
박 사 학 위 논 문
Ph.D. Dissertation

정적 분석을 통한 C-러스트 번역의 개선

Improving C-to-Rust Translation with Static Analysis

2025

홍 재 민 (洪 渽 旻 Hong, Jaemin)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology

박 사 학 위 논 문

정적 분석을 통한 C-러스트 번역의 개선

2025

홍 재 민

한 국 과 학 기 술 원

전산학부

정적 분석을 통한 C-러스트 번역의 개선

홍 재 민

위 논문은 한국과학기술원 박사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2024년 11월 19일

심사위원장 류 석 영 (인)

심 사 위 원 강 지 훈 (인)

심 사 위 원 유 신 (인)

심 사 위 원 오 학 주 (인)

심 사 위 원 Ben Hardekopf (인)

Improving C-to-Rust Translation with Static Analysis

Jaemin Hong

Advisor: Sukyoung Ryu

A dissertation submitted to the faculty of
Korea Advanced Institute of Science and Technology in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Daejeon, Korea
November 19, 2024

Approved by

Sukyoung Ryu
Professor of School of Computing

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and
Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This
includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.
I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.

DCS 홍재민. 정적 분석을 통한 C-러스트 번역의 개선. 전산학부 . 2025년.
161+viii 쪽. 지도교수: 류석영. (영문 논문)
Jaemin Hong. Improving C-to-Rust Translation with Static Analysis. School
of Computing . 2025. 161+viii pages. Advisor: Sukyoung Ryu. (Text in
English)

초 록

러스트는 시스템 프로그래밍에서 C를 대체하도록 설계된 최신 언어로, 메모리 버그의 부재를 보장하는 강
력한 타입 체계를 제공한다. 따라서 기존 시스템 프로그램을 C에서 러스트로 번역하는 것은 프로그램의
신뢰도를 높이는 유망한 방법이다. 이때 사람이 직접 코드를 번역하면 큰 비용이 들기 때문에 C-러스트
번역을 자동화하는 것이 바람직하다. 그러나 현존하는 번역기 중 가장 잘 알려진 C2Rust는 문법적으로
코드를 번역하여 모든 C 기능을 생성한 러스트 코드에 그대로 유지한다. C 기능이 러스트 코드에 사용되면,
컴파일러가 안전성을 보장할 수 없고 코드 패턴이 러스트의 이디엄을 따르지 않아 번역의 목적에 위배된다.
기존 연구는 C2Rust가 생성한 코드에서 C 기능을 대응되는 러스트 기능으로 대체하는 기술을 탐구했지만,
전체 기능 중 극히 일부만 다루었다. 본 학위 논문은 정적 분석을 통해 C-러스트 번역을 개선하는 기술을
제시하며,이전에다루지않은다양한기능을대상으로한다. 제안한기술은각 C기능에특화된정적분석을
통해 해당 기능이 코드에서 어떻게 사용되는지 알아내고 그 정보를 코드 변형에 활용한다. 구체적으로는
락, 태그 붙은 유니언, 출력 매개변수라는 세 가지 중요한 C 기능을 다룬다. 또한, 이 기법들을 보완하고자
대규모언어모델을사용한번역방법도제시한다. 더나아가,대응되는러스트기능이아직개발되지않은 C
기능을 위해 모듈화된 요약을 제시하여, 해당 기능을 대상으로 하는 정적 분석의 추후 개발을 가능케 한다.

핵 심 낱 말 러스트, C 언어, 자동 번역, 정적 분석, 대규모 언어 모델, 모듈화된 요약

Abstract
Rust, a modern language designed to replace C in system programming, provides a strong type system
that ensures the absence of memory bugs. This makes translating legacy system programs from C to Rust
a promising approach for enhancing their reliability. Due to the high cost of manual code translation, it is
desirable to automate C-to-Rust translation. However, C2Rust, the most well-known existing translator,
only performs syntactic translation, retaining all the C features in the resulting Rust code. When C
features are used in Rust code, their safety is not ensured by the compiler, and code patterns employing
them do not follow Rust idioms, contradicting the goals of translation. Although researchers have studied
techniques for replacing C features in C2Rust-generated code with their Rust counterparts, only a small
subset of these features has been addressed. In this dissertation, we propose techniques to improve
C-to-Rust translation using static analysis, addressing various language features not covered in previous
studies. We perform static analysis tailored to each C feature to gather information on how this feature
is used in the code, utilizing the results for code transformation. Specifically, we target three important
C features: locks, tagged unions, and output parameters. In addition, to complement these approaches,
we also propose a translation method using a large language model. Furthermore, we propose modular
abstractions for C features whose Rust counterparts have not yet been developed, to facilitate the future
development of static analysis targeting these features.

Keywords Rust, C, automatic translation, static analysis, large language model, modular abstraction

Contents

Contents . i
List of Tables . v
List of Figures . vi
List of Listings . vii
List of Algorithms . viii

Chapter 1. Introduction 1

Chapter 2. Translation of Locks 6
2.1 Background . 6

2.1.1 Lock API of C . 7
2.1.2 Data Races in C . 8
2.1.3 Lock API of Rust . 8

2.2 Code Transformation . 9
2.2.1 Lock Summary . 9
2.2.2 Transformation . 10

2.3 Static Analysis . 13
2.3.1 Call Graph Construction 14
2.3.2 Bottom-Up Dataflow Analysis 14
2.3.3 Top-Down Data Fact Propagation 18
2.3.4 Data-Lock Relation Identification 19

2.4 Evaluation . 20
2.4.1 Implementation . 20
2.4.2 Benchmark Program Collection 21
2.4.3 RQ1: Scalability of Transformation 21
2.4.4 RQ2: Applicability . 24
2.4.5 RQ3: Correctness . 27
2.4.6 RQ4: Scalability of Analysis 27
2.4.7 RQ5: Precision . 28
2.4.8 Threats to Validity . 28

Chapter 3. Translation of Unions 29
3.1 Background . 30

3.1.1 Unions with Tags . 31
3.1.2 C2Rust’s Translation . 32

i

3.1.3 Tagged Unions . 33
3.2 Static Analysis . 34

3.2.1 Candidate Identification 35
3.2.2 May-Points-To Analysis 35
3.2.3 Must-Points-To Analysis 35
3.2.4 Analysis Result Interpretation 39

3.3 Code Transformation . 42
3.3.1 Naïve Transformation . 43
3.3.2 Idiomatic Transformation 45

3.4 Evaluation . 47
3.4.1 Implementation . 48
3.4.2 Benchmark Program Collection 48
3.4.3 RQ1: Precision and Recall 48
3.4.4 RQ2: Correctness . 51
3.4.5 RQ3: Efficiency . 53
3.4.6 RQ4: Code Characteristics 54
3.4.7 RQ5: Impact on Performance 54
3.4.8 Threats to Validity . 54

Chapter 4. Translation of Output Parameters 56
4.1 Definition of Output Parameters 58
4.2 Static Analysis . 63

4.2.1 Abstract Read/Write/Exclude Sets 64
4.2.2 Write Set Sensitivity . 68
4.2.3 Nullity Sensitivity . 70

4.3 Code Transformation . 71
4.3.1 Must-Output Parameters 72
4.3.2 May-Output Parameters 72

4.4 Evaluation . 75
4.4.1 Implementation . 75
4.4.2 Benchmark Program Collection 76
4.4.3 RQ1: Scalability . 76
4.4.4 RQ2: Usefulness . 79
4.4.5 RQ3: Correctness . 79
4.4.6 RQ4: Impact on Performance 81
4.4.7 Threats to Validity . 82

ii

Chapter 5. Translation Using a Large Language Model 83
5.1 Translation . 84

5.1.1 Candidate Signature Generation 85
5.1.2 Translation of Function Augmented with Callee Signa-

tures . 86
5.1.3 Compiler Feedback-Based Iterative Fix 88
5.1.4 Best Translation Selection 91

5.2 Evaluation . 92
5.2.1 Implementation . 92
5.2.2 Benchmark Collection . 93
5.2.3 RQ1: Promotion of Type Migration 93
5.2.4 RQ2: Quality of Type Migration 97
5.2.5 RQ3: Type Error Reduction 100
5.2.6 RQ4: Comparison with Existing Approaches 104
5.2.7 RQ5: Overhead . 106
5.2.8 Threats to Validity . 109

Chapter 6. Modular Abstractions for Unsafe Features 111
6.1 Motivation . 112
6.2 Background . 114

6.2.1 Safe Rust’s A⊕M Discipline 114
6.2.2 Unsafe Rust’s A&M Support 115
6.2.3 A&M Pattern Examples 117
6.2.4 Raw Pointer or Interior Mutability? 119

6.3 A&M Patterns in OSs . 119
6.3.1 Process-Owned Value . 120
6.3.2 CPU-Owned Value . 121
6.3.3 Memory Pool . 123
6.3.4 Lock-Protected Immovable Value 126
6.3.5 Lock-Protected Separated Value 126
6.3.6 Asynchronous Ownership Transfer for DMA 129

6.4 Evaluation . 131
6.4.1 RQ1: Existence of Abstractions 131
6.4.2 RQ2. Effectiveness in Reducing Unsafe Code 134
6.4.3 RQ3: Impact on Performance 135

Chapter 7. Related Work 140

iii

Chapter 8. Conclusion 143

Bibliography 144

Acknowledgments in Korean 159

Curriculum Vitae in Korean 160

iv

List of Tables

2.1 Benchmark programs for evaluating Concrat . 22
2.2 Experimental results of Concrat . 23

3.1 Benchmark programs for evaluating Urcrat . 49

4.1 Benchmark programs for evaluating Nopcrat . 77

5.1 Benchmark programs for evaluating Tymcrat . 94

6.1 Manual analysis of the A&M patterns in other OSs . 131
6.2 Numbers of total and unsafe lines of code . 134
6.3 Description of benchmarks . 136

v

List of Figures

1.1 Classification of Rust’s unsafe features . 2
1.2 The workflow of the proposed approach . 3

2.1 The workflow of Concrat . 7
2.2 The workflow of ConcratG . 21
2.3 Transformation time per benchmark program using Concrat 24

3.1 The workflow of Urcrat . 30
3.2 Execution time of Urcrat across benchmark programs . 53

4.1 The workflow of Nopcrat . 57
4.2 Abstract domains . 64
4.4 Experimental results of Nopcrat . 78

5.1 Overview of type-migrating translation via LLM . 85
5.2 Average number of Rust types introduced after translation 95
5.3 Proportions of unmigrated, partially migrated, and fully migrated function signatures

after translation . 96
5.4 Number of distinct Rust types introduced after translation 97
5.5 Frequencies of each introduced Rust type after translation 98
5.6 Average number of type errors after translation . 101
5.7 Average number of functions without type errors after translation 102
5.8 Average number of functions that do not have type errors in themselves and their callees

after translation . 103
5.9 Proportions of unmigrated, partially migrated, and fully migrated function signatures

after translation with C2Rust, Laertes, Crown, or Tymcrat 105
5.10 Average time taken to translate each GNU package . 106
5.11 Average number of input tokens required to translate each GNU package 107
5.12 Average number of output tokens required to translate each GNU package 108
5.13 Average cost required to translate each GNU packages . 109

6.1 Process-owned value: cwd in Proc . 112
6.2 Performance of xv6LockRust compared to xv6Rust . 113
6.3 Self-referential value example: process manager . 117
6.4 CPU accesses from threads . 121
6.5 Three states of RefCell and ArcCell . 124
6.6 How a wait system call is handled . 127
6.7 Problem of using per-process locks . 127
6.8 Ownership transfer of buffer in disk operations . 130
6.9 Execution cycles of each benchmark on xv6Rust compared to xv6 137
6.10 Performance of xv6Rust compared to Ubuntu 18.04 . 138

vi

List of Listings

2.1 Lock summary . 10
2.2 Rust code before transformation . 11
2.3 Rust code after transformation . 12

4.1 May output parameter . 68
4.2 Must-output parameter . 70
4.3 Null-specific behavior . 70

6.1 Modular abstraction of self-referential value . 117
6.2 Modular abstraction of lock-protected value . 118
6.3 Modular abstraction of process-owned value . 120
6.4 Modular abstraction of CPU-owned value . 122
6.5 Modular abstraction of ArcCell . 124
6.6 Modular abstraction of StrongPinMut . 125
6.7 Modular abstraction of lock-protected immovable value 126
6.8 Naïve abstraction of wait without branded types . 128
6.9 Modular abstraction of wait with branded types . 129
6.10 Modular abstraction of ownership transfer to disk . 130

vii

List of Algorithms

3.1 Graph joining . 38
3.2 Identifying tag values associated with fields . 40

5.1 Fix-by-suggestion algorithm . 90
5.2 Fix-by-LLM algorithm . 90

viii

Chapter 1. Introduction

C, despite its widespread use in system programming, is notorious for its poor language-level safety
mechanisms. C programs can have memory bugs even after passing the type checking of the compiler. As
a result, legacy system software developed in C often suffers from memory bugs leading to severe security
vulnerabilities. For example, memory bugs account for two-thirds of the vulnerabilities in Linux [69] and
approximately 70% of CVE-assigned vulnerabilities in Microsoft’s codebase [189]. Recognizing this, the
White House recently recommended discouraging the use of C [104].

Various approaches have been proposed to reduce memory bugs in system programs. Fuzzing, which
generates random inputs to a program, has been successful in finding bugs [111, 194, 179, 120]. Static
analysis approximates program behavior without execution, and several tools focus on analyzing system
programs [142, 59]. Formal verification techniques use proof assistants [62, 163] to verify program cor-
rectness. Recent advances in these techniques have enabled the verification of complex system programs,
even including operating systems (OSs) [124, 50, 94, 158].

However, each of these approaches has drawbacks. Fuzzing cannot detect bugs in unexplored paths,
making it insufficient to prove the absence of bugs. Static analysis often generates too many false alarms,
hindering its scalability for large, real-world system programs. Lastly, formal verification requires manual
proof writing, which is time-consuming even for experts using state-of-the-art proof assistants.

Rust [145, 16], a modern language designed to replace C in system programming, provides a strong
type system that ensures the absence of memory bugs for programs that pass type checking [115]. For
this reason, writing software in Rust enables the creation of safe-by-construction system programs. The
type checker does not miss bugs unlike fuzzing, and its type error messages are easier for developers to
understand and fix compared to the alarms from static analysis using complex abstract domains and
sensitivities. Additionally, it does not require the manual proof writing of formal verification. Due to
these advantages, Rust has been widely adopted in system programming, as shown by the development
of critical software such as garbage collectors [136] and OSs [131, 127, 128, 67, 156].

While developing new systems in Rust is beneficial, many legacy programs were written in C before
Rust’s emergence, leaving them without its safety benefits. Translating them to Rust is a promising
way to improve their reliability. After the translation, developers can detect previously unknown bugs
through Rust’s type checking. Notably, more than half of cURL’s security vulnerabilities could have
been prevented if it had been written in Rust [105]. In addition, once software is ported to Rust, the
risk of introducing new bugs when adding features significantly decreases.

Noticing this potential, the industry has already begun transitioning from C to Rust [110, 107, 45].
In particular, Mozilla developed an alternative web browser, Servo, written in Rust, and has gradually
replaced Firefox’s C modules with semantically equivalent ones from Servo [53]. According to Mozilla
developers, Rust’s safety guarantee was crucial for building Servo’s complex, parallel engine for CSS
styling and GPU rendering with low cost and high confidence [92]. Furthermore, Rust has become one
of the implementation languages for Linux [183], Android [187], and Fuchsia [5], Google’s OS for smart
home devices [68].

However, the current approach of manually translating legacy C code to Rust is labor-intensive and
error-prone, limiting wider adoption. Developers must write Rust code that is not only syntactically valid
but also semantically equivalent to the original C code. Additionally, the resulting Rust code should

1

Unsafe

Raw Ptr Unsafe Func Global Union Unsafe TraitRust Book [19]

Lifetime Arith Extern Void Alloc Extern Cast AsmEmre et al. [84]

Scalar Ptr Container Ptr Lock Generics Tagged Union · · ·

Figure 1.1: Classification of Rust’s unsafe features

follow Rust’s programming idioms, fully leveraging its features. Rust has adopted many useful features
not only from C but also from other modern languages. For instance, its support for algebraic data types,
parametric polymorphism, and traits (which resemble Haskell’s type classes) is influenced by functional
languages. These features help express logic more concisely and clearly, so properly incorporating them
significantly impacts translation quality. Therefore, developers must understand how C features are used
in the original code and restructure the program to express the intended logic using Rust’s features.

