a given expression, as follows:

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

case Num(_) => NumT

case Add(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

constraints.append((lt, NumT))

constraints.append((rt, NumT))

NumT

case Id(x) => tenv(x)

case Fun(x, t, b) =>

ArrowT(t, typeCheck(b, tenv + (x -> t)))

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

val rt = VarT(fresh())

constraints.append((ft, ArrowT(at, rt)))

rt

}

def fresh(): String = ...

The Num, Id, and Fun cases are the same as before. They do not add any

constraints. On the other hand, the types of both operands for addition

must be num, so the Add case adds two constraints. In a similar manner,

24 Type Inference 297

the App case also adds a constraint. The fresh function returns a new

type variable.

Let us run typeCheckwith the examples in the previous section.

I �x:X.x + x

typeCheck(

Fun("x", VarT("X"), Add(Id("x"), Id("x"))),

Map()

)

println(constraints)

It prints

ListBuffer(

(VarT(X), NumT),

(VarT(X), NumT)

)

which is equivalent to the following system:

X = num
X = num

I �x:X.(x 0) + 1

typeCheck(

Fun("x", VarT("X"), Add(App(Id("x"), Num(0)), Num(1))),

Map()

)

println(constraints)

It prints

ListBuffer(

(VarT(X), ArrowT(NumT, VarT(Y))),

(VarT(Y), NumT),

(NumT, NumT)

)

which is equivalent to the following system:

X = num→ Y

Y = num
num = num

I �x:X.�y:Y.x y

typeCheck(

Fun("x", VarT("X"), Fun("y", VarT("Y"), App(Id("x"), Id("y")))),

Map()

)

println(constraints)

It prints

ListBuffer((VarT(X), ArrowT(VarT(Y), VarT(Z))))

24 Type Inference 298

which is equivalent to the following system:

X = Y→ Z

I �x:X.(x 0) + x

typeCheck(

Fun("x", VarT("X"), Add(App(Id("x"), Num(0)), Id("x"))),

Map()

)

println(constraints)

It prints

ListBuffer(

(VarT(X), ArrowT(NumT, VarT(Y))),

(VarT(Y), NumT),

(VarT(X), NumT)

)

which is equivalent to the following system:

X = num→ Y

Y = num
X = num

I �x:X.x x

typeCheck(

Fun("x", VarT("X"), App(Id("x"), Id("x"))),

Map()

)

println(constraints)

It prints

ListBuffer((VarT(X), ArrowT(VarT(X), VarT(Y))))

which is equivalent to the following system:

X = X→ Y

As these examples show, the constraints collected by the procedure are

the same as our expectation, only except that there additionally are

redundant or trivially satisfied constraints.

Solving Constraints

Let us see how to solve a system of equations for type variables. We use a

mutable map to denote a solution. Like before, we use mutation to focus

only on type inference, although we can avoid mutation.

import scala.collection.mutable.Map

val solution: Map[String, Type] = Map()

By importing scala.collection.mutable.Map, we can use mutable

maps. When solution contains - -> �, the solution to a type variable

24 Type Inference 299

- is a type �. For example, "X" -> NumT means that the solution to X

is num. On the other hand, if map does not contain - as a key, then -

can be any type. Initially, the map is empty since we have not solved

the system and each type variable can be any type. During the solving

procedure, the type checker adds entries to the map by considering each

constraint.

The main function of the solving procedure is the following solve

function:

def solve() =

for ((t1, t2) <- constraints)

unify(t1, t2)

It iterates over the constraints list and possibly updates the solution

map at each iteration. The unify function updates the map. It takes two

types as arguments and updates the map by using the fact that the two

types are equal.

def unify(t1: Type, t2: Type): Unit =

(t1, t2) match {

...

}

Its behavior depends on what given types are. The simplest case is when

both are num.

case (NumT, NumT) =>

Since they are already equal, there is nothing to do. The function imme-

diately returns.

On the other hand, if they are different, it throws an exception.

case (NumT, ArrowT(_, _)) | (ArrowT(_, _), NumT) => error()

When both types are function types, their parameter types and return

types are unifed, respectively.

case (ArrowT(pt1, rt1), ArrowT(pt2, rt2)) =>

unify(pt1, pt2)

unify(rt1, rt2)

It follows the fact that if �1 → �′
1
= �2 → �′

2
, then �1 = �2 and �′

1
= �′

2
.

When at least one of given types is a type variable, it becomes a little

more complicated. Suppose that t1 is a type variable.

case (t1 @ VarT(x), t2) =>

if (t1 == t2)

()

else

solution(x) = t2

24 Type Inference 300

If t2 is the same type variable, they are already equal, so there is nothing

to do, just like the (NumT, NumT) case. Otherwise, to make the two types

equal, the type checker sets t2 as the solution to t1 by updating the

solutionmap.

However, the above code is not quite right for two reasons. First, there can

be a solution to t1 already. Suppose that t1 is VarT("X") and solution

has "X" -> NumT. If t2 is ArrowT(NumT, NumT), the type variable X

should be num and num→ num at the same time, which is impossible. In

this case, the type checker must throw an exception.

One may think considering the value of solution.get(t1) is enough

to solve this problem. Unfortunately, it is wrong. The reason is that a

solution to a type variable can be another type variable. For example, the

map can contain "X" -> VarT("Y") and "Y" -> NumT. In this case, the

type denoted by X is num, not Y. Therefore, we define a recursive function

to find the type denoted by each type variable.

def resolve(ty: Type): Type = ty match {

case VarT(x) => solution.get(x) match {

case None => ty

case Some(t) => resolve(t)

}

case _ => ty

}

The resolve function computes the type denoted by a given type, which

can be a type variable. If the given type is not a type variable, it returns

the type per se. If the type is a type variable, it checks the solutionmap.

If the map does not contain the type variable, the type variable can be

any type, so it just returns the type variable as it is. If the map has a

solution type to the type variable, it makes a recursive call on the type to

handle cases that the type is another type variable.

The results of resolve(VarT("X")) under various conditions are as

follows:

I When solution is Map(): VarT("X")

I When solution is Map("X" -> NumT): NumT

I When solution is Map("X" -> VarT("Y")): VarT("Y")

I When solution is Map("X" -> VarT("Y"), "Y" -> NumT): NumT

Now, we resolve types before unifying them.

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

}

It prevents a type variable from having a solution in the map already. If

the resolved type is a type variable, the type variable is guaranteed not

to have a solution. It allows the type checker to set t2 as the solution to

t1without worrying any conflicts.

Another problem is that t1 can occur in t2. For example, t2 can be

ArrowT(VarT("X"), NumT), where t1 is VarT("X"). As mentioned al-

ready, there are no solutions in such cases. Thus, the type checker must

24 Type Inference 301

throw an exception. To detect such cases, it must check whether t1 occurs

in t2. For this purpose, we define the following occurs function:

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

case NumT => false

case ArrowT(l, r) => occurs(t1, l) || occurs(t1, r)

case t2 @ VarT(_) => t1 == t2

}

The function checks whether a type variable t1 occurs in a type t2.

When t2 is NumT, t1 does not occur in t2. On the other hand, when t2

is a function type, we can say that t1 occurs in t2 if t1 occurs in either

parameter type or return type. When t2 is a type variable, t1 occurs in

t2 if they are the same.

Now, we fix unify to call occurs.

case (t1 @ VarT(x), t2) =>

if (t1 == t2)

()

else if (occurs(t1, t2))

error()

else

solution(x) = t2

Like before, if t1 and t2 are the same type variable, there is nothing to

do. If t1 occurs in t2, it throws an exception. Otherwise, t2 becomes the

solution to t1.

The only remaining case is when t2 is a type variable. As we already

have implemented the case when t1 is a type variable, it is enough to

call unify again with t1 and t2 swapped.

case (t1, t2 @ VarT(_)) => unify(t2, t1)

By combining all the cases, we complete unify as below.

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

case (t1 @ VarT(x), t2) =>

if (t1 == t2)

()

else if (occurs(t1, t2))

error()

else

solution(x) = t2

case (t1, t2 @ VarT(_)) => unify(t2, t1)

case (NumT, NumT) =>

case (ArrowT(t3, t4), ArrowT(t5, t6)) =>

unify(t3, t5)

unify(t4, t6)

case (NumT, ArrowT(_, _)) |

(ArrowT(_, _), NumT) => error()

}

24 Type Inference 302

Let us run solvewith some of the examples in the previous section.

I �x:X.x + x
The constraints list is as follows:

ListBuffer(

(VarT(X), NumT),

(VarT(X), NumT)

)

In the first iteration, VarT("X") and NumT are unified. unify adds

"X" -> NumT to solution. In the second iteration, VarT("X") and

NumT are unified again. Since resolving VarT("X") gives NumT, it

goes to the (NumT, NumT) case, which does nothing. Therefore,

solution becomes Map("X" -> NumT) after running solve.

I �x:X.(x 0) + x
The constraints list is as follows:

ListBuffer(

(VarT(X), ArrowT(NumT, VarT(Y))),

(VarT(Y), NumT),

(VarT(X), NumT)

)

After the first two iterations, solution has "X" -> ArrowT(NumT,

VarT(Y)) and "Y" -> NumT. In the third iteration, VarT("X") and

NumT are unified. Since resolving VarT("X") gives ArrowT(NumT,

VarT(Y)), it goes to the (ArrowT(_, _), NumT) case,which throws

an exception.

I �x:X.x x

The constraints list is as follows:

ListBuffer((VarT(X), ArrowT(VarT(X), VarT(Y))))

Since occurs(VarT("X"), ArrowT(VarT("X"), VarT("Y"))) is

true, unify throws an exception.

24.5 Improving Type Checker

Solving while Collecting

While the current type checker starts solving after collecting all the con-

straints, we can implement a type checker that gradually improves the

solution each time it collects a new constraint. Since the type checker im-

mediately reflects each constraint in the solution, there is no need to store

constraints in the global list. Therefore, we do not use the collections

list anymore. In addition, solve is not required either because there is

no separate solving step. After removing collections and solve, the

only remaining change is to fix typeCheck to immediately call unify for

each constraint instead of storing the constraint in collections.