To address this problem, developing an automatic C-to-Rust translator is crucial. Such a tool
can translate legacy C code to Rust much faster and with far fewer errors than human developers.
Recognizing the importance of this effort, the Defense Advanced Research Projects Agency (DARPA)
recently announced a program aimed at automating C-to-Rust translation [195].

Unfortunately, existing techniques for automatic C-to-Rust translation remain unsatisfactory. C2Rust [1,
198], the most well-known tool, performs a straightforward syntactic translation, retaining all the C fea-
tures in the resulting Rust code. However, using C features in Rust is problematic becuase they are
either unsafe or unidiomatic. First, many of C features fall under Unsafe Rust [19], which allows the
use of unsafe features like dereferencing raw pointers and calling external functions. Since the Rust
compiler does not guarantee the safety of unsafe features, their use contradicts the goal of translation.
Second, C features often do not align with Rust’s idioms, making the code harder to comprehend and
maintain. For example, while Rust uses types like Option and Result to express partial functions and
iterators to traverse collections, C relies solely on pointers for these purposes, failing to explicitly convey
the intended logic. Therefore, it is essential to replace C features in C2Rust-generated code with their
Rust equivalents to improve the quality of automatic translation. Given the variety of C features, it is
infeasible to replace all at once. Instead, techniques must be developed for each feature based on a deep
understanding of its role.

To better understand C features, we categorize them based on their characteristics. As mentioned
earlier, C features can be broadly divided into unsafe features and unidiomatic features. Since most C
features belong to unsafe features, we further classify them as shown in Figure 1.1. As illustrated in
the second row, Rust has five kinds of unsafe features: raw pointer dereferencing, unsafe function calls,
mutable global variable access, union field access, and implementation of unsafe traits [19]. Of these, as
unsafe traits do not appear in C2Rust-generated Rust code, they do not correspond to any C features.
Additionally, as seen in the third row, Emre et al. [84] further classify some unsafe features. They

2

C Code C2Rust
Rust code
(C feature) Code transformer

Rust code
(Rust feature)

Static analyzer Analysis result

Figure 1.2: The workflow of the proposed approach

categorize raw pointers into lifetime pointers, pointer arithmetic, external pointers, and void pointers
and unsafe functions into allocation functions, external functions, casts, and inline assembly. This
classification is exhaustive by their category definitions: lifetime pointers include all raw pointers not in
other categories, and external functions cover all functions not classified elsewhere.

While this classification provides a useful starting point, we propose reclassifying unsafe features by
combining some into broader categories and subdividing others, as shown in the fourth row. This is mo-
tivated by (1) the need to replace related features, such as lifetime pointers and allocation functions, with
safe counterparts simultaneously, and (2) the observation that some features remain too coarse-grained;
for example, external functions serve diverse purposes like concurrency, file systems, and subprocess
management, each of which requires distinct techniques. Naturally, this reclassification is subjective and
challenging to make exhaustive. While we leave the task of further expanding this list to future studies,
we describe some of the important features here:

• Scalar pointers: This category involves the use of raw pointers to objects other than collections.
It includes lifetime pointers and certain allocation functions. Such pointers can be replaced by
references and Box, which are pointers to heap-allocated objects.

• Container pointers: This category involves the use of raw pointers to collections. It includes pointer
arithmetic as well as certain allocation and external functions. Such pointers can be replaced
by collection types like Vec and String, and by slices, which are pointers to (possibly parts of)
collections.

• Locks: This category involves the use of locks to protect shared data in concurrent programs. It
includes certain external pointers, external functions, and global variables. C locks can be replaced
by Rust locks, which are containers that combine protected data with C locks.

• Tagged unions: This category involves the use of unions to mimic tagged unions. It includes
certain unions, which are accompanied by tag values indicating the active fields. Such unions can
be replaced by tagged unions, or enums in Rust’s terminology.

• Generics: This category involves functions that mimic generic functions. It includes certain void
pointers and casts between function pointer types. Such functions can be replaced by generic
functions.

Recognizing the importance of replacing C features in C2Rust-generated code, researchers have
explored this area, but only a very small subset of features has been addressed. The only existing
studies, Laertes [84, 83] and Crown [203], focus on scalar pointers. However, all other features remain
unaddressed, limiting the applicability of automatic translation to real-world C code.

3

In this dissertation, we propose techniques to improve C-to-Rust translation using static analysis
while addressing various language features not covered in previous studies. Figure 1.2 illustrates the
overall workflow of our approach. First, we translate C code to Rust code that retains C features
using C2Rust. Next, we perform static analysis tailored to a specific C feature to automatically gather
information on how this feature is used in the code. Finally, we transform the Rust code by replacing
the C feature with the corresponding Rust feature based on the analysis results. Since each language
feature has distinct characteristics, dedicated static analysis is required for each feature. Specifically,
we target three important C features: locks, tagged unions, and output parameters. The first two are
unsafe features, while the last is an unidiomatic feature.

In addition, to complement the approaches using static analysis, we also propose translation using
a large language model (LLM) like ChatGPT [165, 46]. While static analysis is a desirable method
for producing correct code, designing proper analysis for each feature requires significant effort. For
this reason, this work does not cover all C features through static analysis alone. As a complementary
approach, we introduce LLM-based translation, which, though it may not always produce fully correct
code, can replace various C features with Rust features. Specifically, we focus on type migration, i.e.,
replacing C types with Rust types, by leveraging LLMs’ intuitive understanding of program semantics
and programming idioms, obtained from training on vast collections of human-written code.

Furthermore, we propose modular abstractions for C features whose Rust counterparts have not yet
been developed, to facilitate the future development of static analysis targeting these features. Rust
programmers have constructed modular abstractions for code patterns expressed with unsafe features to
enable modular reasoning of the code [55]. Therefore, proper abstractions for C features are essential for
enabling their automatic replacement through static analysis. While many patterns in general system
software already have modular abstractions, those found specifically in OSs have not been thoroughly
studied. In this work, we identify six widely used patterns in OSs and propose modular abstractions for
them.

Overall, our contributions are as follows:

• Chapter 2: To translate locks, we propose static analysis that identifies where locks are held and
which data they protect, along with code transformation that replaces C locks with Rust locks. We
implement this approach in a tool named Concrat (Concurrent-C to Rust Automatic Translator)
and evaluate it using 46 real-world C programs with locks. The implementation and benchmark
programs are publicly available [100].

• Chapter 3: To translate tagged unions, we propose static analysis that identifies where tag values for
unions are stored and code transformation that replaces unions with tagged unions. This approach
is realized in a tool named Urcrat (Union-Removing C-to-Rust Automatic Translator), which
we evaluate with 36 real-world C programs using unions. The implementation and benchmark
programs are publicly available [102].

• Chapter 4: To translate output parameters, we propose static analysis that identifies output pa-
rameters and code transformation that replaces output parameters with tuples and Option/Result
types. This approach is implemented in a tool named Nopcrat (No-Output-Parameter C-to-Rust
Automatic Translator) and evaluated with 55 real-world C programs. The implementation and
benchmark programs are publicly available [101].

• Chapter 5: To complement the approaches using static analysis, we propose type-migrating C-to-
Rust translation using an LLM. We explicitly prompt the LLM to generate candidate type sig-

4

natures to facilitate type migration and augment functions with their callees’ migrated signatures
to reduce type errors. This approach is implemented in a tool named Tymcrat (Type-Migrating
C-to-Rust Automatic Translator) and evaluated with 39 GNU programs written in C. The imple-
mentation is publicly available [99].

• Chapter 6: To facilitate the automatic translation of complex code patterns found in OSs, we
develop modular abstractions for such patterns. Specifically, we identify six patterns in the xv6
OS [74] and design their modular abstractions while rewriting xv6 entirely in Rust, naming it
xv6Rust . The implementation of xv6Rust is publicly available [103].

We also discuss related work (Chapter 7) and conclude the dissertation (Chapter 8).

5

Chapter 2. Translation of Locks

In system programming, concurrency is important yet notoriously difficult to get right. System
software reduces execution time by spawning multiple threads and splitting tasks. As a drawback, it
suffers from various bugs not existing in the sequential setting: data races, deadlock, starvation, etc [48].

Data races are the most common category of concurrency bugs [48]. It happens when multiple
threads read and write the same memory address simultaneously. Data races lead system programs to
exhibit not only unpleasant malfunctions but also critical security vulnerabilities [69].

Among synchronization mechanisms to avoid data races, locks are the most widely-used one. Each
thread acquires and releases a lock before and after accessing shared data. This simplicity has facilitated
the adoption of locks in diverse system software. Unfortunately, locks prevent data races only when they
are used correctly. Programmers may acquire wrong locks, acquire locks too late, or release locks too
early, thereby failing to eliminate data races.

C burdens programmers with the validation of correct lock use. The most popular lock API of C,
pthreads [106], does not automatically check whether programs use locks correctly. Developers often fail
to recognize incorrectly used locks in their programs, and C programs thus have suffered from data races.

On the other hand, Rust provides a lock API guaranteeing thread safety, i.e., the absence of data
races, in std::sync of its standard library [30]. The combination of the ownership type system of Rust
and the carefully designed API allows the type checker to validate the correct use of locks at compile
time [115]. The API is different from the C lock API not only syntactically, e.g., in names of functions,
but also semantically. For instance, the Rust lock API requires programs to explicitly describe which
lock protects which data, while the C lock API does not.

In this chapter, we propose techniques to automatically replace the C lock API with the Rust lock
API. Figure 2.1 shows the workflow of the proposed approach. We first translates C code using C2Rust.
Then, we statically analyze the Rust code produced by C2Rust to construct a lock summary. Finally,
we convert the C lock API to the Rust lock API using the lock summary.

Overall, we make the following contributions:

• We propose code transformation that replaces the C lock API in C2Rust-generated code with the
Rust lock API based on the given lock summary (Section 2.2).

• We propose static analysis that efficiently generates a precise lock summary by combining bottom-
up dataflow analysis and top-down data fact propagation (Section 2.3).

• We realize the proposed approach in a tool named Concrat. Our evaluation shows that the trans-
former efficiently and correctly transforms real-world programs and the analyzer outperforms the
state-of-the-art static analyzer in terms of both speed and precision. Specifically, they transform
and analyze 66 KLOC in 2.6 seconds and 4.3 seconds, respectively, and translate 74% of real-world
programs to compilable code (Section 2.4).

2.1 Background

6

C Code C2Rust
Rust code
(C locks)

Code transformer
(Section 2.2)

Rust code
(Rust locks)

Static analyzer
(Section 2.3) Lock summary

Figure 2.1: The workflow of Concrat

2.1.1 Lock API of C

The most widely used C lock API, pthreads [106], provides three types of lock: mutexes, read-write
locks, and spin locks. While all of them are within the scope of this work, we mainly discuss mutexes.
The others are similar to mutexes and briefly discussed in Section 2.4.1.

The API provides the pthread_mutex_lock and pthread_mutex_unlock functions, each of which takes
a pointer to a lock; the former acquires the lock, and the latter releases the lock. Locks are used together
with shared data. C programs have two common patterns to organize locks and shared data: global and
struct [192].

Global Both data and lock are global variables.

int n = ...;

pthread_mutex_t m = ...;

void inc() {

pthread_mutex_lock (&m);

n += 1;

pthread_mutex_unlock (&m);

}

The global variable n is a shared integer and m is a lock. Each thread must hold m when accessing n, i.e.,
m protects n. Thus, inc acquires and releases m before and after increasing n.

Struct Both data and lock are fields of the same struct.

struct s {

int n;

pthread_mutex_t m;

};

void inc(struct s *x) {

pthread_mutex_lock (&x->m);

x->n += 1;

pthread_mutex_unlock (&x->m);

}

The lock stored in the field m of a struct s value protects the integer stored in the field n of the same
struct value. Each thread must hold x->m when accessing x->n.

7

2.1.2 Data Races in C

The C lock API does not guarantee whether programs use locks correctly. Data races may occur by
mistake despite the use of locks. There are two major reasons for data races: data-lock mismatches and
flow-lock mismatches.

Data-Lock Mismatch A data-lock mismatch is an acquisition of an incorrect lock when accessing
shared data. See the following where m1 protects n1 and m2 protects n2:

pthread_mutex_lock (&m2);

n1 += 1;

pthread_mutex_unlock (&m2);

All the other parts of the program acquire m1 when accessing n1. However, the above code has a bug: it
acquires m2, instead of m1, when accessing n1. This allows multiple threads to access n1 simultaneously,
thereby incurring a data race.

Flow-Lock Mismatch A flow-lock mismatch is an acquisition of a lock at an incorrect program point.
Consider the following program, where m protects n:

void f1() {

n += 1;

pthread_mutex_lock (&m);

...

}

void f2() {

...

pthread_mutex_unlock (&m);

n += 1;

}

The function f1 accesses n before acquiring m, and f2 accesses n after releasing m. Both functions are
buggy as they allow accesses to the shared data when the lock is not held.

2.1.3 Lock API of Rust

The Rust lock API guarantees the correct use of locks [115]. The API makes two kinds of relation
explicit: data-lock relations, i.e., which lock protects which data; flow-lock relations, i.e., which lock is
held at which program point. It naturally prevents both data-lock mismatches and flow-lock mismatches.

Rust makes the data-lock relation explicit by coupling a lock with shared data. A Rust lock is a C
lock plus shared data; it can be considered a protected container for shared data. The type of a lock is
Mutex<T>, where T is the type of the protected data [39]. A program can create a lock as follows:

static m: Mutex <i32 > = Mutex::new (0);

making m a lock initially containing 0. The coupling of data and a lock prevents data-lock mismatches.
When accessing shared data, threads acquire the lock coupled with the data.

Rust makes the flow-lock relations explicit by introducing the notion of a guard. Threads need a
guard to access the in-lock data. A guard is a special kind of pointer to the in-lock data. The only way
to create a guard is to acquire a lock. The lock method of a lock produces a guard as a return value.

8

Threads can access the protected data by dereferencing the guard. When a thread wants to release a
lock, it drops, i.e., deallocates, the guard by calling drop. A predefined drop handler attached to the
guard automatically releases the lock. The following shows the process from construction to destruction
of a guard:

let mut g = m.lock().unwrap ();

*g += 1;

drop(g);

Because lock returns a wrapped guard, unwrap() is required. The unwrap call fails and makes the current
thread panic when a thread previously holding the lock has panicked before releasing it. Otherwise,
unwrap returns the guard.

With the help of Rust’s ownership type system [115], guards prevent flow-lock mismatches. In Rust,
each function can use only the variables it owns. A function owns a variable after initializing it and loses
the ownership after passing the variable to another function as an argument. The type checker detects
every flow-lock mismatch at compile time by tracking the ownership of guards. Consider the following
buggy code:

fn f1() {

let mut g;

*g += 1;

g = m.lock().unwrap ();

}

fn f2() {

let mut g;

...

drop(g);

*g += 1;

}

Because f1 uses g before owning it and f2 uses g after losing the ownership, the type checker rejects both
functions.

2.2 Code Transformation

This section proposes an automatic Rust code transformer that takes C2Rust-generated code and
its lock summary as inputs and replaces the C lock API with the Rust lock API. We first describe the
contents of a lock summary (Section 2.2.1) and then show how the transformer replaces the C lock API
with the Rust lock API using the summary (Section 2.2.2).

2.2.1 Lock Summary

A program’s lock summary abstracts its data-lock and flow-lock relations. A lock summary is a
JSON file containing three maps: global_lock_map, struct_lock_map, and function_map. The first two
represent data-lock relations, and the last one represents flow-lock relations. Listing 2.1 is the lock
summary for the C2Rust-generated code in Listing 2.2. We describe each component of the summary in
detail.

9

{

"global_lock_map ": { "n": "m" },

"struct_lock_map ": { "s": { "n": "m" } },

"function_map ": {

"unlock ": {

"entry_lock ": ["m"],

"return_lock ": [],

...

},

"lock": {

"entry_lock ": [],

"return_lock ": ["m"],

...

},

"foo": {

...

"lock_line ": { "m": [23, 24] },

},

...

}

}

Listing 2.1: Lock summary

Global Lock Map global_lock_map expresses data-lock relations of the global pattern. It is a map
from a global variable to the lock variable protecting it. The summary states that n is protected by m.

Struct Lock Map struct_lock_map keeps data-lock relations of the struct pattern. It maps a struct
type name to its summary, which maps a field to the lock field protecting it. The summary states that
the field n of the struct type s is protected by the field m.

Function Map function_map expresses the flow-lock relation. It maps a function name to its summary,
which consists of entry_lock, return_lock, and lock_line. Locks are represented by symbolic paths. For
example, m and x.m are locks, where the type of the variable x is s. entry_lock is a list of locks that
are always held at the entry of the function. The summary states that m is always held at the entry of
unlock. return_lock is a list of locks that are always held at the return of the function. The summary
states that m is always held at the return of lock. lock_line is a map from a lock to a list of lines in the
function where the lock is held. The summary states that m is held in lines 23 and 24.

2.2.2 Transformation

The transformer produces Listing 2.3 by replacing the C lock API in Listing 2.2 with the Rust lock
API. Note that each line of Listing 2.3 corresponds to the same line of Listing 2.2. We explain the
transformation line-by-line.

• Lines 1–2: We check global_lock_map to identify locks and variables they protect. We define a new
struct containing variables protected by a certain lock and replace the original C lock with a Rust

10

1 static mut n: i32 = 0;

2 static mut m: pthread_mutex_t = ...;

3 struct s { n: i32 , m: pthread_mutex_t }

4 fn f() {

5 pthread_mutex_lock (&mut m);

6 n += 1;

7 pthread_mutex_unlock (&mut m);

8 }

9 fn unlock () {

10 pthread_mutex_unlock (&mut m);

11 }

12 fn lock() {

13 pthread_mutex_lock (&mut m);

14 }

15 fn g() {

16 lock();

17 n += 1;

18 unlock ();

19 }

20 fn foo() {

21 n += 1; // safe for some reason

22 pthread_mutex_lock (&mut m);

23 n += 1;

24 pthread_mutex_unlock (&mut m);

25 }

Listing 2.2: Rust code before transformation

lock containing a struct value.

• Line 3: Similar to the above, but using struct_lock_map, instead of global_lock_map.

• Lines 4–8: We define an uninitialized guard variable at the beginning of each function using the
guard. Each pthread_mutex_lock and pthread_mutex_unlock call is syntactically transformed into
a lock method call and a drop function call, respectively. Note that the name of a guard is
syntactically determined from the name of the lock according to a predefined rule. We replace each
expression accessing protected data with an expression dereferencing a guard, whose lock name is
found in global_lock_map or struct_lock_map, depending on the access path.

• Lines 9–11: We make a function take a guard as an argument if its entry_lock is nonempty.

• Lines 12–14: We make a function return a guard if its return_lock is nonempty. If there are
multiple return guards or the original return value, tuples are constructed.

• Lines 15–19: We add a guard as an argument to a call to a function with nonempty entry_lock.
We assign the return value of a function with nonempty return_lock to a guard variable.

• Lines 20–25: Even when m protects n, some accesses to n may not hold m because the developer
thinks that n is never concurrently accessed by other threads in those specific lines. For this reason,

11

1 struct mData { n: i32 }

2 static mut m: Mutex <mData > = Mutex ::new(mData{ n: 0 });

3 struct smData { n: i32 } struct s { m: Mutex <smData > }

4 fn f() { let mut m_guard;

5 m_guard = m.lock().unwrap ();

6 (* m_guard).n += 1;

7 drop(m_guard);

8 }

9 fn unlock(m_guard: MutexGuard <i32 >) {

10 drop(m_guard);

11 }

12 fn lock() -> MutexGuard <i32 > { let mut m_guard;

13 m_guard = m.lock().unwrap (); m_guard

14 }

15 fn g() { let mut m_guard;

16 m_guard = lock();

17 (* m_guard).n += 1;

18 unlock(m_guard);

19 }

20 fn foo() { let mut m_guard;

21 m.get_mut ().n += 1; // safe for some reason

22 m_guard = m.lock().unwrap ();

23 (* m_guard).n += 1;

24 drop(m_guard);

25 }

Listing 2.3: Rust code after transformation

we cannot blindly replace all the accesses to protected data with guard dereference. We need to
figure out whether a certain guard exists in each line by checking lock_line. Since the summary
states that m is held only in lines 23 and 24, the access in line 21 uses the get_mut method, instead
of the guard. The method returns a pointer to the in-lock data.

Note that the use of get_mut relies on that m is defined mutable. If m is immutable, the type checker
disallows calling get_mut. In Rust, mutable global variables are discouraged [22]. Reference-counted
types, Rc [36] (in the sequential setting) and Arc [37] (in the concurrent setting), should replace
mutable global variables. This makes get_mut succeed if the reference count equals one and panic
otherwise, consequently preventing data races at run time even when the developer’s assumption
is wrong. Automatically replacing mutable global variables with Rc and Arc is beyond the scope of
this work.

The transformed code looks similar to human-written code because the transformer utilizes code
patterns that real-world Rust programmers use, e.g., putting fields into structs protected by locks, storing
guards in variables, passing guards as arguments, and returning guards from functions. Still, there are
some discrepancies: humans may prefer wrapping guards in structs and defining their methods instead of
functions taking guards; they often omit drop calls at the end of a function, which can be automatically
inserted by the compiler.

12

2.3 Static Analysis

In this section, we propose a static analysis to automatically generate lock summaries required by
the transformer. The analysis must precisely determine the flow-lock relation to lead the transformer to
produce compilable code. If a summary contains an imprecise flow-lock relation, the transformed code
may be uncompilable due to the use of unowned guards. On the other hand, an imprecise data-lock
relation does not hinder the transformed code from being compiled. If the analysis fails to find that m

protects n, n will not be a field of a struct protected by m. If the analysis incorrectly concludes that m

protects n, n will be accessed via get_mut. Both kinds of code are unideal but compilable and preserve
the original semantics. We thus focus on designing an analysis that precisely computes the flow-lock
relation.

The key intuition behind our analysis design is that the precision of the analysis does not need to
exceed that of the type checker. Consider the following example:

if b { pthread_mutex_lock (&m); } ...

if b { pthread_mutex_unlock (&m); }

Even when the analysis is precise enough to track the path-sensitive use of locks, the transformed code
is uncompilable:

let mut m_guard;

if b { m_guard = m.lock().unwrap (); } ...

if b { drop(m_guard); }

Since type checking is path-insensitive, it considers m_guard possibly uninitialized in the last line. This
shows that a path-insensitive analysis is enough. Similarly, our analysis can be context-insensitive as the
type checker is context-insensitive.

This intuition makes our analysis distinct from existing techniques: it is tailored to efficiently gen-
erate precise summaries for the code transformation by aiming the same precision as the type checker.
Existing ones are either too imprecise or too precise. Some overapproximate the behavior of a program
too much, so using their results as summaries would make the transformed code uncompilable. Some
unnecessarily adopt rich techniques to make their results precise, thereby failing to finish the analyses in
a reasonable amount of time.

Note that aiming the same precision as the type checker does not mean that we repeat the work
of the type checker. While the goal of the type checker is to validate the use of guards, our goal is to
infer the use of guards, which is more difficult. Specifically, the type checker takes code that already has
guards and checks whether it uses guards properly in terms of ownership, but our analyzer takes code
without any guards and reconstructs the flow of guards to determine whether each function needs to
take or return certain guards.

Since guards are more concrete than information that certain locks are held, guards often make
our explanation intuitive. Thus, we sometimes use guards in the explanation although the code being
analyzed does not have any guards. The existence of a guard at a certain program point is equivalent to
the corresponding lock always being held at the program point, and the term guard is exchangeable for
the term held lock.

Our analysis consists of four phases: call graph construction (Section 2.3.1), bottom-up dataflow
analysis (Section 2.3.2), top-down data fact propagation (Section 2.3.3), and data-lock relation identifi-
cation (Section 2.3.4). The call graph is required for both bottom-up analysis and top-down propagation.

13

The bottom-up analysis and the top-down propagation collectively compute the flow-lock relation. Using
the flow-lock relation, the last phase computes the data-lock relation.

2.3.1 Call Graph Construction

We draw call graphs by collecting the function names called in each function, without expensive
control flow analysis. The drawback is that the call graph misses edges created by function pointers.
However, the number of such edges is usually small because function pointers are rarely used in practice,
and the subsequent analyses remain precise enough. Each node is a user-defined function; all the library
functions are excluded from the graph. Therefore, each leaf node calls zero or more library functions but
no user-defined functions.

We identify all the strongly connected components in the call graph to find mutually recursive
functions, which need special treatment during the bottom-up analysis. We create a merged version of
the call graph by merging each strongly connected component into a single node. We keep both original
and merged call graphs to use the former for the top-down propagation and the latter for the bottom-up
analysis.

2.3.2 Bottom-Up Dataflow Analysis

The goal of the bottom-up analysis is to identify the minimum entry lock set (MELS) and the
minimum return lock set (MRLS) of each function. They are locks that must be held at the entry and
the return, respectively. To compute the MELS and MRLS of each function, we perform two dataflow
analyses on each function: live guard analysis (LGA) and available guard analysis (AGA). LGA computes
MELSs, and AGA computes MRLSs. We need the control flow graph of each function for the analyses.
The nodes are statements of the function, with two special nodes, entry and ret, which denote the entry
and the return, respectively.

We traverse the merged call graph in post order to find the analysis target. It allows us to analyze
leaf nodes first and then use their results to analyze internal nodes. Each node contains a single function
or a set of mutually recursive functions. We discuss the analysis of non-recursive functions first and
recursive functions afterward.

The goal of LGA is to compute MELSs. It is similar to the well-known live variable analysis [119].
Just like that the live variable analysis computes variables to be used in the future, LGA computes
guards to be consumed by pthread_mutex_unlock in the future. Live guards at the entry of a function
are the MELS of the function.

The analysis is a backward may analysis. Each pthread_mutex_unlock call, which consumes a guard,
generates a guard. Each pthread_mutex_lock call, which produces a guard, kills a guard. The dataflow

14

equations are defined as follows:

InL
s = (OutL

s − KillLs) ∪ GenL
s

OutL
s =

∅ if s = ret⋃
t∈Succs

InL
t otherwise

GenL
s =

{p} if s = pthread_mutex_unlock(p)

∅ otherwise

KillLs =

{p} if s = pthread_mutex_lock(p)

∅ otherwise

MELS = InL
entry

where s and t range over statements; p ranges over paths; Succs denotes the set of every successor of s.

Example 2.1. The MELS of the following function is {m}:

fn unlock () { pthread_mutex_unlock (&mut m); }

Example 2.2. The MELS of the following function is {m}:

fn may_unlock () {

if ... { pthread_mutex_unlock (&mut m); }

}

We get {m} by {m} ∪ ∅ because LGA is a may analysis. If it was a must analysis, MELS would be ∅,
making the function take no guard after the transformation. Then, the function is uncompilable as it
drops an unexisting guard.

The goal of AGA is to compute MRLSs. It is similar to the well-known available expression anal-
ysis [119]. Just like that the available expression analysis identifies expressions whose values have been
computed in the past, AGA identifies guards constructed by pthread_mutex_lock in the past. Available
guards at the return of a function are the MRLS of the function.

The analysis is a forward must analysis. Each pthread_mutex_lock call generates a guard, and each
pthread_mutex_unlock call kills a guard. The dataflow equations are defined as follows:

OutA
s = (InA

s − KillAs) ∪ GenA
s

InA
s =

MELS if s = entry⋂
t∈Preds

OutA
t otherwise

GenA
s =

{p} if s = pthread_mutex_lock(p)

∅ otherwise

KillAs =

{p} if s = pthread_mutex_unlock(p)

∅ otherwise

MRLS = OutA
ret

where Preds denotes the set of every predecessor of s.

Example 2.3. The MRLS of the following function is {m}:

fn lock() { pthread_mutex_lock (&mut m); }

15

Example 2.4. The MRLS of the following function is ∅:

fn may_lock () {

if ... { pthread_mutex_lock (&mut m); }

}

We get ∅ by {m} ∩ ∅ because AGA is a must analysis. If it was a may analysis, MRLS would be {m},
making the function return a guard after the transformation, which is uncompilable as it returns a
possibly uninitialized guard.

Example 2.5. Both MELS and MRLS of the following are {m}:

fn unlock_and_lock () {

if ... {

pthread_mutex_unlock (&mut m); ...

pthread_mutex_lock (&mut m);

}

}

We get {m} as the MRLS by intersecting {m} and {m}. It is because setting InA
entry to MELS allows m to

be available even in the path where the condition is false. If InA
entry was ∅, the MRLS would be ∅, making

the transformed function not return an existing guard.

Analysis of internal nodes should consider the MELSs and MRLSs of callees. A function with
a nonempty MELS consumes guards and acts like pthread_mutex_unlock. A function with a nonempty
MRLS produces guards, like pthread_mutex_lock. Thus, during LGA, calling f kills MRLSf and generates
MELSf , and during AGA, calling f kills MELSf and generates MRLSf .

Example 2.6. The MELS of unlock2 is {m}.

fn unlock () { pthread_mutex_unlock (&mut m); }

fn unlock2 () { unlock (); }

When structs are involved, we need to consider aliasing through argument passing. A caller and
a callee represent the same lock with different paths if the path being an argument is different from
the name of the corresponding parameter. Unless we recompute paths to reflect aliasing, the analyses
produce incorrect results.

In this regard, we define alias, which recomputes paths:

alias(p, [x1, · · ·, xn], [e1, · · ·, en]) =

ei.p′ if p = xi.p
′

p otherwise

It takes a path, a parameter list, and an argument list. If the path has one of the parameters as a prefix,
alias replaces the prefix with the corresponding argument. Otherwise, the path remains the same. For
example, alias(a.m, [a], [b]) equals b.m. Since we have a set of paths, we extend the definition of alias to
recompute each path in a given set:

alias({· · ·, p, · · ·}, x, e) = {· · ·, alias(p, x, e), · · ·}

An overlined symbol denotes a list. We revise our dataflow equations to handle user-defined function
calls correctly:

If s = f(e), GenL
s = KillAs = alias(MELSf ,Paramsf , e)

KillLs = GenA
s = alias(MRLSf ,Paramsf , e)

where Paramsf denotes the parameter list of f .

16

Example 2.7. The MELS of lock_and_unlock is ∅.

fn unlock(a: *mut s) {

pthread_mutex_unlock (&mut (*a).m);

}

fn lock_and_unlock(b: *mut s) {

pthread_mutex_lock (&mut (*b).m); unlock(b);

}

While the MELS of unlock is {a.m}, the unlock call in lock_and_unlock generates b.m, which is killed by
the preceding pthread_mutex_lock call.

Analysis of a recursive function is challenging because it requires the MELS and MRLS of the
function being analyzed. Our solution is an iterative analysis.

In the beginning, we have no information and set the MELS and MRLS to the bottom values:
MELS = ∅ and MRLS = L, the set of every possible lock path. For the MELS, ∅ is the bottom because
LGA is a may analysis. On the other hand, L is the bottom for the MRLS because AGA is a must
analysis.

We iteratively find a fixed point to compute the correct MELS and MRLS. We analyze the function
with the MELS and MRLS we have. After the analysis, we update them with the result of the analysis.
We repeat this until no change.

Example 2.8. The MELS of the following function is {m}.

fn unlock(n: i32) {

if n <= 0 { pthread_mutex_unlock (&mut m); }

else { unlock(n - 1); }

}

The first iteration gives us MELS = {m} by {m} ∪ ∅. The second iteration produces the same result by
{m} ∪ {m} and reaches a fixed point.