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case Add(l, r) =>

24 Type Inference 303

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

unify(lt, NumT)

unify(rt, NumT)

NumT

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

val rt = VarT(fresh())

unify(ft, ArrowT(at, rt))

rt

}

All the other functions remain the same.

Removing Names of Type Variables

Instead of giving a name to each type variable and storing their types in

the solution map, we can store a type in each nameless type variable

and avoid using the map. As the first step, we change the definition of

VarT as follows:

case class VarT(var ty: Option[Type]) extends Type

When a VarT has None, the type variable can be any type. It corresponds

to solution not having a certain type variable as a key. When a VarT has

Some(�), the solution to the type variable is �. To make such updates

possible, ty is defined as a mutable field.

Note that updating one type variable does not affect other type variables.

Consider the following code:

val tvx = VarT(None)

val tvy = VarT(None)

tvx.ty = Some(NumT)

After running this code, tvx.ty becomes Some(NumT), but tvy.ty re-

mains the same as None.

Due to this change, each expression initially has type variables containing

None, instead of their names. Containing only None, not Some, corresponds

to solution being empty in the beginning. Some examples of expressions

are below.

I �x:X.x + x

Fun("x", VarT(None), Add(Id("x"), Id("x")))

I �x:X.�y:Y.x y

Fun("x", VarT(None),

Fun("y", VarT(None), App(Id("x"), Id("y"))))

In addition, we need to modify the App case of typeCheck as follows:

24 Type Inference 304

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

val rt = VarT(None)

unify(ft, ArrowT(at, rt))

rt

Thus, fresh is no longer required.

Now, we need to fix unify, occurs, and resolve. Let us start with unify.

The first case of unify requires changes.

case (t1 @ VarT(_), t2) =>

if (t1 eq t2)

()

else if (occurs(t1, t2))

error()

else

t1.ty = Some(t2)

There are two changes. One is t1 == t2 being t1 eq t2. In Scala, ==

compares values structurally, but eq compares values physically. Consider

the following code:

val tvx = VarT(None)

val tvy = VarT(None)

println(tvx == tvy)

println(tvx eq tvy)

It prints true and false. Since both have None, they are structurally

equal. However, they are two distinct VarT objects stored in different

memory locations, so they are physically different. We want to check

whether two type variables are the same type variable, not whether they

have the same solution. Thus, we should use eq instead of ==.

Another change is solution(x) = t2 being t1.ty = Some(t2). This is

because that we now store the solution to each type variable in the type

variable itself, not the solutionmap.

We need a similar change in occurs as well.

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case t2 @ VarT(_) => t1 eq t2

}

For the same reason, == becomes eq.

Lastly, we fix resolve.

def resolve(ty: Type): Type = ty match {

case VarT(Some(t)) => resolve(t)

case _ => ty

}

24 Type Inference 305

Instead of looking up solution, it simply checks the optional type in a

VarT.

Combining all, our type checker implementation is as follows:

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

case Num(_) => NumT

case Add(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

unify(lt, NumT)

unify(rt, NumT)

NumT

case Id(x) => tenv(x)

case Fun(x, t, b) =>

ArrowT(t, typeCheck(b, tenv + (x -> t)))

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

val rt = VarT(None)

unify(ft, ArrowT(at, rt))

rt

}

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

case (t1 @ VarT(x), t2) =>

if (t1 eq t2)

()

else if (occurs(t1, t2))

error()

else

t1.ty = Some(t2)

case (t1, t2 @ VarT(_)) => unify(t2, t1)

case (NumT, NumT) =>

case (ArrowT(t3, t4), ArrowT(t5, t6)) =>

unify(t3, t5)

unify(t4, t6)

case (NumT, ArrowT(_, _)) |

(ArrowT(_, _), NumT) => error()

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

case NumT => false

case ArrowT(l, r) => occurs(t1, l) || occurs(t1, r)

case t2 @ VarT(_) => t1 eq t2

}

def resolve(ty: Type): Type = ty match {

case VarT(Some(t)) => resolve(t)

case _ => ty

}

24 Type Inference 306

Note that we do not need any global variables now.

24.6 Exercises

Exercise 24.1 This exercise extends TIFAE with pairs.

sealed trait Expr

...

case class Pair(l: Expr, r: Expr) extends Expr

case class Fst(e: Expr) extends Expr

case class Snd(e: Expr) extends Expr

sealed trait Type

...

case class PairT(l: Type, r: Type) extends Type

def resolve(ty: Type): Type = ...

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

case (PairT(l1, r1), PairT(l2, r2)) => ???

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case PairT(l, r) => ???

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case Pair(l, r) => ???

case Fst(e) => ???

case Snd(e) => ???

}

1. Complete the implementation. You may refer to the following

typing rules:

Γ ` 41 : �1 Γ ` 42 : �2

Γ ` (41 , 42) : �1 × �2

Γ ` 4 : �1 × �2

Γ ` 4.1 : �1

Γ ` 4 : �1 × �2

Γ ` 4.2 : �2

where

I (41 , 42) denotes Pair(41,42).
I 4.1 denotes Fst(4).

I 4.2 denotes Snd(4).

I �1 × �2 denotes PairT(�1,�2).

2. Write the result of typeCheck(4, Map()), where 4 is Fun("x",

VarT(None), Add(Fst(Id("x")), Num(42))), which represents

�x:X.((x.1) + 42).

24 Type Inference 307

Exercise 24.2 This exercise extends TIFAE with boxes. Complete the

following implementation:

sealed trait Expr

...

case class NewBox(e: Expr) extends Expr

case class OpenBox(b: Expr) extends Expr

case class SetBox(b: Expr, e: Expr) extends Expr

sealed trait Type

...

case class BoxT(t: Type) extends Type

def resolve(ty: Type): Type = ...

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

case (BoxT(t3), BoxT(t4)) => ???

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case BoxT(t) => ???

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case NewBox(e) => ???

case OpenBox(b) => ???

case SetBox(b, e) => ???

}

You may refer to the following typing rules:

Γ ` 4 : �

Γ ` box 4 : box �

Γ ` 4 : box �

Γ `!4 : �

Γ ` 41 : box � Γ ` 42 : �

Γ ` 41:=42 : �

where

I box 4 denotes NewBox(4).
I !4 denotes OpenBox(4).

I 41:=42 denotes SetBox(41, 42).

I box � denotes BoxT(�).

Exercise 24.3 This exercise extends TIFAE with lists. Complete the fol-

lowing implementation:

sealed trait Expr

...

case object Nil extends Expr

case class Cons(h: Expr, t: Expr) extends Expr

case class Head(e: Expr) extends Expr

24 Type Inference 308

case class Tail(e: Expr) extends Expr

sealed trait Type

...

case class ListT(t: Type) extends Type

def resolve(ty: Type): Type = ...

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

case (ListT(t3), ListT(t4)) => ???

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case ListT(t) => ???

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case Nil => ???

case Cons(h, t) => ???

case Head(e) => ???

case Tail(e) => ???

}

You may refer to the following typing rules:

Γ ` nil : list �
Γ ` 41 : � Γ ` 42 : list �

Γ ` cons 41 42 : list �

Γ ` 4 : list �

Γ ` head 4 : �

Γ ` 4 : list �

Γ ` tail 4 : list �

where

I nil denotes Nil.
I cons 41 42 denotes Cons(41, 42).

I head 4 denotes Head(4).
I tail 4 denotes Tail(4).
I list � denotes ListT(�).

Exercise 24.4 This exercise extends TIFAE with options. Complete the

following implementation:

sealed trait Expr

...

case object NoneE extends Expr

case class SomeE(e: Expr) extends Expr

case class Match(e: Expr, e1: Expr, x: String, e2: Expr) extends Expr

sealed trait Type

24 Type Inference 309

...

case class OptionT(t: Type) extends Type

def resolve(ty: Type): Type = ...

def unify(t1: Type, t2: Type): Unit =

(resolve(t1), resolve(t2)) match {

...

case (OptionT(t3), OptionT(t4)) => ???

}

def occurs(t1: VarT, t2: Type): Boolean =

resolve(t2) match {

...

case OptionT(t) => ???

}

def typeCheck(e: Expr, tenv: TEnv): Type = e match {

...

case NoneE => ???

case SomeE(e) => ???

case Match(e, e1, x, e2) => ???

}

You may refer to the following typing rules:

Γ ` none : option �
Γ ` 4 : �

Γ ` some 4 : option �

Γ ` 4 : option �′ Γ ` 41 : � Γ[G : �′] ` 42 : �

Γ ` 4 match none→ 41 , some G → 42 : �

where

I none denotes NoneE.

I some 4 denotes SomeE(4).
I 4 match none→ 41 , some G → 42 denotes Match(4, 41, G, 42).

I option �denotes OptionT(�), which is the type of an option possibly

containing a value of �.

Exercise 24.5 The following code implements type erasure of PTFAE:

object Erased {

sealed trait Expr

case class Num(n: Int) extends Expr

case class Add(l: Expr, r: Expr) extends Expr

case class Sub(l: Expr, r: Expr) extends Expr

case class Id(x: String) extends Expr

case class Fun(p: String, b: Expr) extends Expr

case class App(f: Expr, a: Expr) extends Expr

}

def erase(e: Expr): Erased.Expr = e match {

case Num(n) => Erased.Num(n)

case Add(l, r) => Erased.Add(erase(l), erase(r))

case Sub(l, r) => Erased.Sub(erase(l), erase(r))

24 Type Inference 310

case Id(x) => Erased.Id(x)

case Fun(p, t, b) => Erased.Fun(p, erase(b))

case App(f, a) => Erased.App(erase(f), erase(a))

case TyFun(a, e) => erase(e)

case TyApp(e, t) => erase(e)

}

1. Formally define the type erasure function erase(4) = 4 according

to the code.

2. Write the result of applying erase to each of the following expres-

sions:

a) (Λ
.�x:
.x)[num] 1
b) (Λ
.Λ�.�x:
.�y:�.y)[num][num] 1 2

3. Write a well-typed expression that becomes the each of the follow-

ing expressions by erase.

a) �x.(x (�x.x) (x 1))
b) (�x.�y.x x y) (�x.x) 1
c) (�x.x x 1) �y.y

Although Wells proved that the type inference problem of PTFAE
is undecidable in 1994 [Wel94], you can solve this problem with

your intution.