Example 2.9. The MRLS of the following function is {m}.

fn lock(n: i32) {

if n <= 0 { pthread_mutex_lock (&mut m); }

else { lock(n - 1); }

}

The first iteration makes MRLS = {m} by {m} ∩ L. The second iteration computes {m} ∩ {m}, reaching a
fixed point.

The iteration is guaranteed to terminate if L is finite. During the iteration, MELS can only grow,
and MRLS can only shrink. Thus, the number of iterations is bounded by the size of L. The iteration
terminates almost always in practice. In most programs, L is finite, and the termination is guaranteed.
However, some programs have a recursive data structure with locks, which makes L infinite. That said,
a recursive function interacting with an unbounded number of locks is rare in practice, so the iteration
can terminate despite L being infinite.

We can easily generalize this approach to mutually recursive functions. Given a set of mutually
recursive functions, f1, · · · , fn, we set all the MELSs and MRLSs to the bottom values: MELSfi = ∅ and
MRLSfi = L. We then analyze each function and update them with the results. We repeat the analysis
until none of them change.

17

2.3.3 Top-Down Data Fact Propagation

A function summary for the transformation has to contain the entry lock set (ELS) and the return
lock set (RLS) of the function. They are locks that can be always held at the entry and the return,
respectively. It is important that they are different from the MELS and MRLS. The ELS contains
guards given to a function by its caller, and the MELS contains some of them, which are dropped by the
function. Consequently, the MELS is always a subset of the ELS. Similarly, the RLS contains guards
returned by a function to its caller, and the MRLS contains some of them, which are constructed in
the function. The MRLS is always a subset of the RLS. In addition, the following equation holds:
ELS −MELS = RLS −MRLS. We call this common difference the propagated lock set (PLS). The PLS
of a function is the set of guards given from and returned to its caller.

Example 2.10. Both MELS and MRLS of inc are ∅, but both ELS and RLS of inc are {m}.

fn safe_inc () {

pthread_mutex_lock (&mut m); inc();

pthread_mutex_unlock (&mut m);

}

fn inc() { n += 1; }

We need the ELS and RLS of inc to identify the data-lock relation correctly. If we consider only the
MELS and MRLS, we incorrectly conclude that m does not protect n.

The goal of the top-down data fact propagation is to compute the ELS and RLS of each function.
We first compute the ELS of each function. It allows us to find the PLS by subtracting the MELS from
the ELS. Then, the union of the PLS and the MRLS is the RLS.

We first collect all the available guards at each function call. The arguments of the function call
are collected together to recompute paths according to aliasing. Callf,g is the set of pairs, each of which
consists of the set of available guards and the list of arguments when f calls g. Because f may call g
multiple times, multiple pairs may exist. Available guards at each call are already computed during
AGA. Thus, Callf,g is:

Callf,g = {(InA
s , e) | s = g(e) ∧ s is in f}

We then perform a top-down dataflow analysis to compute the ELS of each function. The analysis
is cheap because it does not analyze function bodies and simply propagates data facts through call
edges. If a function does not have any callers, its ELS is the same as its MELS. Otherwise, its callers
propagate available guards. Each caller propagates not only the available guards identified by AGA, but
also the guards propagated from its own callers. We want always-propagated guards, so we compute the
intersection of the guards from each caller. The dataflow equations are as follows:

ELSg =

MELSg if Predg = ∅⋂
f∈Predg

Propf,g otherwise

Propf,g =
⋂

(P,e)∈Callf,g
alias(P ∪ ELSf , e,Paramsg)

where Propf,g is the set of guards propagated from f to g.
We finally compute the PLS and RLS:

PLS = ELS −MELS RLS = MRLS ∪ PLS

Example 2.10. (continued)

18

• Callsafe_inc,inc = {({m}, [])}

• Propsafe_inc,inc = {m}

• ELSinc = PLSinc = RLSinc = {m}

After finishing the top-down propagation, we can generate a function summary of each function.
entry_lock and return_lock are the same as the ELS and RLS, respectively. The set of locks held in
each line, required by lock_line, is determined by combining available guards identified by AGA and
the PLS of the function.

2.3.4 Data-Lock Relation Identification

We identify the data-lock relation from the flow-lock relation computed by the preceding analysis.
The key idea is to find the lock held at each access to a certain path. Since the global pattern and
the struct pattern require different treatments, we split paths into global variables and struct fields and
compute the data-lock relation of each.

We first discuss the global pattern. The first step is to collect every access to each global variable.
We record all the available guards and whether the access is read or write. The available guards are the
union of those found by AGA and the PLS of the function where the access happens. Accx is the set of
accesses to a global variable x:

Accx = {(s, InA
s ∪ PLSf , a) | access(s, x, a) ∧ s is in f}

where access(s, x, r) and access(s, x,w) hold when s reads x and s modifies x, respectively. We then find
a candidate lock for each global variable. A candidate lock is a lock that is held most frequently when
accessing the variable:

Candx = argmaxy |{(s, P, a) ∈ Accx | y ∈ P}|

We split accesses into safe and unsafe ones according to the existence of the candidate lock. We consider
an access safe if it happens when the candidate is held, and unsafe otherwise:

Safex = {(s, P, a) ∈ Accx | Candx ∈ P}
Unsafex = {(s, P, a) ∈ Accx | Candx 6∈ P}

To determine the data-lock relation, we need to check whether each statement is concurrent, i.e.,
can run concurrently with other threads. The existence of an unsafe access does not necessarily mean
that the candidate lock does not protect the global variable. If a statement is non-concurrent, it can
safely access a global variable without holding a lock. Therefore, the precise identification of the data-
lock relation requires a precise thread analysis. Since a precise thread analysis is expensive, we instead
propose a simple heuristic. We consider a statement concurrent only if it belongs to a function reachable
from an argument to pthread_create, the thread-spawning function.

Using the heuristic, we determine whether a candidate lock really protects the global variable. The
candidate protects the variable if a safe write access exists and every unsafe access happens in a non-
concurrent statement.

Candx protects x iff
(∃(s, P, a) ∈ Safex, a = w) ∧ (∀(s, P, a) ∈ Unsafex, s is non-concurrent)

19

For the struct pattern, we collect accesses to each field of a struct. A candidate lock for a field
must be a field in the same struct. AccT,l is the set of accesses to a field l in a type T , and CandT,l is a
candidate for it:

AccT,l = {(s, In
A
s ∪ PLSf , p, a) | access(s, p.l, a) ∧ type(p) = T ∧ s is in f}

CandT,l = argmaxl′ |{(s, P, p, a) ∈ Accx | p.l′ ∈ P}|

We split accesses into safe and unsafe ones and check whether the candidate protects the field,
just as we do for the global pattern. The only difference is that the condition for a statement to be
considered concurrent is stricter than before. A struct value is not accessible from other threads right
after its creation. It becomes accessible only after the function shares it with other threads by storing
it in a global data structure or passing it as a thread argument. Determining when a value is shared
requires a precise thread analysis as well, so we propose a heuristic. For a given struct value containing
a lock field l, we consider a statement non-concurrent not only when its function is unreachable from
an argument to pthread_create, but also when the function initializes l by calling pthread_mutex_init.
Such a function is usually where the struct value is created and uniquely accessed.

2.4 Evaluation

In this section, we evaluate our approach with 46 real-world concurrent C programs. We first describe
our implementation of Concrat, which realizes the proposed approach (Section 2.4.1), and the process
of collecting the benchmark programs (Section 2.4.2). We then assess our approach by addressing the
following research questions:

• RQ1. Scalability of transformation: Does it transform large programs in a reasonable amount of
time? (Section 2.4.3)

• RQ2. Applicability: Does it handle most code patterns found in real-world programs? (Sec-
tion 2.4.4)

• RQ3. Correctness: Does it preserve the semantics of the original program? (Section 2.4.5)

• RQ4. Scalability of analysis: Does it analyze large programs quickly, compared to the state-of-the-
art static analyzer? (Section 2.4.6)

• RQ5. Precision: Does it produce precise lock summaries, compared to the state-of-the-art static
analyzer? (Section 2.4.7)

Our experiments were conducted on an Ubuntu machine with Intel Core i7-6700K (4 cores, 8 threads,
4GHz) and 32GB DRAM. Finally, we discuss potential threats to validity (Section 2.4.8).

2.4.1 Implementation

We implemented Concrat on top of the Rust compiler [12]. The transformer lowers given code to the
compiler’s high-level intermediate representation [14] and walks it to replace the C lock API. The analyzer
uses the compiler’s dataflow analysis framework [13] for its mid-level intermediate representation [15].

Concrat handles not only mutexes, but also read-write locks, spin locks, and condition variables.
Since Rust recommends using mutexes instead of spin locks [123], we replace them with RwLock [40], Mutex,

20

C code C2Rust
Rust code
(C locks) Code transformer

Rust code
(Rust locks)

Goblint

Line mapping

Analysis result

Lock summary

Summary generator

Figure 2.2: The workflow of ConcratG

and Condvar [38] of std::sync. Concrat does not support re-entrant locks because the Rust standard
library does not provide them.

To compare our analyzer with the state-of-the-art static analyzer for concurrent programs, we ad-
ditionally built ConcratG. Figure 2.2 illustrates the workflow of ConcratG. It uses Goblint [192, 180]
to analyze C code. Goblint computes both data-lock and flow-lock relations using abstract interpreta-
tion [73]. Since Goblint’s result contains line numbers for C code, our summary generator replaces them
with those for Rust code using the C-to-Rust line mappings generated by C2Rust.

Note that we can change the implementation of Concrat to analyze C code, instead of Rust code,
just like ConcratG, because the proposed analysis is language-agnostic. Our choice of analyzing Rust
code eases implementation as we can utilize the Rust compiler’s dataflow analysis framework.

2.4.2 Benchmark Program Collection

We collected 46 real-world concurrent C programs, all of the public GitHub repositories satisfying
the following conditions: 1) more than 1,000 stars, 2) not a study material, 3) using the pthread lock
API at least once, 4) C code less than 500,000 bytes, and 5) translatable with C2Rust. Two projects
satisfied the first four conditions but not the last; they use C11 Atomics, but C2Rust supports only
C99-compliant code. When C2Rust generates uncompilable code due to wrong type casts, we included
such projects after manually fixing them.

Table 2.1 shows the collected programs and the code size of each. The second and third columns
show the lines of C code and C2Rust-generated code, respectively; the fourth to seventh columns show the
numbers of pthread_mutex_*, pthread_rwlock_*, pthread_spin_*, and pthread_cond_* calls, respectively.

2.4.3 RQ1: Scalability of Transformation

We translate the programs with Concrat to evaluate the transformer’s scalability. In Table 2.2, the
second column shows the transformation time; the thrid and fourth show the inserted and deleted lines,
measured with diff.

The result shows that the transformer is scalable. As Figure 2.3 shows, the transformation time is
proportional to the Rust LOC, and it takes less than 2.5 seconds to transform 66 KLOC by inserting
and deleting hundreds of lines.

21

Table 2.1: Benchmark programs for evaluating Concrat

Program C LOC Rust LOC Mutex Rwlock Spin Cond

AirConnect 17516 32565 88 0 0 14
axel 5848 7685 16 0 0 0
brubeck 5635 6769 15 0 17 0
C-Thread-Pool 710 791 23 0 0 7
cava 4768 6538 10 0 0 0
Cello 20885 30796 5 0 0 0
Chipmunk2D 16053 21509 12 0 0 10
clib 25073 66287 38 0 0 0
dnspod-sr 9259 12596 0 0 99 0
dump1090 4646 6281 9 0 0 6
EasyLogger 2011 29298 4 0 0 0
fzy 2621 4013 4 0 0 0
klib 716 1016 14 0 0 14
kona 38850 48583 10 0 0 0
level-ip 5414 6651 36 23 0 4
libaco 1282 1800 6 0 0 0
libfaketime 521 806 6 0 0 6
libfreenect 627 962 10 0 0 4
libqrencode 6670 9013 4 0 0 0
lmdb 10827 16290 27 0 0 6
minimap2 17279 23531 6 0 0 4
Mirai-Source-Code 1839 2889 14 0 0 0
neural-redis 3645 6312 12 0 0 0
nnn 12091 16424 7 0 0 0
pg_repack 7420 8152 10 0 0 0
phpspy 19390 29860 8 0 0 10
pianobar 11452 33212 45 0 0 17
pigz 9118 12660 5 0 0 7
pingfs 2318 3332 26 0 0 6
ProcDump-for-Linux 4152 6961 31 0 0 11
proxychains 2686 5460 6 0 0 0
proxychains-ng 5203 9031 8 0 0 0
Remotery 7212 9361 4 0 0 0
sc 142 206 7 0 0 0
shairport 8605 12533 37 0 0 0
siege 19281 25412 21 0 0 16
snoopy 2262 4605 4 0 0 0
sshfs 7193 9914 75 0 0 13
streem 20169 31444 36 0 0 0
stud 7931 10789 12 0 0 0
sysbench 16020 41222 19 10 0 9
the_silver_searcher 7242 12453 23 0 0 5
uthash 817 1450 0 6 0 0
vanitygen 10919 9710 23 0 0 11
wrk 8658 12255 12 0 0 0
zmap 17435 24366 12 0 0 0

22

Table 2.2: Experimental results of Concrat

Transformation Analysis

Program Time Ins Del Succ Reason Fix Test TestC TestO TimeO TimeG SuccG

AirConnect 1.159 870 874 7 cond acq 1.701 timeout
axel 0.344 78 112 3 0.409 error
brubeck 0.289 99 91 3 3 3 3 0.362 80.393 7

C-Thread-Pool 0.059 106 113 3 3 3 3 0.060 0.728 3

cava 0.289 29 27 3 0.334 72.908 3

Cello 1.521 27 15 7 func ptr 3.103 error
Chipmunk2D 0.839 52 60 3 2.074 error
clib 2.416 193 207 7 func ptr 4.234 timeout
dnspod-sr 0.537 272 234 7Þ3 dead 0.696 1667.203 7

dump1090 0.259 44 77 3 3 3 3 0.307 timeout
EasyLogger 0.219 428 415 7 cond acq 0.234 6.458 7

fzy 0.154 16 16 3 3 3 3 0.168 error
klib 0.076 62 100 3 3 3 3 0.078 error
kona 2.067 37 31 3 3 3 3 3.223 timeout
level-ip 0.329 232 317 7 func ptr 0.442 timeout
libaco 0.090 22 33 3 3 3 3 0.105 timeout
libfaketime 0.059 43 85 3 3 3 7 0.059 0.147 3

libfreenect 0.066 87 116 3 0.069 3.439 3

libqrencode 0.367 28 40 3 3 3 3 0.447 error
lmdb 0.722 266 292 7 lock arg 0.910 error
minimap2 1.044 26 56 3 3 3 3 1.438 73.902 3

Mirai-Source-Code 0.151 118 135 7Þ3 goto 0.164 43.736 7Þ3

neural-redis 0.261 51 59 3 0.310 186.593 3

nnn 0.822 37 66 3 1.056 2264.742 3

pg_repack 0.306 36 35 3 3 3 3 0.384 error
phpspy 1.199 1441 1479 7 cond acq 1.580 error
pianobar 1.248 132 182 3 1.624 timeout
pigz 0.471 176 178 7Þ3 no ret 3 3 3 0.615 error
pingfs 0.180 110 137 7 cond acq 0.198 9.278 7

ProcDump-for-Linux 0.245 171 438 3 7 0.286 79.284 7

proxychains 0.218 44 52 3 0.223 49.203 3

proxychains-ng 0.389 24 32 3 0.444 1058.823 3

Remotery 0.397 34 24 7 cond acq 0.567 error
sc 0.029 34 54 3 3 3 3 0.030 0.049 3

shairport 0.576 1093 1046 7 cond acq 0.736 error
siege 1.053 202 293 7 lock arg 1.882 error
snoopy 0.198 23 38 3 3 3 3 0.234 3.855 3

sshfs 0.388 277 302 3 3 3 3 0.517 2028.390 7

streem 1.070 115 114 7Þ3 bug fix 3 3 3 2.084 error
stud 0.423 61 54 3 0.505 error
sysbench 0.999 110 244 7Þ3 goto 3 7 1.149 error
the_silver_searcher 0.441 112 177 3 3 3 3 0.548 error
uthash 0.078 56 57 3 3 3 3 0.091 0.100 3

vanitygen 0.379 121 224 3 0.454 error
wrk 0.465 35 42 3 0.525 error
zmap 0.795 42 71 7 lock arg 1.257 timeout

Times are in seconds. Subscript C means C2Rust, O means ours, and G means Goblint.