Exercise 24.6 Consider the following language:

4 ::= = | �G.4 1 ::= true � ::= num
| 1 | 4 4 | false | bool
| G | val G=4 in 4 | �→ �
| 4; 4 |

A type scheme � is a possibly polymorphic type, and a type environment

contains type schemes instead of types:

� ::= � | ∀
.�

Γ ∈ Id fin↦→ TypeScheme

Consider the following non-algorithmic type system:

Γ ` = : num Γ ` 1 : bool

G ∈ Domain(Γ) Γ(G) � �

Γ ` G : �

Γ ` 41 : �1 Γ ` 42 : �2

Γ ` 41; 42 : �2

Γ[G : �] ` 4 : �′

Γ ` �G.4 : �→ �′
Γ ` 41 : �→ �′ Γ ` 42 : �

Γ ` 41 42 : �′

Γ ` 41 : � � ≺Γ � Γ[G : �] ` 42 : �′

Γ ` val G=41 in 42 : �′

where

24 Type Inference 311

� � � � � �

∀
1. · · · ∀
= .� � �[
1 ← �1 , · · · ,
= ← �=]

� ≺Γ �
FTV(�) \ FTV(Γ) = {
1 , · · · ,
=}

� ≺Γ ∀
1. · · · ∀
= .�

FTV(num) = ∅
FTV(bool) = ∅

FTV(�1 → �2) = FTV(�1) ∪ FTV(�2)
FTV(
) = {
}

FTV(∀
.�) = FTV(�) \ {
}
FTV(Γ) = ⋃

G∈Domain(Γ) FTV(Γ(G))

(� denotes specialization of a type scheme to a type. ≺ denotes general-

ization of a type to a type scheme. FTV denotes free type variables in a

type or a type environment.)

Is each of the following expressions well-typed? If so, draw a type

derivation tree. Otherwise, explain why.

1. (�x.x 42) �y.y
2. (�x.x 42; x true) �y.y
3. val x=�y.y in x 42; x true

Note that this type system is called a Hindley-Milner type system, named

after two independent inventors of the type system, Hindley [Hin69] and

Milner [Mil78]. OCaml and Haskell are well-known for the use of this

type system.

Appendix

Solutions to Exercises A

Many exercises are meant to have multiple solutions. Each provided

solution may not be the only solution.

Exercise 3.1

def names(l: List[Student]): List[String] = l match {

case Nil => Nil

case h :: t => h.name :: names(t)

}

Exercise 3.2

def tall(l: List[Student]): List[Student] = l match {

case Nil => Nil

case h :: t =>

if (h.height > 170)

h :: tall(t)

else

tall(t)

}

Exercise 3.3

def length(l: List[Int]): Int = l match {

case Nil => 0

case h :: t => 1 + length(t)

}

Exercise 3.4

def append(l: List[Int], n: Int): List[Int] = l match {

case Nil => n :: Nil

case h :: t => h :: append(t, n)

}

$(=)

Exercise 4.1

def incBy(l: List[Int], n: Int): List[Int] = l.map(_ + n)

Exercise 4.2

def gt(l: List[Int], n: Int): List[Int] = l.filter(_ > n)

Exercise 4.3

def append(l: List[Int], n: Int): List[Int] =

l.foldRight(n :: Nil)(_ :: _)

Exercise 4.4

def reverse(l: List[Int]): List[Int] =

l.foldLeft(Nil: List[Int])((l, e) => e :: l)

A Solutions to Exercises 314

Exercise 6.1

1. No

2. No

3. No

4. No

5. Yes

Exercise 6.2

1. No

2. Yes

3. No

4. Yes

5. No

6. Yes

7. Yes

Exercise 6.3

1. No

2. Yes

3. Yes

4. Yes

5. No

6. Yes

Exercise 7.1

I val x�=(val x�=3 in 5 − x�) in 1 + x�
1. � → �, � → �

2. No shadowing

I val x�=3 in val y�=5 in 1 + x�
1. � → �

2. No shadowing

I val x�=3 in val x�=5 in 1 + x�
1. � → �

2. �→ �

Exercise 7.2

case Num(n) => Set()

case Add(l, r) => helper(l, env) ++ helper(r, env)

case Id(x) => Set()

case Val(x, e, b) =>

val s = if (env(x)) Set(x) else Set()

s ++ helper(e, env) ++ helper(b, env + x)

Exercise 8.1

1. Free identifier error

2. 5

3. 3

4. Free identifier error

5. Free identifier error

Exercise 9.1

A Solutions to Exercises 315

�1 = [x ↦→ 5]
�2 = �1[f ↦→ E1]
�3 = �2[g ↦→ E2]
�4 = �2[x ↦→ 1]
�5 = �1[y ↦→ 1]
E1 = 〈�y.y + x, �1〉
E2 = 〈�x.x, �2〉

expr env res

val x=5 in val f=�y.y + x in (�g.f (g 1)) (�x.x) ∅
5 ∅ 5

val f=�y.y + x in (�g.f (g 1)) (�x.x) �1

�y.y + x �1 E1

(�g.f (g 1)) (�x.x) �2

�g.f (g 1) �2 〈�g.f (g 1), �2〉
�x.x �2 E2

f (g 1) �3

f �3 E1

g 1 �3

g �3 E2

1 �3 1

x �4 1

y + x �5

y �5 1

x �5 5

Exercise 9.2

1. Dynamic scoping

2. The argument is the only identifier the body can use unless the

body defines a new identifier by itself.

3. Static scoping

Exercise 9.3

(�x.�y.x (10 − y)) �y.8 + y

Exercise 9.4

case Num(n) => Num(n)

case Id(x) => Id(x)

case Val(x, e, b) => App(Fun(x, desugar(b)), desugar(e))

case Fun(x, b) => Fun(x, desugar(b))

case App(f, a) => App(desugar(f), desugar(a))

Exercise 9.5

App(

App(

Fun("x", Fun("y", Fun("z",

App(App(Id("z"), Id("x")), Id("y"))

))),

desugar(f)

),

desugar(s)

)

Exercise 9.6

A Solutions to Exercises 316

(�x.�y.x) 0 0

Exercise 9.7

1 1

Exercise 9.8

�x.y

Exercise 9.9

1.

� ` 41 ⇒ E1 � ` 42 ⇒ E2

� ` (41 , 42) ⇒ (E1 , E2)

� ` 4 ⇒ (E1 , E2)
� ` 4.1⇒ E1

� ` 4 ⇒ (E1 , E2)
� ` 4.2⇒ E2

2.

∅ ` 8⇒ 8

∅ ` 320⇒ 320 ∅ ` 42⇒ 42

∅ ` (320, 42) ⇒ (320, 42)
∅ ` (320, 42).1⇒ 320

∅ ` (8, (320, 42).1) ⇒ (8, 320)
∅ ` (8, (320, 42).1).2⇒ 320

Exercise 9.10

� ` 41 ⇒ E1 · · · � ` 4= ⇒ E=

� ` {;1 : 41 , · · · , ;= : 4=} ⇒ 〈;1 : E1 , · · · , ;= : E=〉

� ` 4 ⇒ 〈· · · , ; : E, · · · 〉
� ` 4.; ⇒ E

Exercise 9.11

� ` ()⇒ ()

� ` 41 ⇒ () · · · � ` 4= ⇒ ()

� ` 41; · · · ; 4= ⇒ ()

� ` 41 ⇒ E1 · · · � ` 4< ⇒ E< E< ≠ () � ` 4<+1 ⇒ () · · · � ` 4= ⇒ ()

� ` 41; · · · ; 4= ⇒ E<

Exercise 9.12

fv(4) ⊆ Domain(�) ∪ {G}
� ` �G.4 ⇒ 〈�G.4 , �〉

A Solutions to Exercises 317

fv(4) * Domain(�) ∪ {G}
� ` �G.4 ⇒↑

Exercise 9.13

1.

� ` �G1 · · · G= .4 ⇒ 〈�G1 · · · G= .4 , �〉

� ` 40 ⇒ 〈�G1 · · · G= .4 , �′〉 � ` 41 ⇒ E1 · · · � ` 4= ⇒ E=
�′[G1 ↦→ E1 , · · · , G= ↦→ E=] ` 4 ⇒ E

� ` 40(41 , · · · , 4=) ⇒ E

2. �1 = [f ↦→ 〈�x.x, ∅〉, m ↦→ 8], �2 = [x ↦→ 8]

∅ ` �f m.f(m) ⇒ 〈�f m.f(m), ∅〉 ∅ ` �x.x⇒ 〈�x.x, ∅〉 ∅ ` 8⇒ 8

f ∈ Domain(�1)
�1 ` f⇒ 〈�x.x, ∅〉

m ∈ Domain(�1)
�1 ` m⇒ 8

x ∈ Domain(�2)
�2 ` x⇒ 8

�1 ` f(m) ⇒ 8

∅ ` (�f m.f(m))(�x.x, 8) ⇒ 8

Exercise 9.14

1.

�,
 ` �G1 · · · G= .4 ⇒ 〈�G1 · · · G= .4 , �〉
�,
 ` 4

0
⇒ 〈�G

1
· · · G< .4, �′〉 �,
 ` 4

1
⇒ E

1
· · · �,
 ` 4= ⇒ E=

�′[G
1
↦→ E

1
, · · · , G

min(<,=) ↦→ E
min(<,=) , Gmin(<,=)+1

↦→ undefined, · · · , G< ↦→ undefined], [E
1
, · · · , E=] ` 4 ⇒ E

�,
 ` 4
0
(4

1
, · · · , 4=) ⇒ E

�,
 ` 4 ⇒ = 0 ≤ = < Length(
)
�,
 ` get 4 ⇒
[=]

2.