23

0 20000 40000 60000
Rust LOC

0

1

2

Ti
m

e
(s

)

Figure 2.3: Transformation time per benchmark program using Concrat

2.4.4 RQ2: Applicability

We check whether the transformer handles diverse code patterns in real-world programs to evaluate
its applicability. We consider that the transformer successfully handles a certain pattern if the trans-
formed code is compilable. In Table 2.2, the fifth column shows compilability; the sixth shows the reason
for a failure; the seventh shows our manual fix for the original code to make compilation succeed.

The transformer has high applicability. Among 46, 29 are compilable, 5 are compilable requiring
manual fixes, and 12 are not. Overall, 74% of the programs are compilable.

Failures We manually investigated the reasons for compilation failures and found three code patterns.

• Conditional acquisitions (cond acq): A function conditionally acquires a lock. Consider the follow-
ing code:

fn may_lock () -> i32 {

if b {

pthread_mutex_lock (&mut m);

0

} else {

1

}

}

if may_lock () == 0 {

n += 1;

pthread_mutex_unlock (&mut m);

}

The function may_lock acquires a lock and returns 0 if a certain condition is satisfied, and otherwise
returns 1 without acquiring the lock. Its caller accesses the shared data only when the return value
is 0. The transformer cannot handle this pattern. Since may_lock has empty return_lock, it does
not return any guards after the transformation. Its caller drops an unowned guard, thereby being
uncompilable. To solve this, we have to make may_lock return Option [27] of a guard. Conditionally-
succeeding functions appear in most C programs, not only in concurrent ones. Translating them
to functions returning Option will be promising future work.

• Function pointers (func ptr): A function that takes or returns guards is used as a function pointer.
Since adding guards changes the type of the function pointer, the transformed code is uncompilable.

24

To address this pattern, we need to transform functions that take function pointers. Such functions
are often in a library; if it is the case, the library also should be rewritten in Rust.

• Lock arguments (lock arg): A function takes only a pointer to a lock as an argument. It would
be an interesting improvement to handle this pattern with generic functions. If the function does
not access any data protected by a specific lock, we can make the function take an argument of
Mutex<T>, where T is a type parameter.

Manual Fixes We made four kinds of manual fix. We first explain two code patterns requiring manual
fixes.

• Removing goto (goto): A function uses goto.

if (b) {

pthread_mutex_unlock (&m);

goto err;

}

n += 1;

...

return 0;

err:

return 1;

For the above code, C2Rust replaces goto with if:

if b {

pthread_mutex_unlock (&mut m);

x = 123;

}

if x != 123 {

n += 1;

...

return 0;

}

return 1;

Then, the transformer generates uncompilable code:

if b {

drop(m_guard);

x = 123;

}

if x != 123 {

*m_guard += 1;

...

return 0;

}

return 1;

Since type checking is path-insensitive, it considers m_guard possibly unowned in the second line.
We replaced goto with the statements after the jump target:

25

if (b) {

pthread_mutex_unlock (&m);

return 1;

}

n += 1;

...

return 0;

which Concrat translates to compilable code.

• Changing return type of no-return function (no ret): A function does not return. Consider the
following code:

fn err() {

exit(-1);

}

if b {

pthread_mutex_unlock (&mut m);

err();

}

n += 1;

...

Since exit does not return, err does not either and accessing n is safe. But, the type checker does
not know that err never returns, and the transformed code is uncompilable:

if b {

drop(m_guard);

err();

}

*m_guard += 1;

...

The type checker considers m_guard possibly unowned in the last line. We changed the return type
of err to ! [31]:

fn err() -> ! {

...

exit(-1);

}

indicating no return. The transformed code is compilable.

Both manual fixes can be avoided by improving C2Rust. We now explain program-specific fixes.

• Removing dead code (dead): We deleted a function taking a pointer to a lock because it is never
called.

• Bug fix (bug fix): streem has the following code (simplified):

pthread_mutex_unlock (&m);

if (...) {

pthread_mutex_unlock (&m);

26

return;

}

Due to the second pthread_mutex_unlock call, the transformed code is uncompilable. We believe it
is a bug and removed it. We contacted the developer but have not received a response yet. This
confirms the common belief that rewriting legacy programs in Rust can reveal unknown bugs.

2.4.5 RQ3: Correctness

We ran the test cases of each program whose transformation succeeds to evaluate the correctness
of the transformer. A correct transformer must preserve the semantics of the original program. We
consider the transformer correct if the transformed program passes all of its test cases. The eighth to
tenth columns show whether the original C program, the C2Rust-generated program, and the transformed
program pass the test cases, respectively.

The result shows that our approach transforms most programs correctly. Among 34 programs
compilable after the transformation possibly with manual fixes, 14 have no test cases or only those
covering no lock API calls, so we performed the evaluation with the remaining 20. One fails even before
C2Rust’s translation. One fails after C2Rust’s translation because it incorrectly translates some inline
assembly. After the transformation, 17 still pass their tests, but 1 fails.

The failing program does not reveal an inherent limitation of our approach. The reason for the
incorrect transformation is the imprecise timespec tracking of our transformer implementation. While
pthread_cond_timedwait of the C lock API takes what time to wait for, its Rust counterpart takes how long
to wait. To address this discrepancy, the transformer syntactically finds a clock_gettime call, which sets
a given timespec to the current time, and how many seconds are added to the timespec before calling
pthread_cond_timedwait. However, the failing program uses multiple timespec values, whose relation
cannot be found by our syntactic analysis. We can easily resolve this issue by adopting intraprocedural
value analysis for timespec.

It is not surprising that the transformer is correct in most cases as far as the transformed code
is compilable because the design of the transformation justifies the correctness. It transforms a lock

function call to a lock method call and an unlock function call to the drop of a guard whose finalizer
unlocks the connected lock. Since the names of lock and guard variables are syntactically related, the
dropped guard always unlocks the correct lock. It transforms each lock-protected data access to field
access through a guard. Again, the lock and guard names are syntactically related, so the transformed
code always accesses the correct data. The only possible threat is guards being used before initialization
or after destruction, but the compiler detects it.

2.4.6 RQ4: Scalability of Analysis

We translate the collected programs with both Concrat and ConcratG and measure the analysis time
to compare the scalability of our analyzer and Goblint. For Goblint, we use the medium-program.json

configuration [7] and additionally enable the allfuns option to analyze every function for programs
without main. It makes Goblint perform flow-, context-, path-sensitive analysis. We set a 24-hour time
limit. The eleventh and twelfth columns of Table 2.2 show the time required by ours and Goblint.

The result shows that our analyzer is more scalable than Goblint. Goblint fails to analyze 19
programs due to internal errors. Our analyzer processes all the remaining 27 programs faster than
Goblint. It takes less than 4.3 seconds to analyze 66 KLOC. On the other hand, Goblint does not even

27

finish the analysis of eight programs in the time limit and takes 1.1× to 3923× more than ours to analyze
the other 19 programs.

2.4.7 RQ5: Precision

We measure the precision of lock summaries generated by our analyzer and Goblint to compare their
precision. We use the compilability of code translated by Concrat and ConcratG as a proxy for assessing
the analyzers’ precision because an imprecise flow-lock relation makes transformed code uncompilable, as
discussed in Section 2.3. The fifth and thirteenth columns of Table 2.2 show compilability after Concrat’s
and ConcratG’s translation, respectively.

The result shows that our analyzer is more precise than Goblint for four programs, generating
summaries that made the transformed code compilable. Our manual investigation confirms that those
translated by ConcratG are uncompilable due to imprecision in the flow-lock relations. Goblint’s im-
precision mainly stems from the imprecise lock-aliasing information. It knows locks a and b are aliased
when a is locked, but this information is sometimes lost due to overapproximation, and b is considered
still locked even after a is unlocked, leading to imprecise flow-lock relations.

2.4.8 Threats to Validity

The primary threats to internal validity lie in the implementation of our tool. We implemented it
with the dataflow analysis framework of the Rust compiler, which is already massively used and tested
by the compiler.

The threats to external validity concern the choice of the translated C projects, each of which has
more than 1,000 stars and C code of fewer than 500,000 bytes. Less popular or larger projects may have
code patterns unseen in the selected projects. Further experiments with more C projects can give more
confidence in the generalizability of our approach.

The threats to construct validity include evaluation metrics. We used whether a compilation succeeds
or not as a proxy for the applicability of the transformer and the precision of the analyzer. We ran test
cases to evaluate the correctness of the transformer. While test cases cannot guarantee the semantics
preservation of the transformation, in practice, running test cases is the most popular way to check
whether a certain program has the intended semantics.

28

Chapter 3. Translation of Unions

A union is a compound data type consisting of multiple fields sharing the same memory storage,
facilitating efficient memory use by allowing values of different types to be stored at the same location [23].
Since memory efficiency is crucial in system software, unions are widely used in C. Notably, Emre et
al. [84] show that 18% of unsafe functions (functions using unsafe features) in C2Rust-generated code
involve unions.

Reading a union field is an unsafe feature in Rust because unions do not record which field has
been written to. If a program reads a field other than the last-written one, the value is reinterpreted
as another type. While reinterpretation is useful for some uses, like packet parsing, it is dangerous in
general. For example, reinterpreting an integer as a pointer can lead to invalid memory access. Thus,
many C programs avoid reinterpretation when using unions.

To use unions without reinterpretation, it is essential to decide which field to read. Some programs
rely on global context to determine the field, but many use tags, i.e., integer values signifying the last-
written fields. When using tags, a union and a tag are placed in a single struct, and the program checks
the tag before accessing the union’s field. However, tags cannot guarantee the absence of reinterpretation.
Programs may read wrong fields after checking tags or set incorrect tag values when writing to fields.

Rust directly supports this pattern of combining tags and unions as a language feature called tagged
unions [17]. This allows defining a tagged union as a single type by enumerating tags and the type of a
value associated with each tag. By using tagged unions, programmers can avoid mistakenly reinterpreting
values. To access a value in a tagged union, programs must use pattern matching, which checks the tag
and provides access to the associated value. When constructing a tagged union, the compiler ensures
that the tag and the value’s type match the type definition. Thus, tagged unions are a safe feature in
Rust, making it desirable to replace unions accompanied by tags with tagged unions.

In this chapter, we propose techniques to translate C’s unions to Rust’s tagged unions. Figure 3.1
shows the workflow of the proposed approach. We first translate C code to Rust code that still contains
unions using C2Rust. We then transform the C2Rust-generated code by replacing unions with tagged
unions. To enable this transformation, we perform static analysis to obtain information related to unions:
(1) the tag field (the field containing a tag value) for each union and (2) tag values associated with each
union field. This static analysis must meet several challenging requirements.

First, the analysis needs to determine the values of struct fields. Programs typically use switch/if
to access different union fields in different branches, using the tag field in the condition. If a struct field
has distinct values when accessing different union fields, it is likely a tag field, and each distinct value is
associated with the accessed union field. If it has the same value when accessing different union fields, it
is not a tag field. Thus, we can identify tag fields by deciding the value of each struct field in switch/if
branches.

To achieve this goal, we propose a must-points-to analysis capable of tracking integer equality. To
determine a struct’s field value at each program point based on the branch that the program point
belongs to, the struct should be the same as the struct whose field is used in the switch/if condition.
Since structs are often passed as pointers, deciding whether they are the same requires must-points-to
relations. Additionally, programs sometimes use a local variable storing a field’s value in a condition.
In such cases, determining the field’s value in each branch requires the knowledge that the field and the

29

C Code C2Rust
Rust code
(unions)

Code transformer
(Section 3.3)

Rust code
(tagged unions)

Static analyzer
(Section 3.2) Analysis result

Figure 3.1: The workflow of Urcrat

local variable have the same integer.
The second requirement for the analysis is efficiency. The key idea for achieving efficiency is to

selectively analyze functions. To identify tag fields, we need the field values only of the structs containing
unions. It means that functions not accessing such structs do not need to be analyzed. Therefore, we
adopt intraprocedural function-wise analysis, instead of interprocedural whole-program analysis, allowing
only the selected functions to be analyzed.

The third requirement is the ability to identify tag values associated with each union field despite the
imprecision of the analysis. Given that imprecision is a fundamental limitation of static analysis [172],
it may not be possible to determine the field values at some program points. To address this, we
propose a heuristic to interpret such partial information. The heuristic involves two steps. First, we
examine the accessed union fields and the struct field values in switch/if branches. This provides
reliable information because programs typically access the correct union field after checking the tag.
However, due to imprecision, it may fail to identify some tag values. Second, we inspect the last-written
union fields and the struct field values at each program point. This can capture information missed by
the first step but may be incorrect because of an intermediate state, where only the tag or the union
field has been set. Therefore, we ignore the field associated with a tag by the second step if it differs
from the one associated with the tag by the first step.

Overall, the contributions are as follows:

• We propose static analysis that identifies tag fields and tag values associated with union fields,
consisting of must-points-to analysis capable of tracking integer equality and a heuristic interpreting
the analysis results (Section 3.2).

• We propose code transformation replacing unions with tagged unions using the analysis results
(Section 3.3).

• We implement the proposed approach in a tool named Urcrat and evaluate it using 36 real-world C
programs. Our evaluation shows that the approach is (1) precise, identifying 74 tag fields with no
false positives and only five false negatives, (2) mostly correct, with 17 out of 23 programs passing
tests after transformation, and (3) efficient, capable of analyzing and transforming 141k LOC in
4,910 seconds (Section 3.4).

3.1 Background

In this section, we briefly describe the use of unions with tags in C (Section 3.1.1), how C2Rust
translates such C code to Rust (Section 3.1.2), and how tagged unions in Rust can safely represent the
same logic (Section 3.1.3).

30

3.1.1 Unions with Tags

As an example of C code using unions, we use the syntax and evaluation of simple arithmetic
expressions defined as follows:

e ::= 1 | − e | e+ e | e ∗ e

An expression is either a constant 1, a negation, an addition, or a multiplication. This syntax is imple-
mented as follows:

struct Expr {

int kind;

union {

struct Expr *e;

struct BExpr b;

} v;

};

struct BExpr {

struct Expr *l;

struct Expr *r;

};

struct Expr is the type of an expression, and its field kind indicates the kind of expression: 0 for constant
1, 1 for negation, 2 for addition, and 3 for multiplication. The inner union value v stores the necessary
data for each kind of expression. When kind is 1, the operand of negation is stored in v.e; when kind is 2
or 3, the operands are stored in v.b.l and v.b.r. Since kind signifies which union field has been written
to, it is the tag field for the union.

A function evaluating an expression is implemented as follows:

int eval(struct Expr *e) {

switch (e->kind) {

case 0:

return 1;

case 1:

return -eval(e->v.e);

case 2:

return eval(e->v.b.l) + eval(e->v.b.r);

case 3:

return eval(e->v.b.l) * eval(e->v.b.r);

default:

exit (1);

}

}

It evaluates the expression by checking the kind field and accessing the appropriate union field accordingly.
When kind is 1, it accesses the union field e; when kind is 2 or 3, it accesses b. No field is accessed
otherwise.

Programs sometimes use if to check tags, particularly to compare with a specific tag value. An
example using if is shown below:

if (e->kind == 1)

return -eval(e->v.e);

31

While tag fields are beneficial for accessing the correct union fields, they cannot prevent memory
bugs. For example, the following code accesses e->v.b despite kind being 1:

switch (e->kind) {

case 1:

return eval(e->v.b.l) + eval(e->v.b.r);

Here, e->v.b.l accesses the pointer stored in e->v.e, but e->v.b.r reads an arbitrary value, potentially
causing invalid memory access. Furthermore, even when eval is correctly implemented, an incorrect tag
value can be assigned during the construction of an Expr. The following code sets e.kind to 2 but writes
to e.v.e:

struct Expr e;

e.kind = 2;

e.v.e = ...;

Passing a pointer to e to eval results in invalid memory access.