∅, [] ` �x y.get x⇒ 〈�x y.get x, ∅〉 ∅, [] ` 2⇒ 2

∅, [] ` 19⇒ 19 ∅, [] ` 141⇒ 141

x ∈ Domain([x ↦→ 2, y ↦→ 19])
[x ↦→ 2, y ↦→ 19], [2, 19, 141] ` x⇒ 2

0 ≤ 2 < Length([2, 19, 141])

[x ↦→ 2, y ↦→ 19], [2, 19, 141] ` get x⇒ 141

∅, [] ` (�x y.get x)(2, 19, 141) ⇒ 141

Exercise 9.15

1.

= ⇒ =

�G.4 ⇒ �G.4

41 ⇒ �G.4 42 ⇒ E2 4[G/E2] ⇒ E

41 42 ⇒ E

2.

=[G/E] = =

G′[G/E] = E if G = G′

G′[G/E] = G′ if G ≠ G′

(�G′.4)[G/E] = �G′.4 if G = G′

(�G′.4)[G/E] = �G′.4[G/E] if G ≠ G′

(41 42)[G/E] = 41[G/E] 42[G/E]
3. a) 0

A Solutions to Exercises 318

b) error

4. case Fun(y, b) =>

if (y == x)

Fun(y, b)

else {

val ny = fresh(binding(b) ++ free(b) ++ free(v) + x)

Fun(ny, subst(subst(b, y, Id(ny)), x, v))

}

Exercise 9.16

1.

� ` 41 ⇒ E1 · · · � ` 4= ⇒ E=

� ` {;1 : 41 , · · · , ;= : 4=} ⇒ 〈;1 : E1 , · · · , ;= : E=〉

� ` 4 ⇒ 〈· · · , ; : E, · · · 〉
� ` 4.; ⇒ E

� ` 4 ⇒ 〈;1 : E1 , · · · , ;= : E=〉
; ∉ {;1 , · · · , ;=} ;8 = proto � ` E8 .; ⇒ E

� ` 4.; ⇒ E

� ` 4 ⇒ 〈;1 : E1 , · · · , ;= : E=〉
; ∉ {;1 , · · · , ;=} proto ∉ {;1 , · · · , ;=}

� ` 4.; ⇒ undefined

� ` 41 ⇒ E1 � ` E1.; ⇒ 〈�G.4 , �′〉
� ` 42 ⇒ E2 �′[this ↦→ E1 , G ↦→ E2] ` 4 ⇒ E

� ` 41.;(42) ⇒ E

2.

∅ ` 1⇒ 1

∅ ` {x : 1} ⇒ 〈x : 1〉
∅ ` {proto : {x : 1}} ⇒ 〈proto : 〈x : 1〉〉

x ∉ {proto} proto = proto
� ` 〈x : 1〉 ⇒ 〈x : 1〉
� ` 〈x : 1〉.x⇒ 1

∅ ` {proto : {x : 1}}.x⇒ 1

3. �x.this.a

Exercise 9.17

1.

� ` = ⇒ =

G ∈ Domain(�)
� ` G ⇒ �(G)

� ` �G.4 ⇒ 〈�G.4 , �〉

� ` 41 ⇒ exc

� ` 41 + 42 ⇒ exc

� ` 41 ⇒ E � ` 42 ⇒ exc

� ` 41 + 42 ⇒ exc

� ` 41 ⇒ =1 � ` 42 ⇒ =2

� ` 41 + 42 ⇒ =1 + =2

A Solutions to Exercises 319

� ` 41 ⇒ exc

� ` 41 42 ⇒ exc

� ` 41 ⇒ E � ` 42 ⇒ exc

� ` 41 42 ⇒ exc

� ` 41 ⇒ 〈�G.4 , �′〉 � ` 42 ⇒ E2 �′[G ↦→ E2] ` 4 ⇒ A

� ` 41 42 ⇒ A

� ` throw⇒ exc

� ` 41 ⇒ E

� ` try 41 catch 42 ⇒ E

� ` 41 ⇒ exc � ` 42 ⇒ A

� ` try 41 catch 42 ⇒ A

2.

∅ ` 1⇒ 1 ∅ ` throw⇒ exc

∅ ` 1 + throw⇒ exc

∅ ` throw⇒ exc

∅ ` throw + 2⇒ exc

∅ ` try (1 + throw) catch (throw + 2) ⇒ exc

Exercise 10.1

val f�=�x� .if0 x� 0 (f� (x� − 1)) in
def f�(x�)=if0 x� 0 (f� (x� − 1)) in
f y!

1. � → �, �→ �, � → �, � → �, � → �, → �

2. �, !

Exercise 10.2

case Num(n) => Set()

case Id(x) => Set()

case Val(x, e, b) => (bindings(e) ++ bindings(b)) + x

case App(f, a) => bindings(f) ++ bindings(a)

case Fun(x, b) => bindings(b) + x

case Rec(f, x, b, e) => bindings(b) ++ bindings(e) + f + x

case Num(n) => Set()

case Id(x) => Set(x)

case Val(x, e, b) => frees(e) ++ (frees(b) - x)

case App(f, a) => frees(f) ++ frees(a)

case Fun(x, b) => frees(b) - x

case Rec(f, x, b, e) => (frees(b) - f - x) ++ (frees(e) - f)

Exercise 10.3

1. Does not terminate

2. 49

Exercise 10.4

if0 0 0 (0 0)

A Solutions to Exercises 320

Exercise 10.5

� ` 1 ⇒ 1

� ` 41 ⇒ E1 � ` 42 ⇒ E2

� ` 41 ∧ 42 ⇒ E1 ∧ E2

� ` 4 ⇒ E

� ` ¬4 ⇒ ¬E

� ` 41 ⇒ true � ` 42 ⇒ E2

� ` if 41 42 43 ⇒ E2

� ` 41 ⇒ false � ` 43 ⇒ E3

� ` if 41 42 43 ⇒ E3

Exercise 10.6

1.

� ` 1 ⇒ 1

� ` 41 ⇒ E1 E1 ≠ false � ` 42 ⇒ E2

� ` if 41 42 43 ⇒ E2

� ` 41 ⇒ false � ` 43 ⇒ E3

� ` if 41 42 43 ⇒ E3

� ` 41 ⇒ false

� ` and 41 42 ⇒ false

� ` 41 ⇒ E1 E1 ≠ false � ` 42 ⇒ E2

� ` and 41 42 ⇒ E2

� ` 41 ⇒ E1 E1 ≠ false

� ` or 41 42 ⇒ E1

� ` 41 ⇒ false � ` 42 ⇒ E2

� ` or 41 42 ⇒ E2

2.

∅ ` false⇒ false ∅ ` 2⇒ 2

∅ ` or false 2⇒ 2

2 ≠ false
∅ ` false⇒ false

∅ ` and false 2⇒ false

∅ ` if (or false 2) (and false 2) 1⇒ false

Exercise 10.7

Change val g=y y in to val g=�x.y y x in .

Exercise 10.8

Change valf=z (�v.if0 v 0 (v + f (v − 1))) in to valf=z (�f.�v.if0 v 0 (v + f (v − 1))) in.

Exercise 10.9

A Solutions to Exercises 321

val f�=(
val x�=�y� .(

val f�=�v� .y� y� v� in
�v� .if0 v� 0 (v + f! (v" − 1))
) in
x# x$
) in
f% 10

1. � → �, � → �, � → �, � → � , → � , ! → �, " → � , # →
�, $ → �, % → �

2. No shadowing

3. 4 = val f=�v.y y v in �v.if0 v 0 (v + f (v − 1))
〈�v.if0 v 0 (v + f (v − 1)), [y ↦→ 〈�y.4 , ∅〉, f ↦→ 〈�v.y y v, [y ↦→
〈�y.4 , ∅〉]〉]〉

Exercise 10.10

An argument to z must be a function whose fixed point is a recursive

function to be constructed. For example, to make the sum function with

z, its argument must be a function that returns sum when sum is given.

Exercise 10.11

val z=(�b.
val fx=(�fy.

val f=�x.(fy fy).1 x in
val g=�x.(fy fy).2 x in
b (f, g)
) in
fx fx

) in
val f=z �f.(�n.if0 n true (f.2 (n − 1)),�n.if0 n false (f.1 (n − 1))) in
val even=f.1 in
val odd=f.2 in
(even 10, odd 10)

Exercise 11.1

expr env sto res

(�x.(�y.x:=8; !y) x) box 7 ∅ ∅ (8, [01 ↦→ 8])
�x.(�y.x:=8; !y) x ∅ ∅ (〈�x.(�y.x:=8; !y) x, ∅〉, ∅)

box 7 ∅ ∅ (01 , [01 ↦→ 7])
7 ∅ ∅ (7, ∅)

(�y.x:=8; !y) x [x ↦→ 01] [01 ↦→ 7] (8, [01 ↦→ 8])
�y.x:=8; !y [x ↦→ 01] [01 ↦→ 7] (〈�y.x:=8; !y, [x ↦→ 01]〉, [01 ↦→ 7])

x [x ↦→ 01] [01 ↦→ 7] (01 , [01 ↦→ 7])
x:=8; !y [x ↦→ 01 , y ↦→ 01] [01 ↦→ 7] (8, [01 ↦→ 8])
x:=8 [x ↦→ 01 , y ↦→ 01] [01 ↦→ 7] (8, [01 ↦→ 8])

8 [x ↦→ 01 , y ↦→ 01] [01 ↦→ 7] (8, [01 ↦→ 7])
!y [x ↦→ 01 , y ↦→ 01] [01 ↦→ 8] (8, [01 ↦→ 8])
y [x ↦→ 01 , y ↦→ 01] [01 ↦→ 8] (01 , [01 ↦→ 8])

Exercise 11.2

App(Fun(fresh(free(r)), desugar(r)), desugar(l))

A Solutions to Exercises 322

Exercise 11.3

val z=�b.(
val a=box �x.y in
val f=(b �x.!a x) in
a:=f;

f

) in
val f=z (�f.�v.if0 v 0 (v + f (v − 1))) in
f 10

Exercise 12.1

expr env sto

(�x.x) ((�x.x) 1) ∅ ∅
�x.x ∅ ∅
(�x.x) 1 ∅ ∅
�x.x ∅ ∅

1 ∅ ∅
x [x ↦→ 01] [01 ↦→ 1]
x [x ↦→ 02] [01 ↦→ 1, 02 ↦→ 1]

Exercise 12.2

1. CBR

2. [n ↦→ 01 , f ↦→ 02 , x ↦→ 04],
[01 ↦→ 42, 02 ↦→ 〈�g.g n, [n ↦→ 01]〉, 03 ↦→ 〈�x.x + 8, [n ↦→ 01 , f ↦→
02]〉, 04 ↦→ 42]

3. [n ↦→ 01 , f ↦→ 02 , x ↦→ 01],
[01 ↦→ 42, 02 ↦→ 〈�g.g n, [n ↦→ 01]〉, 03 ↦→ 〈�x.x + 8, [n ↦→ 01 , f ↦→
02]〉]

Exercise 12.3

1. val (RecV(fields), rs) = interp(r, env, fs)

interp(b, fenv + (x -> fields(f)), rs)

2. 2, [01 ↦→ 2, 02 ↦→ {z:01}, 03 ↦→ 〈�y.y:=2, [x ↦→ 02]〉]
3. 1, [01 ↦→ 1, 02 ↦→ {z:01}, 03 ↦→ 〈�y.y:=2, [x ↦→ 02]〉, 04 ↦→ 2]

Exercise 12.4

1.