3.1.2 C2Rust’s Translation

C2Rust translates the definition of struct Expr to Rust as follows:

struct Expr {

kind: i32 ,

v: C2RustUnnamed ,

}

union C2RustUnnamed {

e: *mut Expr ,

b: BExpr ,

}

struct BExpr {

l: *mut Expr ,

r: *mut Expr ,

}

Since Rust does not support anonymous types, C2Rust gives the name C2RustUnnamed to the union. If a
file contains multiple anonymous types, they get C2RustUnnamed_n where n is a unique integer.

The function eval is translated as follows:

fn eval(e: *mut Expr) -> i32 {

match (*e).kind {

0 => {

return 1;

}

1 => {

return -eval ((*e).v.e);

}

2 => {

return eval ((*e).v.b.l) + eval ((*e).v.b.r);

}

3 => {

return eval ((*e).v.b.l) * eval ((*e).v.b.r);

32

}

_ => {

exit (1);

}

}

}

Since Rust provides match statements instead of switch, the function employs match to check the tag.
While match is mainly used for pattern matching on tagged unions, it can also handle integers, similar
to switch, but without fall-through behavior.

3.1.3 Tagged Unions

We can implement the same syntax using tagged unions as follows:

struct Expr { v: C2RustUnnamed }

enum C2RustUnnamed {

One ,

Neg(*mut Expr),

Add(BExpr),

Mul(BExpr),

}

struct BExpr {

l: *mut Expr ,

r: *mut Expr ,

}

In Rust, the enum keyword defines tagged unions. Although the name C2RustUnnamed is impractical, we
retain it for consistency with the C code. A tagged union’s definition lists its variants, i.e., values with
distinct tags. Each tag is an identifier, not an integer, and the type of a value associated with each tag is
specified after the tag. The defined tagged union has four variants with tags One, Neg, Add, and Mul. The
Neg tag is associated with an Expr pointer, while Add and Mul are associated with a BExpr value. Since
C2RustUnnamed now contains the tag, the kind field in the struct is no longer necessary.

Now, eval can be implemented with pattern matching as follows:

1 fn eval(e: *mut Expr) -> i32 {

2 match (*e).v {

3 C2RustUnnamed ::One => {

4 return 1;

5 }

6 C2RustUnnamed ::Neg(e) => {

7 return -eval(e);

8 }

9 C2RustUnnamed ::Add(b) => {

10 return eval(b.l) + eval(b.r);

11 }

12 C2RustUnnamed ::Mul(b) => {

13 return eval(b.l) * eval(b.r);

14 }

15 }

33

16 }

Each pattern matching branch specifies a tag and binds the associated value to an identifier. For instance,
in lines 6 and 7, the associated value is bound to e and then passed to eval. Since the compiler ensures
all variants are covered, the _ (default) branch is unnecessary.

The code pattern using if to check tags is also supported through if-let [11], which is another form
of pattern matching. The following code performs computation only when the tag is Neg:

if let C2RustUnnamed ::Neg(e) = (*e).v {

return -eval(e);

}

Pattern matching enables the compiler to detect programmers’ mistakes that can cause memory
bugs. Consider the following Rust code where the value associated with Neg is treated as a BExpr type:

match (*e).v {

C2RustUnnamed ::Neg(b) => {

return eval(b.l) + eval(b.r);

}

The type of b is *mut Expr, as specified in the type definition. Since *mut Expr lacks the fields l and r,
the compiler raises an error.

Additionally, the compiler verifies the correct construction of tagged union values. Consider the
following code, which incorrectly initializes a tagged union with the tag Add and an Expr pointer:

let e1: Expr = ...;

let e2 = Expr { v: C2RustUnnamed ::Add(&mut e1) };

Since the type definition requires a BExpr value for Add, the code does not pass type checking.

3.2 Static Analysis

In this section, we present static analysis designed to facilitate the transformation of unions with
tags into tagged unions. The objectives of this analysis are to (1) identify a tag field for a union, if one
exists, and (2) determine the tag values associated with each union field. The proposed static analysis
consists of four steps:

1. Identification of candidate structs, those containing unions and their potential tag fields (Sec-
tion 3.2.1).

2. Whole-program may-points-to analysis (Section 3.2.2).

3. Intraprocedural must-points-to analysis for selected functions (Section 3.2.3).

4. Interpretation of the analysis results using a heuristic (Section 3.2.4).

As we analyze Rust code generated by C2Rust, rather than the original C code, code examples in this
section are written in Rust.

34

3.2.1 Candidate Identification

The first step of the analysis is to identify structs that likely contain unions and their tag fields.
We also determine which functions to analyze based on the identified structs. If no such structs are
found, the analysis terminates at this step, concluding that the program does not contain unions to be
transformed into tagged unions.

To concretely define candidate structs, we first define tag-eligible fields, those that can potentially
serve as tag fields. A field of a struct is considered tag-eligible if (1) it has an integer type, (2) when it
appears on the left side of an assignment, the operator is =, excluding others such as +=, and (3) it is
never referenced by a pointer. For the first condition, integer types include bool, i8, u8, i16, u16, i32,
u32, i64, and u64, which C2Rust translates from _Bool, signed/unsigned char, short, int, and long. The
second and third conditions arise from limitations in the expressibility of tagged unions. Tags of tagged
unions are not integers and thus cannot undergo integer operations. Moreover, since tags do not exist as
fields, they cannot be referenced. Consequently, fields that exhibit such behavior cannot be transformed
into tagged unions.

We also define candidate unions, which can potentially be accompanied by tags. A union is a
candidate if (1) it is a field of a struct that contains at least one tag-eligible field, and (2) its name begins
with C2RustUnnamed. The second condition indicates that the union is anonymous in the C code. If a
union has a name, it can be used independently of the struct, not being expressible as tagged unions.

We finally define candidate structs. A candidate struct is a struct containing at least one candidate
union.

We now describe how to determine which functions to analyze. To identify tag fields for unions and
values associated with union fields, we need to ascertain the possible values of candidate struct fields.
If a function neither reads from nor writes to a field, intraprocedural analysis of the function provides
no information about that field’s value. Therefore, we analyze only the functions that access fields of
candidate structs. Such functions can be easily identified through syntactic examination.

3.2.2 May-Points-To Analysis

The second step of the analysis is to conduct a whole-program may-points-to analysis. This step is
essential because may-points-to relations are required to ensure the soundness of the subsequent must-
points-to analysis. The utilization of may-points-to relations in the must-points-to analysis is detailed
in Section 3.2.3.

We employ a field-sensitive Andersen-style analysis [167] for the may-points-to analysis. This anal-
ysis is flow-insensitive and has a time complexity of O(n3). Although other may-points-to analyses
exist, such as field-insensitive Andersen-style [52] and Steensgaard-style analyses [186, 185], they are too
imprecise, leading to unacceptably imprecise must-points-to analysis results.

3.2.3 Must-Points-To Analysis

The third step is to perform an intraprocedural must-points-to analysis for each selected function.
Our overall algorithm is akin to typical must-points-to analyses [118]. The execution state at each
program point is represented as a graph, with nodes denoting memory locations and edges expressing
points-to relations. The analysis iteratively updates the state at each program point until reaching a
fixed point. Each state is derived by joining the state from the previous iteration with the state resulting
from applying the current instruction’s effect to the previous program point’s state.

35

We first describe how we visualize graphs throughout this section. Since nodes denote memory
locations, some nodes correspond to the stack locations used by local variables. For clarity in visualiza-
tion, we draw a dashed arrow from the name of a local variable to the node representing its memory
location. Note that a variable name is not a node and thus this arrow is not an edge. For example, x =

&y constructs the following graph:

x
y

The graph has two nodes and one edge and indicates that the pointer at the memory location of x points
to the memory location of y.

Since our goal is not only to compute must-points-to relations but also to track fields’ integer values,
we optionally label each node with @N , where N is a set of integers. The label @N encodes integer value
information in pointer graphs. If a node is unlabeled, the value at the location is a usual C value (such
as an integer, pointer, struct, union, or array). If a node is labeled @N , the value at the location is an
imaginary value at addresses N , i.e., the possible addresses of the location are N . Consequently, if a
node v has an outgoing edge to a node labeled @N , then the possible values at v’s location are N . For
instance, x = 1 constructs the following graph:

x @1

Using the @N label is beneficial since it enables efficient propagation of integer values to memory
locations known to hold the same value. Consider the following graph, constructed by x = y:

x

y

If we obtain the fact that x equals 1, we update the graph as follows:

x

y
@1

Then, we automatically discover that y also equals 1. As this example demonstrates, the @N label
facilitates the update of the value at multiple memory locations by labeling only a single node.

We now discuss how to analyze code involving unions. Consider the following example, where Expr

is defined as in Section 3.1.2:

1 fn eval(e: *mut Expr) -> i32 {

2 let k = (*e).kind;

3 match k {

4 1 => {

5 return -eval ((*e).v.e);

6 }

After line 2, we have the following graph:

e

k

.kind

36

Here, the edge labeled .kind indicates the presence of a struct/union at the location of the node where
the edge originates, with the pointer stored in the kind field referring to the pointed node’s location.
Since line 3 uses k as the condition for match, we determine that k equals 1 in line 5. Consequently, the
graph at the beginning of line 5 is as follows:

e

k
@1

.kind

From this graph, we conclude that the value of kind is 1 when the union field e is accessed in line 5.
More complex scenarios involve joining two graphs. Consider the following code example:

1 match (*e).kind {

2 2 => {

3 ...

4 }

5 3 => {

6 ...

7 }

8 _ => {

9 return;

10 }

11 }

12 let lv = eval ((*e).v.b.l);

In lines 3 and 6, we have the following graphs, respectively:

e @2
.kind

e @3
.kind

Since line 12 is reachable from both lines 3 and 6, we need to join the graphs. When joining graphs, the
integer sets in the labels are unioned, resulting in the following graph:

e @2,3
.kind

From the graph, we conclude that the value of kind is 2 or 3 when the union field b is accessed in line 12.
The join of graphs is carefully defined to maintain the soundness of the analysis. Consider the

following code, where control flow splits based on the value of kind and then merges:

1 if (*e).kind == 1 {

2 ...

3 } else {

4 ...

5 }

6 ...

The states in lines 2 and 4 are as follows, respectively:

e @1
.kind

e
.kind

In line 2, (*e).kind is known to be 1. However, in line 4, its value is unknown. When entering line 6,
these graphs are joined as follows:

37

Algorithm 3.1: Graph joining
Input : g1, g2
Output: g

1 g.nodes := ∅;
2 g.edges := ∅;
3 worklist := ∅;
4 for x← function’s local variables:
5 if g1 has a node v1 corresponding to x:
6 if g2 has a node v2 corresponding to x:
7 g.nodes.insert((v1, v2));
8 worklist.insert((v1, v2));

9 while worklist 6= ∅:
10 (v1, v2) := worklist.pop();
11 for (v1, v

′
1, f)← v1’s outgoing edges in g1:

12 if g2 has an edge (v2, v
′
2, f):

13 g.edges.insert((v1, v2), (v
′
1, v
′
2), f);

14 if (v′1, v
′
2) 6∈ g.nodes:

15 g.nodes.insert((v′1, v
′
2));

16 worklist.insert((v′1, v
′
2));

17 if v1 has a label @N1 in g1:
18 if v2 has a label @N2 in g2:
19 set (v1, v2)’s label to @(N1 ∪N2) in g;

e
.kind

Since the node from line 4 is unlabeled, the joined graph’s node is also unlabeled. This indicates that
we do not know the value of (*e).kind, which is correct. This example shows that no-label signifies
no-information regarding the address of the node’s location, i.e., it represents @Z (all integers), not @∅
(empty set).

Algorithm 3.1 illustrates the algorithm for graph joining. Edges are intersected to retain must-point-
to relations, while integer sets in labels are unioned. In the pseudo-code, each node in the input graphs
g1 and g2 is denoted by a unique identifier v, and each node in the output graph g is represented by a
pair of identifiers (v1, v2). Each edge is represented by (v, v′, f), denoting an edge labeled f from node
v to node v′. Unlabeled edges are treated as edges with the empty label ε. Initially, g and the worklist,
which stores g’s nodes to be visited, are both empty (lines 1–3). Then, we add nodes corresponding to
local variables to g (lines 4–8). Finally, we visit each added node until the worklist is empty (lines 9–10).
During the visit, edges with the same label in g1 and g2 are added to g (lines 11–16), and node labels
are unioned if they exist (lines 17–19).

We now discuss the utilization of may-points-to relations during the must-points-to analysis. Con-
sider the following code:

1 let e = if ... {

2 &mut ev

3 } else {

38

4 ...

5 };

6 let k = (*e).kind;

7 ev = ...;

8 match k {

9 1 => {

10 ...

11 }

Since e may not point to ev, the state after line 5 is as follows:

e ev

This graph indicates that e points to some location, not necessarily the same as ev’s location. Line 6
updates the graph as follows:

e

k

.kind

ev

Line 7 mutates the value of ev, possibly changing the value of (*e).kind. Thus, (*e).kind is not
necessarily equal to k after line 7, necessitating an appropriate update to the graph. As the graph itself
does not reveal any relations between e and ev, we rely on the precomputed may-points-to relations,
which indicate that e may point to ev. Consequently, we remove all outgoing edges, including the kind

edge, from *e’s node, resulting in the following graph:

e

k
ev

In line 10, we successfully avoid the incorrect conclusion that (*e).kind equals 1, as shown in the following
graph:

e

k
@1 ev

Like this, the analysis removes the appropriate edges from the graph at each (indirect) assignment and
function call according to the may-points-to relations. The effect of a function call is equivalent to the
cumulative effects of all assignments reachable by the call.

3.2.4 Analysis Result Interpretation

The last step of the analysis is to interpret the results of the must-points-to analysis using a heuristic,
as demonstrated in Algorithm 3.2. The entry point is IdentifyTags, which takes three arguments: a
candidate struct s, a candidate union u in s, and a tag-eligible field fs in s. Its goal is to determine
whether fs serves as a tag field for u and, if it does, to identify the tag values associated with each field
of u.

As the first step of the heuristic, we invoke CollectFromAccesses (line 1) to identify the associated
tag values by examining the value of fs when a union field is accessed after fs has been checked by

39

Algorithm 3.2: Identifying tag values associated with fields

1 def IdentifyTags(struct s, union u, field fs):
2 res := CollectFromAccesses(s, u, fs);

3 if res = None:
4 return None;

5 (field_tags, access_tags) := res;

6 field_tags′ := CollectFromStructs(s, u, fs);

7 struct_tags := ∅;
8 for fu ← fields of u:
9 tags := field_tags′[fu] \ access_tags;

10 if struct_tags ∩ tags 6= ∅:
11 return None;

12 field_tags[fu] := field_tags[fu] ∪ tags;

13 struct_tags := struct_tags ∪ tags;

14 all_tags := CollectAllTags(s, u, fs);

15 rem_tags := all_tags \ (access_tags ∪ struct_tags);

16 return (field_tags, rem_tags);

17 def CollectFromAccesses(struct s, union u, field fs):
18 field_tags := Map(); all_tags := ∅;
19 for l← analyzed program points:
20 if a field fu of u is accessed at l:
21 N := possible values of fs at l;

22 if N is from if or match:
23 tags := N \ field_tags[fu];

24 if all_tags ∩ tags 6= ∅:
25 return None;

26 field_tags[fu] := field_tags[fu] ∪ tags;

27 all_tags := all_tags ∪ tags;

28 return (field_tags, all_tags);

29 def CollectFromStructs(struct s, union u, field fs):
30 field_tags := Map();

31 for l← analyzed program points:
32 if l is end of a basic block:
33 for v ← struct s reachable at l:
34 if union u in v has a field fu:
35 N := possible values of fs of v;

36 field_tags[fu] := field_tags[fu] ∪N ;

37 return field_tags;

38 def CollectAllTags(struct s, union u, field fs):
39 all_tags := ∅;
40 for l← analyzed program points:
41 for v ← struct s reachable at l:
42 N := possible values of fs of v;

43 all_tags := all_tags ∪N ;

44 return all_tags;

40

match/if. This subroutine returns field_tags, a map from union fields to their tag values, and all_tags,
a set containing all tag values in field_tags. Initially, both are empty (line 18). We then iterate over
every program point in the analyzed functions and check if any field of u is accessed (lines 19–20).
If accessed, we determine the possible values of fs from the @N label of the graph computed by the
must-points-to analysis (line 21). Here, we treat no-label as the empty set. The possible values should
originate from match/if on fs, and not from an assignment to fs (line 22). If any of these values are
already associated with other fields, we immediately return None, indicating that fs is not a tag field
(lines 23–25). Otherwise, we add the values to field_tags and all_tags (lines 26–27).