�, " ` 4 ⇒ 0, "1 0 ∈ Domain("1)
�, " ` ∗4 ⇒ "1(0), "1

G ∈ Domain(�)
�, " ` &G ⇒ �(G), "

�, " ` 42 ⇒ E, "1 �, "1 ` 41 ⇒ 0, "2

�, " ` ∗41:=42 ⇒ E, "2[0 ↦→ E]
2. case Deref(p) =>

val (pv, ps) = interp(p, env, sto)

val PtrV(a) = pv

(ps(a), ps)

case Ref(x) => (PtrV(env(x)), sto)

case Assign(p, e) =>

val (ev, es) = interp(e, env, sto)

A Solutions to Exercises 323

val (pv, ps) = interp(p, env, es)

val PtrV(a) = pv

(ev, ps + (a -> ev))

Exercise 12.5

1.

� ` skip⇒ �

� ` 4 ⇒ E

� ` G:=4 ⇒ �[G ↦→ E]

� ` 4 ⇒ 0 � ` 21 ⇒ �1

� ` if0 4 21 22 ⇒ �1

� ` 4 ⇒ E E ≠ 0 � ` 22 ⇒ �2

� ` if0 4 21 22 ⇒ �2

� ` 4 ⇒ 0 � ` 2 ⇒ �1 �1 ` while0 4 2 ⇒ �2

� ` while0 4 2 ⇒ �2

� ` 4 ⇒ E E ≠ 0

� ` while0 4 2 ⇒ �

� ` 21 ⇒ �1 �1 ` 22 ⇒ �2

� ` 21; 22 ⇒ �2

2.

∅ ` 0⇒ 0

∅ ` x:=0⇒ [x ↦→ 0]

x ∈ Domain([x ↦→ 0])
[x ↦→ 0] ` x⇒ 0

[x ↦→ 0] ` skip⇒ [x ↦→ 0]

[x ↦→ 0] ` if0 x skip x:=1;⇒ [x ↦→ 0]
∅ ` x:=0; if0 x skip x:=1⇒ [x ↦→ 0]

Exercise 13.1

I Stack: 13

I Fromspace:
1 2 2 3 7 99 19 99 16 10 99 13 5

0 1 2 3 4 5 6 7 8 9 10 11 12

I To space:
3 16 5 4 19 13 1 4 0 0 0 0 0

13 14 15 16 17 18 19 20 21 22 23 24 25

Exercise 14.1

I Call-by-name

expr env

(�x.x + x) (1 + 2) ∅
�x.x + x ∅
x + x [x ↦→ (1 + 2, ∅)]
x [x ↦→ (1 + 2, ∅)]

1 + 2 ∅
1 ∅
2 ∅
x [x ↦→ (1 + 2, ∅)]

1 + 2 ∅
1 ∅
2 ∅

I Call-by-need

A Solutions to Exercises 324

expr env

(�x.x + x) (1 + 2) ∅
�x.x + x ∅
x + x [x ↦→ (1 + 2, ∅, ·)]
x [x ↦→ (1 + 2, ∅, ·)]

1 + 2 ∅
1 ∅
2 ∅
x [x ↦→ (1 + 2, ∅, 3)]

Exercise 14.2

1. CBV: error, CBN: error

2. CBV: error, CBN: 10

3. CBV: error, CBN: error

4. CBV: error, CBN: (1 + �x.x, ∅)
5. CBV: error, CBN: 3

6. CBV: error, CBN: error

7. CBV: error, CBN: 8

8. CBV: 〈�x.((�y.42) (9 2)), ∅〉, CBN: 〈�x.((�y.42) (9 2)), ∅〉
9. CBV: error, CBN: error

10. CBV: error, CBN: 15

Exercise 14.3

1. error

2. 12

3. error

4. error

Exercise 14.4

(�y.(�x.x + 0) y) 0

Exercise 14.5

case Val(x, e, b) =>

interp(b, env + (x -> ExprV(e, env)))

case If0(c, t, f) =>

interp(if (strict(interp(c, env)) == NumV(0)) t else f, env)

Exercise 14.6

case class PairV(f: Value, s: Value) extends Value

case Pair(f, s) => PairV(ExprV(f, env), ExprV(s, env))

case Fst(e) =>

val PairV(v, _) = strict(interp(e, env))

v

case Snd(e) =>

val PairV(_, v) = strict(interp(e, env))

v

Exercise 14.7

case class ConsV(h: Value, t: Value) extends Value

case Nil => NilV

A Solutions to Exercises 325

case Cons(h, t) => ConsV(ExprV(h, env), ExprV(t, env))

case Head(e) =>

val ConsV(h, _) = strict(interp(e, env))

strict(h)

case Tail(e) =>

val ConsV(_, t) = strict(interp(e, env))

val v = strict(t)

if (isList(v)) v else error()

Exercise 14.8

1.

= ⇓ =

〈�G.4 , �〉 ⇓ 〈�G.4 , �〉

� ` 4 ⇒ E

delay(4 , �) ⇓ E

� ` 4 ⇒ E′ E′ ⇓ E
lazy(4 , �) ⇓ E

2.

� ` delay 4 ⇒ delay(4 , �)

� ` lazy 4 ⇒ lazy(4 , �)

� ` 4 ⇒ E′ E′ ⇓ E
� ` force 4 ⇒ E

Exercise 15.1

case ExprV(e, env) =>

interp(e, env, v => strict(v, k))

case Add(l, r) =>

interp(l, env, v1 =>

interp(r, env, v2 =>

strict(v1, n =>

strict(v2, m => {

val NumV(l) = n

val NumV(r) = m

k(NumV(l + r))

}))))

case App(f, a) =>

interp(f, env, v =>

strict(v, fv => {

val CloV(x, b, fenv) = fv

interp(b, fenv + (x -> ExprV(a, env)), k)

}))

Exercise 16.1

1. 3

2. 6

3. Error

4. 5

5. Does not terminate

A Solutions to Exercises 326

Exercise 16.2

(vcc x in x) �y.y
vcc x in x
x

�y.y
�y.y
y

Exercise 16.3

� = [x ↦→ 〈∅ ` 8 :: (+) :: �,�〉]
∅ ` (vcc x in 42 + (x 2)) + 8 :: � | | �

→ ∅ ` vcc x in 42 + (x 2) :: ∅ ` 8 :: (+) :: � | | �
→ � ` 42 + (x 2) :: ∅ ` 8 :: (+) :: � | | �
→ � ` 42 :: � ` (x 2) :: (+) :: ∅ ` 8 :: (+) :: � | | �
→ � ` (x 2) :: (+) :: ∅ ` 8 :: (+) :: � | | 42 :: �
→ � ` x :: � ` 2 :: (@) :: (+) :: ∅ ` 8 :: (+) :: � | | 42 :: �
→ � ` 2 :: (@) :: (+) :: ∅ ` 8 :: (+) :: � | | 〈∅ ` 8 :: (+) :: �,�〉 :: 42 :: �
→ (@) :: (+) :: ∅ ` 8 :: (+) :: � | | 2 :: 〈∅ ` 8 :: (+) :: �,�〉 :: 42 :: �
→ ∅ ` 8 :: (+) :: � | | 2 :: �
→ (+) :: � | | 8 :: 2 :: �
→ � | | 10 :: �

Exercise 16.4

case Num(n) => k(NumV(n), sto)

case Id(x) => k(sto(env(x)), sto)

case Fun(x, b) => k(CloV(x, b, env), sto)

case App(f, a) =>

interp(f, env, sto, (fv, fs) =>

interp(a, env, fs, (av, as) => fv match {

case CloV(x, b, fenv) =>

val addr = malloc(as)

interp(b, fenv + (x -> addr), as + (addr -> av), k)

case ContV(k) => k(av, as)

})

)

case Set(x, e) =>

interp(e, env, sto, (v, s) =>

k(v, s + (env(x) -> v))

)

case Vcc(x, b) =>

val addr = malloc(sto)

interp(b, env + (x -> addr), sto + (addr -> ContV(k)), k)

Exercise 17.1

case class ValSecondK(x: String, b: Expr, env: Env, k: Cont) extends Cont

case class If0SecondK(t: Expr, f: Expr, env: Env, k: Cont) extends Cont

case ValSecondK(x, b, env, k) => interp(b, env + (x -> v), k)

case If0SecondK(t, f, env, k) => interp(if (v == NumV(0)) t else f, env, k)

case Val(x, e, b) => interp(e, env, ValSecondK(x, b, env, k))

case If0(c, t, f) => interp(c, env, If0SecondK(t, f, env, k))

A Solutions to Exercises 327

Exercise 17.2

case class PairSecondK(s: Expr, env: Env, k: Cont) extends Cont

case class DoPairK(fv: Value, k: Cont) extends Cont

case class DoFstK(k: Cont) extends Cont

case class DoSndK(k: Cont) extends Cont

case PairSecondK(s, env, k) => interp(s, env, DoPairK(v, k))

case DoPairK(fv, k) => continue(k, PairV(fv, v))

case DoFstK(k) =>

val PairV(fv, _) = v

continue(k, fv)

case DoSndK(k) =>

val PairV(_, sv) = v

continue(k, sv)

case Pair(f, s) => interp(f, env, PairSecondK(s, env, k))

case Fst(p) => interp(p, env, DoFstK(k))

case Snd(p) => interp(p, env, DoSndK(k))

Exercise 18.1

(�.�.�.(0 − 2) + 1) 42 0 10

Exercise 18.2

�x.�y.�z.z y z

Exercise 19.1

1 + x

Exercise 19.2

Γ ` nil[�] : list �

Γ ` 41 : � Γ ` 42 : list �

Γ ` cons 41 42 : list �

Γ ` 4 : list �

Γ ` head 4 : �

Γ ` 4 : list �

Γ ` tail 4 : list �

Exercise 19.3

1.

Γ ` 4 : �

Γ ` box 4 : box �

Γ ` 4 : box �

Γ `!4 : �

A Solutions to Exercises 328

Γ ` 41 : box � Γ ` 42 : �

Γ ` 41:=42 : �

Γ ` 41 : �1 Γ ` 42 : �2

Γ ` 41; 42 : �2

2. Γ1 = [x : box num], Γ2 = Γ1[y : num]
∅ ` 3 : num

∅ ` box 3 : box num

x ∈ Domain(Γ
1
)

Γ
1
` x : box num

Γ
1
`!x : num

Γ
1
` 7 : num

Γ
1
`!x + 7 : num

x ∈ Domain(Γ
2
)

Γ
2
` x : box num

Γ
2
` 8 : num

Γ
2
` x:=8 : num

y ∈ Domain(Γ
2
)

Γ
2
` y : num

x ∈ Domain(Γ
2
)

Γ
2
` x : box num

Γ
2
`!x : num

Γ
2
` y+!x : num

Γ
2
` x:=8; y+!x : num

Γ
1
` val y=!x + 7 in x:=8; y+!x : num

∅ ` val x=box 3 in val y=!x + 7 in x:=8; y+!x : num

Exercise 19.4

1.

G ∈ Domain(Γ) Γ ` 4 : Γ(G)
Γ ` G:=4 : Γ(G)

2.

Γ ` 4 : �∗
Γ ` ∗4 : �

G ∈ Domain(Γ)
Γ ` &G : Γ(G)∗

Γ ` 41 : �∗ Γ ` 42 : �

Γ ` ∗41:=42 : �

Exercise 20.1

def f(x:num):num→ num=f x in f 0

Exercise 20.2

1.

Γ ` = : num

Γ ` 1 : bool

G ∈ Domain(Γ)
Γ ` G : Γ(G)

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 + 42 : num

Γ ` 41 : num Γ ` 42 : num

Γ ` 41 < 42 : bool

2.

Γ ` skip : Γ

A Solutions to Exercises 329

G ∉ Domain(Γ) Γ ` 4 : �

Γ ` G:=4 : Γ[G : �]

G ∈ Domain(Γ) Γ ` 4 : Γ(G)
Γ ` G:=4 : Γ

Γ ` 4 : bool Γ ` 21 : Γ1 Γ ` 22 : Γ1

Γ ` if 4 21 22 : Γ1

Γ ` 4 : bool Γ ` 2 : Γ1

Γ ` while 4 2 : Γ

Γ ` 21 : Γ1 Γ1 ` 22 : Γ2

Γ ` 21; 22 : Γ2

Exercise 21.1

1. 10

2. 10

Exercise 21.2

type A = X@A + Y@num in 0

Exercise 21.3

type X = A@Y + B@num in
(

type Y = C@num + D@num in
�x:X.x match
A(y) → y match
C(z) → 0,

D(z) → 0,

B(y) → 0

) (
type Y = E@num + F@num in
A (E 0)
)
Exercise 21.4

Color

Γ ` 4 : C C ∈ Domain(Γ)
Γ(C) = G1@�1 + G2@�2 Γ′ = Γ[G1 : �1 → C , G2 : �2 → C]

Γ′[G3 : �1] ` 41 : � Γ′[G4 : �2] ` 42 : �

Γ ` 4 match G1(G3) → 41 , G2(G4) → 42 : �

Exercise 21.5

1.

Γ ` �1 · · · Γ ` �= Γ ` �
Γ ` (�1 , · · · , �=) → �

A Solutions to Exercises 330

2.

Γ ` �1 · · · Γ ` �= Γ[G1 : �1 , · · · , G= : �=] ` 4 : �

Γ ` �(G1:�1 , · · · , G= :�=).4 : (�1 , · · · , �=) → �

Γ ` 4 : (�1 , · · · , �=) → � Γ ` 41 : �1 · · · Γ ` 4= : �=

Γ ` 4(41 , · · · , 4=) : �

Γ′ = Γ[C = G1@(�11 , · · · , �1<1
) + · · · + G=@(�=1 , · · · , �=<=), G1 : (�11 , · · · , �1<1

) → C , · · · , G= : (�=1 , · · · , �=<=) → C]
Γ′ ` �11 · · · Γ′ ` �=<= Γ′ ` 4 : �

Γ ` type C = G1@(�11 , · · · , �1<1
) + · · · + G=@(�=1 , · · · , �=<=) in 4 : �

Γ ` 4 : C C ∈ Domain(Γ)
Γ(C) = G1@(�11 , · · · , �1<1

) + · · · + G=@(�=1 , · · · , �=<=)
Γ[G11 : �11 , · · · , G1<1

: �1<1
] ` 41 : � · · · Γ[G=1 : �=1 , · · · , G=<= : �=<=] ` 4= : �

Γ ` 4 match G1(G11 , · · · , G1<1
) → 41 , · · · , G=(G=1 , · · · , G=<=) → 4= : �

3. Γ = [Fruit = Apple@() + Banana@((Fruit) → num, Fruit) +
Cherry@(num), Apple : () → Fruit, Banana : ((Fruit) → num, Fruit) →
Fruit, Cherry : (num) → Fruit]
Γ′ = Γ[f : (Fruit) → num, x : num]
4′ = Apple() match Apple() → 42, Banana(f, x) → f(x), Cherry(x) → x

4 = type Fruit = Apple@() + Banana@((Fruit) → num, Fruit) + Cherry@(num) in 4′

) :

Apple ∈ Domain(Γ)
Γ ` Apple : () → Fruit

Γ ` Apple() : Fruit
Fruit ∈ Domain(Γ)

Γ(Fruit) = Apple@() + Banana@((Fruit) → num, Fruit) + Cherry@(num)

Γ ` 42 : num

f ∈ Domain(Γ′)
Γ′ ` f : (Fruit) → num

x ∈ Domain(Γ′)
Γ′ ` x : Fruit

Γ′ ` f(x) : num

x ∈ Domain(Γ[x : num])
Γ[x : num] ` x : num

Γ ` 4′ : num

Γ = Γ

Fruit ∈ Domain(Γ)
Γ ` Fruit

Γ ` num

Γ ` (Fruit) → num

Fruit ∈ Domain(Γ)
Γ ` Fruit

Fruit ∈ Domain(Γ)
Γ ` Fruit

)

∅ ` 4 : num

Exercise 21.6

type X = toX@(X→ X);
val fromX : X→ (X→ X) = �x:X.x match toX(f) → f;

val f : X = toX (�x:X.((fromX x) x));
(fromX f) f

Exercise 22.1

1. Γ1 = [f : ∀
.
→
]
Γ2 = [
, x :
]

A Solutions to Exercises 331

 ∈ Domain([
])
[
] `

 ∈ Domain([
])
[
] `

[
] `
→

∅ ` ∀
.
→

f ∈ Domain(Γ
1
)

Γ
1
` f : ∀
.
→

Γ
1
` f[num] : num→ num

Γ
1
` 10 : num

Γ
1
` f[num] 10 : num

∅ ` �f:∀
.
→
.f[num] 10 : (∀
.
→
) → num

 ∈ Domain([
])
[
] `

x ∈ Domain(Γ
2
)

Γ
2
` x :

[
] ` �x:
.x :
→

∅ ` Λ
.�x:
.x : ∀
.
→

∅ ` (�f:∀
.
→
.f[num] 10) (Λ
.�x:
.x) : num

2. Γ1 = [
, �]
Γ2 = Γ1[f :
→ �]
Γ3 = Γ2[x :
]
Γ4 = [y : num]

) :

 ∈ Domain(Γ
1
)

Γ
1
`

� ∈ Domain(Γ
1
)

Γ
1
` �

Γ
1
`
→ �

 ∈ Domain(Γ
2
)

Γ
2
`

f ∈ Domain(Γ
3
)

Γ
3
` f :
→ �

x ∈ Domain(Γ
3
)

Γ
3
` x :

Γ
3
` f x : �

Γ
2
` �x:
.f x :
→ �

Γ
1
` �f:
→ �.�x:
.f x : (
→ �) → (
→ �)

[
] ` Λ�.�f:
→ �.�x:
.f x : ∀�.(
→ �) → (
→ �)
∅ ` Λ
.Λ�.�f:
→ �.�x:
.f x : ∀
.∀�.(
→ �) → (
→ �)

∅ ` (Λ
.Λ�.�f:
→ �.�x:
.f x)[num] : ∀�.(num→ �) → (num→ �)
∅ ` (Λ
.Λ�.�f:
→ �.�x:
.f x)[num][num] : (num→ num) → (num→ num)

)

∅ ` num
Γ

4
` 17 : num

y ∈ Domain(Γ
4
)

Γ
4
` y : num

Γ
4
` 17 − y : num

∅ ` �y:num.17 − y : num→ num

∅ ` (Λ
.Λ�.�f:
→ �.�x:
.f x)[num][num] (�y:num.17 − y) : num→ num
∅ ` 9 : num

∅ ` (Λ
.Λ�.�f:
→ �.�x:
.f x)[num][num] (�y:num.17 − y) 9 : num

Exercise 22.2

case class ArrowT(p: Type, r: Type) extends Type

case class ForallT(t: Type) extends Type

case class VarT(i: Int) extends Type

case NumT => Nameless.NumT

case ArrowT(p, r) =>

Nameless.ArrowT(transform(p, ctx), transform(r, ctx))

case ForallT(a, t) =>

Nameless.ForallT(transform(t, a :: ctx))

case VarT(a) =>

Nameless.VarT(locate(a, ctx))

Exercise 22.3

1.