If CollectFromAccesses succeeds, IdentifyTags proceeds to the next step by calling CollectFromStructs

(line 6). This complements the previous step by discovering tag-field associations that may have been
missed due to the analysis’s imprecision. This subroutine considers the field values and the last-written
union fields at the end of each basic block. For instance, consider the following code:

(*e).kind = 2;

(*e).v.b = ...;

return e;

We have the following graph at return:

e
@2.kind

.v.b

From this, we can conclude that kind equals 2 when b is the last-written union field, likely associating 2

with b.
We inspect only the states at the end of basic blocks because the states of other program points are

prone to provide incorrect information from intermediate states. Consider the following example:

1 (*e).kind = 1;

2 (*e).v.e = ...;

3 ...

4 (*e).kind = 2;

5 (*e).v.b = ...;

6 return e;

Initially, e is used as a negation expression by setting kind to 1, but it becomes an addition expression
by setting kind to 2 in the end. If we examine the state after line 4, we will get an incorrect association
between 2 and e from the following graph:

e
@2.kind

.v.e

To avoid this issue, we examine only the end of basic blocks, where both the tag value and the union
field are likely to be correctly set.

However, this approach cannot completely prevent reading intermediate states. For example, a func-
tion call can occur between the tag set and the union field set. Therefore, we prioritize the data from
CollectFromAccesses, which are less likely to be affected by intermediate states, over CollectFromStructs.
If CollectFromAccesses associates a certain tag value with a specific union field, that tag value in
CollectFromStructs’ results is ignored.

41

To implement this approach, CollectFromStructs iterates over the end of every basic block in each
analyzed function, identifying every value of type s reachable from local variables at that point (lines 31–
33). If the struct’s union has a written field, that field is associated with the values of fs (lines 34–36).
Then, IdentifyTags combines results from both subroutines, prioritizing data from CollectFromAccesses

(lines 8–13). It removes tags already associated with union fields by CollectFromAccesses from the results
of CollectFromStructs (line 9) and returns None if a tag value remains associated with two fields even
after this removal (lines 10–11).

Finally, we search for tag values not associated with any union fields. To achieve this, we call
CollectAllTags (line 14), which collects all possible tag values by examining the state at every program
point (lines 40–43). By removing the tags associated with union fields, we isolate the tags not associated
with union fields (line 15).

To determine the tag field for each union, we run IdentifyTags on all tag-eligible fields. The field
for which IdentifyTags returns a value other than None is identified as the tag field. If multiple tag fields
are found, we select the one with the highest number of distinct tag values.

3.3 Code Transformation

In this section, we present code transformation that replaces unions with tagged unions in C2Rust-
generated code, using the results of the static analysis. We demonstrate the transformation of the Expr

type defined in Section 3.1.2 as an example. We assume that the tag field and the tag values associated
with each union field are correctly identified by the static analysis.

The type definitions are transformed as follows:

struct Expr { v: C2RustUnnamed }

enum C2RustUnnamed {

Empty0 ,

e1(*mut Expr),

b2(BExpr),

b3(BExpr),

}

struct BExpr {

l: *mut Expr ,

r: *mut Expr ,

}

This result is the same as the hand-written code in Section 3.1.3, except for the variant names. We
generate variant names by concatenating the union field name with the tag value. For tags not associated
with any fields, we prepend Empty to the tag value. To improve variant names, one option is to utilize
global variables’ names. When using unions with tag fields, C programmers often define an enum, i.e., a
group of constant integers with associated names, to use them as tag values. These names typically reflect
the programmers’ understanding of the tag values’ meaning, e.g., EXPR_ONE. Since C2Rust translates each
enum definition into multiple constant global variable definitions while preserving the names, we can use
these variable names instead of the union field names. Although the names generated with this strategy
may still be unsatisfactory, developers can easily rename them to more meaningful names using IDEs.

We now discuss the transformation of code using unions. We propose two approaches: naïve trans-
formation, which can be applied to any code but does not adhere to Rust idioms (Section 3.3.1), and

42

idiomatic transformation, which follows Rust idioms but is applicable only to specific code patterns
(Section 3.3.2). We use both methods within a single codebase, prioritizing idiomatic transformation
wherever possible and resorting to naïve transformation when necessary.

3.3.1 Naïve Transformation

Naïve transformation involves defining helper methods for the transformed structs and unions. These
methods are categorized into two groups: reading and writing. We first focus on reading. Below are the
read-related methods for Expr and C2RustUnnamed:

1 impl Expr {

2 fn kind(self) -> i32 {

3 match self.v {

4 C2RustUnnamed :: Empty0 => {

5 0

6 }

7 C2RustUnnamed ::e1(_) => {

8 1

9 }

10 ...

11 }

12 }

13 }

14 impl C2RustUnnamed {

15 fn get_e(self) -> *mut Expr {

16 if let C2RustUnnamed ::e1(v) = self {

17 v

18 } else {

19 panic !()

20 }

21 }

22 }

The kind method (lines 2–12) of Expr replaces the kind field in the original code. This method
returns the appropriate tag value by applying pattern matching to the tagged union value. Code that
reads a tag field is replaced with a call to the tag-returning method.

The get_e method (lines 15–21) of C2RustUnnamed replaces the union field e. This method returns a
value by applying pattern matching to the tagged union value. If the current variant does not contain
such a value, the method triggers a panic. This allows the dynamic detection of potential bugs by
identifying read from a field other than the last-written one, rather than silently reinterpreting the value.
Although not shown in the example, a method get_f is defined similarly for each union field f . We
replace code reading a union field with a call to the corresponding getter method.

Using these methods, we transform code reading tags and union fields as follows, where the former
represents the code before transformation and the latter represents the code after transformation:

// before

match (*e).kind {

1 => {

eval ((*e).v.e);

43

}

// after

match (*e).kind() {

1 => {

eval ((*e).v.get_e());

}

Although this transformation preserves the semantics, the resulting code is not idiomatic. It applies
pattern matching twice to the tagged union value—once to get the tag value and once to get the union
field value—instead of applying pattern matching only once to directly access the associated value of
each variant.

We now describe the write-related methods, defined as follows:

1 impl Expr {

2 fn set_kind (&mut self , v: i32) {

3 match v {

4 0 => {

5 self.v = C2RustUnnamed :: Empty0;

6 }

7 1 => {

8 let v = if let C2RustUnnamed ::e1(v) = self.v {

9 v

10 } else {

11 std::ptr:: null_mut ()

12 };

13 self.v = C2RustUnnamed ::e1(v);

14 }

15 ...

16 }

17 }

18 }

19 impl C2RustUnnamed {

20 fn deref_e_mut (&mut self) -> *mut *mut Expr {

21 if let C2RustUnnamed ::e1(_) = self {

22 } else {

23 *self = Self::e1(std::ptr:: null_mut ());

24 }

25 if let C2RustUnnamed ::e1(v) = self {

26 v

27 } else {

28 panic !()

29 }

30 }

31 }

The set_kind method (lines 2–17) of Expr replaces assignments to kind. It takes a tag value as an
argument and updates the tagged union to the appropriate variant. If the variant has an associated
value, we check if this value already exists and reuse it if it does (line 9). If the value does not exist, we
create an arbitrary value, which in this case is the null pointer (line 11).

44

The deref_e_mut method (lines 20–30) of C2RustUnnamed provides a pointer to the inner value, which
we use to replace code that mutates e or takes its address. First, we check whether the current variant
is appropriate (line 21), and, if not, update the value to the correct variant (line 23). Then, we return a
pointer to the value (line 26), while the panic!() in line 28 is never reached. We also define a method
deref_f_mut for each union field f in a similar manner.

We transform code that updates tags and union fields as follows:

// before

(*e).kind = 1;

(*e).v.e = ...;

// after

(*e).set_kind (1);

*(*e).v.deref_e_mut () = ...;

In the transformed code, set_kind changes the variant to e1. Then, deref_e_mut returns a pointer to the
arbitrary value set by set_kind, and the indirect assignment to the pointer updates this value.

Note that deref_e_mut does not trigger a panic even when the current variant differs from the
expected one, unlike get_e. This behavior ensures the correct transformation of code that first writes to
a union field and then sets the tag. For example, the following transformation preserves the semantics:

// before

(*e).v.e = ...;

(*e).kind = 1;

// after

*(*e).v.deref_e_mut () = ...;

(*e).set_kind (1);

After the transformation, deref_e_mut changes the variant to e1, and the indirect assignment to the
pointer sets the associated value. Then, set_kind retains both the variant and associated value. Although
this approach preserves the semantics, it is not idiomatic in Rust, as we can create a tagged union value
within a single expression instead of setting the tag and the union field separately.

3.3.2 Idiomatic Transformation

Idiomatic transformation uses pattern matching on tagged union values and constructs a tagged
union value with a single expression, avoiding helper methods. Below is the transformation of match:

// before

match (*e).kind {

1 => {

eval ((*e).v.e);

}

// after

match (*e).v {

C2RustUnnamed ::e1(ref x) => {

eval(*x);

}

45

The match condition is the tagged union value itself, rather than the tag value obtained by get_kind.
In addition, each branch directly matches the variant, instead of comparing the tag value to an integer.
The ref keyword before the identifier x binds a pointer to the associated value, not the value itself, to
x, allowing the branch to read and modify the value. This eliminates the need to call methods such as
get_e and deref_e_mut, as x directly accesses the value.

We also transform if that checks tag values to use pattern matching with if-let, as illustrated in
the following example:

// before

if (*e).kind == 1 {

eval ((*e).v.e);

}

// after

if let C2RustUnnamed ::e1(ref x) = (*e).v {

eval(*x);

}

We handle the disjunction of multiple equality comparisons using |, the or operator in pattern matching.
An example is shown below:

// before

if (*e).kind == 2 || (*e).kind == 3 {

eval ((*e).v.b.l);

}

// after

if let C2RustUnnamed ::b2(ref x) | C2RustUnnamed ::b3(ref x) = (*e).v {

eval ((*x).l);

}

However, the idiomatic approach is not applicable to other kinds of conditions, such as conjunctions and
inequalities, because Rust’s patterns currently cannot represent these conditions. A conjunction specifies
that the tag is a particular integer and also that some boolean formula is satisfied. When using match for
pattern matching, Rust offers match guards [18] to express such logic. However, when using if-let, this
logic is supported through let chains [86], which is currently an unstable feature and requires a special
flag to enable. For this reason, we chose not to transform conjunctions into pattern matching in this
work, leaving it for future work once this feature is stabilized. On the other hand, an inequality specifies
that the tag is not a particular integer. However, the purpose of pattern matching is to check whether a
value conforms to a certain pattern, not that it does not, and thus it cannot replace inequalities. Thus,
the following code is transformed using the naïve approach:

if (*e).kind == 1 && ... {

eval ((*e).v.e);

}

if (*e).kind != 1 {

...

} else {

eval ((*e).v.e);

}

46

The idiomatic transformation is also not applicable when union fields are accessed without using
match or if to check the tag field. C programmers sometimes assume that a tag field has a specific value
at a certain point based on their understanding of the program’s behavior and directly access the union
field without checking the tag. Since tag check is not performed, we cannot transform such code into
pattern matching and must resort to the naïve transformation.

The idiomatic transformation consolidates multiple assignment expressions within a single code
block into a single assignment expression that constructs a tagged union value if the assignments set the
tag and union fields. Below illustrates this transformation:

// before

{

...

(*e).kind = 1;

(*e).v.e = ...;

...

}

// after

{

...

(*e).v = C2RustUnnamed ::e1(...);

...

}

When multiple assignments are distributed across different code blocks, they are individually transformed
using the naïve approach.

3.4 Evaluation

In this section, we evaluate our approach with 36 real-world C programs. We first describe our
implementation of Urcrat, which realizes the proposed approach (Section 3.4.1), and the process of
collecting the benchmark programs (Section 3.4.2). We then assess our approach by addressing the
following research questions:

• RQ1. Precision and recall: Does it identify tag fields without false positives or false negatives?
(Section 3.4.3)

• RQ2. Correctness: Does it transform code while preserving its semantics? (Section 3.4.4)

• RQ3. Efficiency: Does it efficiently analyze and transform programs? (Section 3.4.5)

• RQ4. Code characteristics: How much does the code change due to the transformation, and how
frequently are the helper methods called? (Section 3.4.6)

• RQ5. Impact on performance: What is the effect of replacing unions with tagged unions on program
performance? (Section 3.4.7)

Our experiments were conducted on an Ubuntu machine with Intel Core i7-6700K (4 cores, 8 threads,
4GHz) and 32GB DRAM. Finally, we discuss potential threats to validity (Section 3.4.8).

47

3.4.1 Implementation

We built Urcrat on top of the Rust compiler [12]. Urcrat analyzes Rust code after it has been
lowered to Rust’s mid-level intermediate representation (MIR) [15], which expresses functions as control
flow graphs with basic blocks. For code transformation, Urcrat utilizes Rust’s high-level intermediate
representation (HIR) [14], akin to abstract syntax trees but with syntactic sugar removed and symbols
resolved. We employed C2Rust v0.18.0 with minor modifications.

3.4.2 Benchmark Program Collection

We collected benchmark programs from three sources: (1) Crown [203], (2) GNU packages [6],
and (3) GitHub. Only 2 out of 20 programs used by Crown have candidate unions, so we expanded
the benchmarks with additional sources. We chose GNU packages for their representative C projects
and GitHub for its diverse code patterns. We avoided large codebases because C2Rust often produces
Rust code with type errors, primarily due to missing type casts, which require significant manual effort
to correct. From GNU, we gathered C packages with less than 250k LOC and individual Wikipedia
entries, indicating they are well-known. From GitHub, we gathered C projects with less than 1 MB
of code and over 1,000 stars. In both collections, we retained programs (1) compiled successfully on
Ubuntu, (2) transpiled successfully by C2Rust, and (3) containing candidate unions. This resulted in
24 programs from GNU and 10 from GitHub, giving us a total of 36 benchmark programs. Of these,
20 required manual fixes after C2Rust’s translation, with an average of 26.6 lines modified. Columns
2–5 of Table 3.1 present the C LOC, Rust LOC, number of unions, and number of candidate unions in
each program, respectively. In the benchmarks, 21% of unsafe functions involve unions, and 11% involve
tagged unions.

3.4.3 RQ1: Precision and Recall

We evaluate the precision and recall of the proposed approach. We first identified the tag field of
each candidate union through static analysis. Column 6 of Table 3.1 shows the number of candidate
unions for which a tag field is identified in each benchmark program. Out of 141 candidates across 36
programs, Urcrat identifies tag fields for 74 candidates in 29 programs. We then manually inspected
each candidate union to determine the presence of a tag field, checking for false positives (a tag field
identified for a union that does not have one) and false negatives (no tag field identified for a union that
has one). For practical use of our tool, false positives are problematic because they change the program’s
semantics. Conversely, false negatives are less problematic as they only prevent the replacement of unions
with tagged unions, and the semantics remains correct.