Γ′ = Γ[C = [
]G1@�1 + G2@�2 , G1 : ∀
.�1 → C[
], G2 : ∀
.�2 → C[
]]
C ∉ Domain(Γ)

Γ′[
] ` �1 Γ′[
] ` �2 Γ′ ` 4 : � Γ ` �
Γ ` type C[
] = G1@�1 + G2@�2 in 4 : �

C ∈ Domain(Γ) Γ(C) = [
]G1@�1 + G2@�2 Γ ` 4 : C[�]
Γ[G3 : �1[
← �]] ` 41 : �′ Γ[G4 : �2[
← �]] ` 42 : �′

Γ ` 4 match G1(G3) → 41 , G2(G4) → 42 : �′

2.

C ∈ Domain(Γ) Γ ` �
Γ ` C[�]

A Solutions to Exercises 332

3. ∀
.option[
] →
→

Exercise 23.1

1. Not well-typed

2.

∅ ` 1 : num ∅ ` {} : {}

∅ ` 2 : num

∅ ` {a = 2} : {a : num}
{a : num} <: {}

∅ ` {a = 2} : {}
∅ ` if0 1 {} {a = 2} : {}

Exercise 23.2

(�x:num→ num.x 1) 1

Exercise 23.3

case (_, TopT) => true

case (BottomT, _) => true

case (NumT, NumT) => true

case (ArrowT(p1, r1), ArrowT(p2, r2)) =>

subtype(p2, p1) && subtype(r1, r2)

case (RecordT(fs1), RecordT(fs2)) =>

fs2.forall{

case (x, t2) => fs1.get(x) match {

case None => false

case Some(t1) => subtype(t1, t2)

}

}

Exercise 23.4

case Add(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

if (!subtype(lt, NumT)) error()

if (!subtype(rt, NumT)) error()

NumT

case App(f, a) =>

val ft = typeCheck(f, tenv)

val at = typeCheck(a, tenv)

ft match {

case NumT => error()

case ArrowT(pt, rt) =>

if (!subtype(at, pt)) error()

rt

case TopT => error()

case BottomT => BottomT

}

Exercise 23.5

case (BottomT, t) => t

case (t, BottomT) => t

case (NumT, NumT) => NumT

case (ArrowT(p1, r1), ArrowT(p2, r2)) =>

ArrowT(glb(p1, p2), lub(r1, r2))

case (RecordT(fs1), RecordT(fs2)) =>

A Solutions to Exercises 333

val fs = fs1.keySet & fs2.keySet

RecordT(fs.map(x => x -> lub(fs1(x), fs2(x))).toMap)

case (TopT, t) => t

case (t, TopT) => t

case (NumT, NumT) => NumT

case (ArrowT(p1, r1), ArrowT(p2, r2)) =>

ArrowT(lub(p1, p2), glb(r1, r2))

case (RecordT(fs1), RecordT(fs2)) =>

val fs = fs1.keySet | fs2.keySet

RecordT(fs.map(x =>

x -> glb(fs1.getOrElse(x, TopT), fs2.getOrElse(x, TopT))

).toMap)

case If0(c, t, f) =>

val ct = typeCheck(c, tenv)

val tt = typeCheck(t, tenv)

val ft = typeCheck(f, tenv)

if (subtype(ct, NumT)) lub(tt, ft) else error()

Exercise 23.6

�1 <: �2 �2 <: �1

box �1 <: box �2

Exercise 23.7

1.

�1 <: �2

list �1 <: list �2

2.

�1 <: �2 �2 <: �1

list �1 <: list �2

Exercise 23.8

1.

Γ[G : �→ bottom] ` 4 : �

Γ ` (vcc G in 4):� : �

2.

x ∈ Domain(Γ)
Γ ` x : num→ bottom

Γ ` 1 : num

Γ ` x 1 : bottom
bottom <: num→ num

Γ ` x 1 : num→ num
Γ ` 42 : num

Γ ` (x 1) 42 : num

∅ ` (vcc x in (x 1) 42):num : num

Γ = [x : num→ bottom]

Exercise 23.9

1.

�1 <: �3

�1 ∧ �2 <: �3

A Solutions to Exercises 334

�2 <: �3

�1 ∧ �2 <: �3

2.

�3 <: �1 �3 <: �2

�3 <: �1 ∧ �2

3.

�2 <: �2

�1 ∧ �2 <: �2

�1 <: �1

�1 ∧ �2 <: �1

�1 ∧ �2 <: �2 ∧ �1

Exercise 23.10

1.

�1 <: �3 �2 <: �3

(�1 ∨ �2) <: �3

2.

�3 <: �1

�3 <: (�1 ∨ �2)

�3 <: �2

�3 <: (�1 ∨ �2)
3.

�1 <: �1

�1 <: (�1 ∨ (�2 ∨ �3))

�2 <: �2

�2 <: (�2 ∨ �3)
�2 <: (�1 ∨ (�2 ∨ �3))

(�1 ∨ �2) <: (�1 ∨ (�2 ∨ �3))

�3 <: �3

�3 <: (�2 ∨ �3)
�3 <: (�1 ∨ (�2 ∨ �3))

((�1 ∨ �2) ∨ �3) <: (�1 ∨ (�2 ∨ �3))

Exercise 23.11

Γ(C1) = G1@�1 + · · · + G=@�=
Γ(C2) = G1@�′

1
+ · · · + G=@�′= + G=+1@�′=+1

+ · · · + G=+<@�′=+<
Γ ` �1 <: �′

1
· · · Γ ` �= <: �′=

Γ ` C1 <: C2

Exercise 23.12

Γ ` = : num ↑ bottom
Γ ` 41 : num ↑ � Γ ` 42 : num ↑ �

Γ ` 41 + 42 : num ↑ �

G ∈ Domain(Γ)
Γ ` G : Γ(G) ↑ bottom

Γ[G : �1] ` 4 : �2 ↑ �3

Γ ` �G:�1.4 : (�1 → �2/↑ �3) ↑ bottom

Γ ` 41 : (�1 → �2/↑ �3) ↑ �3 Γ ` 42 : �1 ↑ �3

Γ ` 41 42 : �2 ↑ �3

Γ ` 4 : � ↑ �
Γ ` throw 4 : bottom ↑ �

A Solutions to Exercises 335

Γ ` 41 : �1 ↑ �2 Γ ` 42 : (�2 → �1/↑ �3) ↑ �3

Γ ` try 41 catch 42 : �1 ↑ �3

Exercise 24.1

1. case (PairT(l1, r1), PairT(l2, r2)) =>

unify(l1, l2)

unify(r1, r2)

case PairT(l, r) =>

occurs(t1, l) || occurs(t1, r)

case Pair(l, r) =>

val lt = typeCheck(l, tenv)

val rt = typeCheck(r, tenv)

PairT(lt, rt)

case Fst(e) =>

val et = typeCheck(e, tenv)

val ft = VarT(None)

val st = VarT(None)

unify(PairT(ft, st), et)

ft

case Snd(e) =>

val et = typeCheck(e, tenv)

val ft = VarT(None)

val st = VarT(None)

unify(PairT(ft, st), et)

st

2. ArrowT(VarT(Some(PairT(VarT(Some(NumT)), VarT(None)))), NumT)

Exercise 24.2

case (BoxT(t3), BoxT(t4)) =>

unify(t3, t4)

case BoxT(t) =>

occurs(t1, t)

case NewBox(e) =>

val et = typeCheck(e, tenv)

BoxT(et)

case OpenBox(b) =>

val bt = typeCheck(b, tenv)

val t = VarT(None)

unify(bt, BoxT(t))

t

case SetBox(b, e) =>

val bt = typeCheck(b, tenv)

val et = typeCheck(e, tenv)

unify(bt, BoxT(et))

et

Exercise 24.3

case (ListT(t3), ListT(t4)) =>

unify(t3, t4)

A Solutions to Exercises 336

case ListT(t) =>

occurs(t1, t)

case Nil =>

val t = VarT(None)

ListT(t)

case Cons(h, t) =>

val ht = typeCheck(h, tenv)

val tt = typeCheck(t, tenv)

unify(ListT(ht), tt)

tt

case Head(e) =>

val et = typeCheck(e, tenv)

val t = VarT(None)

unify(et, ListT(t))

t

case Tail(e) =>

val et = typeCheck(e, tenv)

val t = VarT(None)

unify(et, ListT(t))

et

Exercise 24.4

case (OptionT(t3), OptionT(t4)) =>

unify(t3, t4)

case OptionT(t) =>

occurs(t1, t)

case NoneE =>

OptionT(VarT(None))

case SomeE(e) =>

OptionT(typeCheck(e, tenv))

case Match(e, e1, x, e2) =>

val et = typeCheck(e, tenv)

val t = VarT(None)

unify(OptionT(t), et)

val nt = typeCheck(e1, tenv)

val st = typeCheck(e2, tenv + (x -> t))

unify(nt, st)

nt

Exercise 24.5

1.

erase(=) = =

erase(41 + 42) = erase(41) + erase(42)
erase(41 − 42) = erase(41) − erase(42)

erase(G) = G

erase(�G:�.4) = �G.erase(4)
erase(41 42) = erase(41) erase(42)
erase(Λ
.4) = erase(4)
erase(4[�]) = erase(4)

A Solutions to Exercises 337

2. a) (�x.x) 1
b) (�x.�y.y) 1 2

3. a) �x:∀
.
→
.(x[num→ num]) (�x:num.x) (x[num] 1)
b) (�x:∀
.
→
.�y:num.(x[num→ num]) (x[num])y) (Λ
.�x:
.x) 1
c) (�x:∀
.
→
.(x[num→ num]) (x[num]) 1) Λ
.�y:
.y

Exercise 24.6

1.

x ∈ Domain(Γ
1
) num→ num � num→ num

Γ
1
` x : num→ num

Γ
1
` 42 : num

Γ
1
` x 42 : num

∅ ` �x.x 42 : (num→ num) → num

y ∈ Domain(Γ
2
) num � num

Γ
2
` y : num

∅ ` �y.y : num→ num

∅ ` (�x.x 42) �y.y : num

Γ1 = [x : num→ num], Γ2 = [y : num]
2. Not well-typed

3.

y ∈ Domain(Γ
1
)
 �

Γ
1
` y :

∅ ` �y.y :
→

FTV(
→
) \ FTV(∅) = {
}

→
 ≺∅ ∀
.
→

G ∈ Domain(Γ
2
) ∀
.
→
 � num→ num

Γ
2
` x : num→ num

Γ
2
` 42 : num

Γ
2
` x 42 : num

G ∈ Domain(Γ
2
) ∀
.
→
 � bool→ bool

Γ
2
` x : bool→ bool

Γ
2
` true : bool

Γ
2
` x true : bool

Γ
2
` x 42; x true : bool

∅ ` val x=�y.y in x 42; x true : bool

Γ1 = [y :
], Γ2 = [x : ∀
.
→
]

Bibliography

Here are the references in citation order.

[OSV16] Martin Odersky, Lex Spoon, and Bill Venners. ‘Programming in Scala: Updated for Scala 2.12’. In:

Artima Incorporation, USA, (2016) (cited on pages 5, 20).

[CB14] Paul Chiusano and Rnar Bjarnason. Functional programming in Scala. Manning Publications Co.,

2014 (cited on page 5).

[Lan64] Peter J Landin. ‘The mechanical evaluation of expressions’. In: The computer journal 6.4 (1964),

pp. 308–320 (cited on page 124).

[Rey09] John C Reynolds. Theories of programming languages. Cambridge University Press, 2009 (cited on

page 169).

[Tai67] WilliamW Tait. ‘Intensional interpretations of functionals of finite type I’. In: The journal of symbolic
logic 32.2 (1967), pp. 198–212 (cited on page 241).

[Pie02] Benjamin C Pierce. Types and programming languages. MIT press, 2002 (cited on page 241).

[Gir72] Jean-Yves Girard. ‘Interprétation fonctionnelle et élimination des coupures de l’arithmétique

d’ordre supérieur’. PhD thesis. Éditeur inconnu, 1972 (cited on page 266).

[Rey74] John C Reynolds. ‘Towards a theory of type structure’. In: Programming Symposium. Springer. 1974,

pp. 408–425 (cited on page 266).

[Wel94] Joe BWells. ‘Typability and type checking in the second-order/spl lambda/-calculus are equivalent

and undecidable’. In: Proceedings Ninth Annual IEEE Symposium on Logic In Computer Science. IEEE.
1994, pp. 176–185 (cited on page 310).

[Hin69] Roger Hindley. ‘The principal type-scheme of an object in combinatory logic’. In: Transactions of the
american mathematical society 146 (1969), pp. 29–60 (cited on page 311).

[Mil78] Robin Milner. ‘A theory of type polymorphism in programming’. In: Journal of computer and system
sciences 17.3 (1978), pp. 348–375 (cited on page 311).

Special Terms

A

ADT algebraic data type. 43

AST abstract syntax tree. 69

B

BNF Backus-Naur form. 63

C

CBN call-by-name. 165

CBR call-by-reference. 131

CBV call-by-value. 131

CPS continuation-passing style. 181

G

GC garbage collection. 136

J

JVM Java Virtual Machine. 7

L

LIFO last in, first out. 137

R

REPL read-eval-print loop. 8

U

UAF use-after-free. 143

Alphabetical Index

abstract syntax, 66

abstract syntax tree, 69

algebraic data type, 43

algorithmic type system,

292

alias, 131

allocation, 139

anonymous function, 32, 93

automatic memory

management, 141

Backus-Naur form, 63

big-step operational semantics,

76

binding occurrence, 81

bottom type, 282

bound occurrence, 81

box, 116

call-by-name, 165

call-by-need, 171

call-by-reference, 131

call-by-value, 131

Cheney’s algorithm, 160

closure, 34, 94

compiler, 17

completeness, 226

conclusion, 74

concrete syntax, 62

continuation, 180

continuation-passing style,

181

control diverter, 177

control flow, 177

copying garbage collection,

157

dangling pointer, 142

de Bruĳn index, 216

deallocation, 141

declarative type system, 292

desugaring, 78

dynamic analysis, 225

dynamic semantics, 229

dynamically typed language,

230

eager evaluation, 165

environment, 83

eta expansion, 32

evaluation derivation, 76

expression, 63, 82

external fragmentation, 153

false negative, 226

false positive, 226

field, 273

first-class, 30

first-class continuation, 197

first-class function, 30, 93

first-order function, 87

fixed point, 109

fixed point combinator, 109

forwarding pointer, 158

free identifier, 81

free list, 153

free variable, 82

from-space, 157

function application, 94

functional programming, 5

garbage, 141

garbage collection, 136

generics, 266

heap, 136

higher-order function, 30

Hindley-Milner type system,

311

identifier, 80

ill-formed, 254

ill-typed, 233

immutability, 20

immutable, 6

inference rule, 74

interpreter, 16, 77

lambda abstraction, 94

lambda calculus, 99

Landin’s knot, 124

lazy evaluation, 165

locality, 153

loop invariant, 23

manual memory management,

141

mark-and-sweep garbage

collection, 154

memory leak, 143

memory management, 136

memory manager, 139

metavariable, 70

mutable, 6

non-algorithmic type system,

292

nonterminal, 63

normalization, 241

parametric polymorphism,

265

parsing, 71

polymorphism, 264

premise, 74

product type, 43

projection, 274

proof tree, 75

reachability, 143

recursion, 22

redex, 180

reduction, 189

register, 145

root, 145

run-time error, 225

scope, 81

semantics, 62

shadowing, 82

side effect, 178

small-step operational

semantics, 189

soundness, 226

stack, 136

stack frame, 137

static analysis, 226

static semantics, 229

statically typed language,

230

store, 117

store-passing style, 119

strong reference, 152

subtype, 277

subtype polymorphism, 277

subtyping rule, 278

sum type, 43

supertype, 277

syntactic sugar, 77

syntax, 62

syntax-directed type system,

292

tagged union type, 43

tail call optimization, 25

terminal, 63

to-space, 157

top type, 282

type, 227

type abstraction, 265

type annotation, 230

type application, 265

type argument, 265

type checker, 228

type checking, 229

type derivation, 235

type erasure, 290

type error, 227

type inference, 289

type parameter, 265

type soundness, 229

type system, 229

typed language, 230

typing rule, 229

undefined behavior, 143

universally quantified type,

267

untyped language, 230

use-after-free, 143

value, 94

variable, 80

variant, 43

weak reference, 151

well-formed, 254

well-typed, 229

	
	Acknowledgement
	Contents
	Introduction
	Exercises

	Scala
	Introduction to Scala
	Functional Programming
	Installation
	REPL
	Interpreter
	Compiler
	SBT

	Immutability
	Advantages
	Recursion
	Tail Call Optimization
	Exercises

	Functions
	First-Class Functions
	Anonymous Functions
	Closures
	First-Class Functions and Lists
	For Loops
	Exercises

	Pattern Matching
	Algebraic Data Types
	Advantages
	Patterns in Scala
	Applications of Pattern Matching
	Options

	Untyped Languages
	Syntax and Semantics
	Concrete Syntax
	Abstract Syntax
	Parsing
	Semantics
	Syntactic Sugar
	Exercises

	Identifiers
	Identifiers
	Syntax
	Semantics
	Interpreter
	Exercises

	First-Order Functions
	Syntax
	Semantics
	Interpreter
	Scope
	Exercises

	First-Class Functions
	Syntax
	Semantics
	Interpreter
	Syntactic Sugar
	Exercises

	Recursion
	Syntax
	Semantics
	Interpreter
	Recursion as Syntactic Sugar
	Exercises

	Boxes
	Syntax
	Semantics
	Interpreter
	Exercises

	Mutable Variables
	Syntax
	Semantics
	Interpreter
	Call-by-Reference
	Exercises

	Garbage Collection
	Stack and Heap
	Memory Management
	Reference Counting
	Mark-and-Sweep GC
	Copying GC
	Exercises

	Lazy Evaluation
	Semantics
	Interpreter
	Call-by-Need
	Exercises

	Continuations
	Redexes and Continuations
	Continuation-Passing Style
	Interpreter in CPS
	Small-Step Operational Semantics
	Exercises

	First-Class Continuations
	Syntax
	Semantics
	Interpreter
	Use of First-Class Continuations
	Exercises

	First-Order Representation of Continuations
	First-Order Representation of Continuations
	Big-Step Semantics of KFAE
	Exercises

	Nameless Representation of Expressions
	De Bruijn Indices
	Evaluation of Nameless Expressions
	Exercises

	Typed Languages
	Type Systems
	Run-Time Errors
	Detecting Run-Time Errors
	Type Errors
	Type Checking
	TFAE
	Extending Type Systems
	Exercises

	Typing Recursive Functions
	Syntax
	Dynamic Semantics
	Interpreter
	Static Semantics
	Type Checker
	Exercises

	Algebraic Data Types
	Syntax
	Dynamic Semantics
	Interpreter
	Static Semantics
	Type Checker
	Type Soundness of TVFAE
	Exercises

	Parametric Polymorphism
	Syntax
	Dynamic Semantics
	Static Semantics
	Exercises

	Subtype Polymorphism
	Records
	Subtype Polymorphism
	Subtyping of Record Types
	Subtyping of Function Types
	Top and Bottom Types
	Exercises

	Type Inference
	Syntax
	Type Inference as Decision Problem
	Type Variables and Constraints
	Type Checker
	Improving Type Checker
	Exercises

	Appendix
	Solutions to Exercises

	Bibliography
	List of Terms
	Alphabetical Index