Our manual inspection shows that the static analysis is precise, revealing no false positives and only
five false negatives. This results in a precision of 100% and a recall of 93.7% (= 74/79). Specifically,
two false negatives occur in glpk-5.0, while the others are in gawk-5.2.2, screen-4.9.0, and uucp-1.07,
respectively. Three of these (from glpk-5.0, gawk-5.2.2, and screen-4.9.0) are due to intermediate
states involving tag values that are not associated with any union fields by CollectFromAccesses. We
now discuss the reasons for the remaining two false negatives:

glpk-5.0 The false negative arises from goto in the C code:

switch (tab ->type) {

case 112:

48

Table 3.1: Benchmark programs for evaluating Urcrat

Program C LOC Rust LOC #Unions #Candidates #Identified

bc-1.07.1 10810 16982 4 1 1
binn-3.0∗∗ 5686 4298 1 1 0
brotli-1.0.9∗∗ 13173 127691 6 4 0
cflow-1.7 20601 26375 5 4 3
compton∗ 8748 14084 2 2 2
cpio-2.14 35934 80929 10 4 3
diffutils-3.10 59377 95835 7 5 4
enscript-1.6.6 34868 78749 9 5 3
findutils-4.9.0 80015 139858 13 6 3
gawk-5.2.2 58111 140566 17 10 3
glpk-5.0 71805 145738 18 14 3
gprolog-1.5.0 52193 74381 5 2 0
grep-3.11 64084 84902 11 9 6
gsl-2.7.1 227199 422854 14 14 0
gzip-1.12 20875 21605 4 2 1
hiredis∗ 7305 14042 1 1 1
make-4.4.1 28911 36336 1 1 1
minilisp∗ 722 2149 1 1 1
mtools-4.0.43 18266 37021 2 1 0
nano-7.2 42999 74994 6 4 3
nettle-3.9 61835 82742 5 2 1
patch-2.7.6 28215 103839 3 1 1
php-rdkafka∗ 3771 28864 1 1 1
pocketlang∗ 14267 41439 4 3 3
pth-2.0.7 7590 12950 1 1 1
raygui∗ 1588 17218 1 1 1
rcs-5.10.1 28286 36267 1 1 1
screen-4.9.0 39335 72199 1 1 0
sed-4.9 48190 68465 8 7 4
shairport∗ 4995 10118 2 1 1
tar-1.34 66172 134972 16 12 9
tinyproxy∗ 5667 12825 5 2 2
twemproxy∗ 22738 74593 8 7 5
uucp-1.07 51123 77872 3 3 0
webdis∗ 14369 29474 2 2 2
wget-1.21.4 81188 192742 6 5 4
Total 204 141 74

∗: from GitHub, ∗∗: from Crown

49

goto input_table;

case 119:

goto output_table;

default:

abort();

}

input_table:

...

return;

output_table:

...

In this code, type is the tag field. Since Rust does not support goto, C2Rust translates the code as
follows:

match (*tab).type {

112 => {

current_block = 1;

}

119 => {

...

}

_ => {

abort();

}

}

if current_block == 1 {

...

}

The resulting code has a variable, current_block, which mimics goto’s effect. As the analysis is path-
insensitive, it concludes that both 112 and 119 are possible values in the true branch of if, hindering
the identification of the tag field. To address this issue, we need to either analyze the original C code or
modify the C code to avoid goto. We chose the latter and revised the code as follows:

switch (tab ->type) {

case 112:

...

break;

case 119:

...

break;

default:

abort();

}

Urcrat can identify the tag field from the modified version.

uucp-1.07 This false negative is due to a bug in the C code:

if (qport ->uuconf_ttype == 5) {

50

if (qport ->uuconf_u.uuconf_stli.zdevice != NULL)

fprintf(e, "%s", qport ->uuconf_u.uuconf_smodem.zdevice);

}

Here, uuconf_ttype is the tag field, and the union field associated with 5 is uuconf_stli. However, the code
erroneously accesses uuconf_smodem in the fprintf statement. The function contains multiple fprintf

statements, suggesting that this bug was likely introduced through copy-pasting. After correcting the
code to access uuconf_stli, Urcrat successfully identifies the tag field.

3.4.4 RQ2: Correctness

We evaluate the correctness of our approach by checking whether the transformed program is com-
pilable and exhibits the same behavior as the original. For the experiments, we used the fixed code for
glpk-5.0 and uucp-1.07, allowing the identification of additional tag fields. Consequently, we examined
30 programs: 29 identified without code fixes and 1, which is uucp-1.07, identified only after the code
fix. All 30 programs are compilable after transformation. Among 23 programs with test suites, 17 pass
the tests post-transformation. Those failed are gawk-5.2.2, grep-3.11, make-4.4.1, minilisp, twemproxy,
and wget-1.21.4.

We manually investigated the reasons for the failures and found that only gawk-5.2.2 and twemproxy’s
failures result from imprecise identification of tag values in the static analysis. The other failures are
due to two specific C code patterns requiring minor manual code fixes after transformation: (1) reading
a union field other than the last-written one, and (2) code relying on memory layout. We now discuss
the failure reasons for each program.

gawk-5.2.2 The failure arises from tag values not being identified due to intraprocedural analysis.

INSTRUCTION *bcalloc(int op , ...) {

INSTRUCTION *cp = ...;

cp ->opcode = op;

...

return cp;

}

In this code, opcode is the tag field, assigned the argument value. The analysis cannot identify values at
the call-site of bcalloc as possible opcode values. This causes the transformed program to panic when
an unknown tag value is passed to set_opcode.

twemproxy The failure is due to the lack of C library modeling, preventing identification of tag values.

getaddrinfo(n, s, &h, &ai);

si ->family = ai->ai_family;

Here, family is the tag field, and ai_family determines its value, set by the libc function getaddrinfo.
While 2 and 10 are possible values, the analysis fails to recognize them as tag values. This issue can be
resolved by incorporating library modeling into the analysis.

grep-3.11 It fails because of reading a field not lastly written.

fetch_token(token , input , syntax);

c = token ->opr.c;

51

if (token ->type == 2)

return;

In this code, type is the tag field, and opr is the union value. The code first reads c and then checks type,
causing a panic when get_c is called in the transformed code. Swapping the order of these statements
allows the transformed program to pass the tests.

make-4.4.1 This is also due to reading a field not lastly written.

struct function_table_entry {

...,

int alloc_fn;

union {

fptr1 func_ptr;

fptr2 alloc_func_ptr;

} fptr;

};

if (!entry_p ->fptr.func_ptr)

abort();

The union has two fields, func_ptr and alloc_func_ptr, with alloc_fn as the tag field. The code checks
if func_ptr is null regardless of alloc_fn’s value, exploiting that different function pointer types have
the same size and null representation. After transformation, this causes a panic if alloc_func_ptr is the
last-written field. The code can be fixed as follows to pass the tests post-transformation:

if (entry_p ->alloc_fn == 0 && !entry_p ->fptr.func_ptr ||

entry_p ->alloc_fn == 1 && !entry_p ->fptr.alloc_func_ptr)

minilisp This failure is caused by different memory layouts of unions and tagged unions.

struct Obj {

int type;

int size;

union { ... };

};

Obj *alloc(size_t size , ...) {

size += 8;

...

}

The alloc function allocates an Obj in a global byte array. It determines the memory size by taking the
size of a union field and adding 8 to account for the offset of the union within Obj. After transformation,
the code becomes as follows:

struct Obj {

size: i32 ,

c2rust_unnamed: C2RustUnnamed_1

}

Now, each variant value is at offset 16 due to alignment requirements, resulting in alloc allocating
insufficient memory. We corrected the code to allocate larger memory, enabling the transformed program
to pass the tests.

52

0 100000 200000 300000 400000
Rust LOC

10−1
100
101
102
103

Ti
m

e
(s

)

Figure 3.2: Execution time of Urcrat across benchmark programs

wget-1.21.4 It also stems from different memory layouts.

addr ->family = 2;

memcpy (&addr ->data , tmp , 4);

Here, family is the tag field, and 2 is associated with the union field d4 of addr->data. The C program
writes to addr->data because addr->data and addr->data.d4 denote the same address. However, after
transformation, memcpy overwrites the tag at offset 0 of addr->data. We could pass the tests by fixing
the code as follows, facilitating deref_d4_mut to be called in the transformed code:

addr ->family = 2;

memcpy (&addr ->data.d4, tmp , 4);

Currently, for end users of the tool, detecting and fixing incorrect translations is challenging. To
identify incorrect translations, they must manually inspect the code or run tests. If test suites do not
exist, creating new test cases can be costly. Additionally, test cases may not always reveal incorrect
translations. Fixing incorrect code is even more challenging, as users need to identify the root cause.
The difficulty of this process depends on the root cause. When tag values are not correctly identified
or fields not lastly written are read, investigating the cause is relatively straightforward. The test fails
due to a panic, allowing users to check which tag value or field read triggered the panic. However, issues
related to different memory layouts are more difficult to diagnose since they do not trigger panics. In such
cases, users must rely on their debugging skills. We believe it would be beneficial to identify common
incorrect translation patterns and design analyses to detect these patterns, thereby providing users with
warnings. We leave this as future work.

3.4.5 RQ3: Efficiency

We evaluate the efficiency of the proposed approach by measuring the execution time of Urcrat,
which includes both analysis and transformation, for each program. Figure 3.2 presents the execution
time relative to the Rust LOC, with the y-axis displayed in a log scale due to the wide range of execution
times. Urcrat efficiently handles most programs, with 31 programs taking less than a minute. The
longest execution time is 4,910 seconds for gawk-5.2.2. Execution time shows only a weak correlation
with code size, as other factors, primarily the complexity of pointer graphs and the number of analyzed
functions, also significantly influence execution time.

We also investigate the effectiveness of our selective function analysis in terms of efficiency. For each
program, the transformation consumes less than 1% of the total time, as it involves only tree-walking,
while the analysis occupies the remaining time. This highlights the importance of reducing analysis

53

time. We calculated the percentage of analyzed functions relative to the total functions in each program,
finding a geometric mean of 4.80%. In 28 programs, the analyzed functions constitute less than 10% of
the total functions. The highest percentage is 58.23% in the case of minilisp. These results indicate
that our approach is effective for efficiency.

3.4.6 RQ4: Code Characteristics

To understand the characteristics of the transformed code, we first evaluate the extent of code
changes introduced. We measured the changes in the 30 programs where tag fields are identified. On
average, the transformation added 861.8 lines per program due to helper method definitions. Excluding
these, an average of 252.4 lines were inserted and 301.8 lines were deleted per program. These re-
sults demonstrate the practical utility of our approach, as manually implementing such significant code
modifications would be both time-consuming and error-prone.

We also evaluate the applicability of the idiomatic transformation, which avoids inserting method
calls. With only the naïve transformation, each program has 194.6 method calls on average. In contrast,
applying the idiomatic transformation alongside the naïve transformation reduces this to 124.8 method
calls per program, achieving a 36% decrease. Specifically, 38.3 calls are removed by replacing match on
tag values with match on tagged unions, 15.8 calls by replacing if with if-let, and 15.6 calls by con-
solidating separate assignments into tagged union construction. The results indicate that the idiomatic
transformation improves code quality.

3.4.7 RQ5: Impact on Performance

We evaluate the impact of replacing unions with tagged unions on the performance of the translated
programs. We compare the performance of each Rust program before and after the transformation,
measured in terms of the execution time of the test suite. To ensure reliable results, we excluded test
suites with execution times shorter than 0.1 seconds, resulting in 20 programs, and computed the average
execution time from fifty runs for each program.

The experimental results show that the performance overhead is negligible. On average, the trans-
formed programs were only 0.01% slower than the original ones. Among the 20 programs, 5 ran slightly
slower after transformation, while the others were faster. We also performed one-sided t-test with the
null hypothesis that the program after transformation is slower than the original program by at least
1%. With a significance level of 0.05, we could reject the null hypothesis for 9 out of 20 programs,
implying that the transformation is unlikely to incur observable performance overhead for them. For
the remaining 11 programs, we could not reject the null hypothesis, but this does not necessarily mean
they have an overhead greater than 1%. Repeating the experiments may provide stronger statistical
significance, rejecting the null hypothesis.

3.4.8 Threats to Validity

Threats to external validity primarily stem from the choice of benchmarks. GNU packages often
share common code patterns, which may introduce bias. Although we included projects from GitHub to
enhance diversity, this may not fully represent the entire C ecosystem. Notably, large codebases might
exhibit different characteristics. Further experiments with a broader range of C programs would provide
greater confidence in the generalizability of our approach.

54

The type errors produced by C2Rust also pose a threat to external validity. Before using our tool,
all type errors in C2Rust-generated code must be resolved. Larger programs tend to exhibit more type
errors after C2Rust’s translation, requiring significant effort to correct. This could discourage users
from adopting both C2Rust and Urcrat, potentially impeding the widespread adoption of our approach.
To mitigate this issue, we can improve C2Rust or develop techniques for fixing type errors in C2Rust-
generated code.

Threats to construct validity arise from using test suites for correctness and performance evaluation.
Passing all tests does not guarantee correctness. However, tests are the most widely used method for
practical semantics validation and successfully discovered incorrect behavior in some programs during
our evaluation. For performance assessment, the used test suites may be inadequate as they were not
designed for performance measurement.

55

Chapter 4. Translation of Output Parameters

In Rust, tuples and Option/Result types [32, 27, 29] are useful, especially when used as return types
for functions. Tuples naturally express functions that return multiple but fixed numbers of values. Option
and Result types are employed to implement partial functions, i.e., functions that may fail. Option is
either Some(v) or None; Result, akin to Either in other languages, is either Ok(v) or Err(e), where e

represents information related to the failure. These types find widespread usage in programming, even
for elementary tasks. For instance, below shows two division functions, one returning both quotient and
remainder and the other returning only the quotient but failing when the divisor is zero:

fn div(n: i32 , d: i32) -> (i32 , i32) {

(n / d, n % d)

}

fn div(n: i32 , d: i32) -> Option <i32 > {

if d == 0 {

None

} else {

Some(n / d)

}

}

Since C does not provide types equivalent to tuples and Option/Result, C programmers employ
output parameters to implement such functions. Output parameters are pointer-type parameters used
by functions to produce values rather than take inputs [144, 174]. Instead of returning a tuple consisting
of two values, a function returns a single value and writes the other value to its output parameter.
Instead of returning Option/Result, a function writes the result value to its output parameter only upon
success, conveying information about success or failure through the return value. Below is the previous
division functions re-implemented in C:

int div(int n, int d, int *r) {

*r = n % d;

return n / d;

}

int div(int n, int d, int *q) {

if (d == 0)

return 1;

*q = n / d;

return 0;

}

In the second function, a return value of 1 indicates failure, and 0 indicates success.
To bridge the gap between C and Rust, it is desirable to replace output parameters with tuples

and Option/Result during C-to-Rust translation. Output parameters are discouraged in general because
they often make the code less readable and more error-prone [144, 174]. Parameters essentially serve
as inputs, and employing them for output purposes confounds code comprehension. Additionally, when
output parameters are used to implement partial functions, they fail to express the possibility of failure

56

C Code C2Rust
Rust code

(output parameters)
Code transformer

(Section 4.3)
Rust code

(tuples, Option/Result)

Static analyzer
(Section 4.2) Analysis result

Figure 4.1: The workflow of Nopcrat

through types. Programmers may inadvertently attempt to read pointers passed to such functions
even after they have failed. Consequently, in Rust, tuples and Option/Result are recommended over
output parameters. Directly returning the outcome enhances code clarity, and Option/Result conveys
the potential for failure at the type level, compelling callers to explicitly handle failure.

In this chapter, we present a technique for removing output parameters during C-to-Rust translation.
Figure 4.1 illustrates the workflow of the proposed approach. We initially translate C code to Rust using
C2Rust and subsequently enhance the resulting Rust code by removing output parameters. To facilitate
this transformation, we extract information about output parameters through static analysis, which
presents several challenges.

The first challenge is to identify output parameters of each function. To accomplish this, we propose a
static analysis based on the abstract interpretation framework [73]. We introduce abstract read/write sets,
which approximate the sets of pointer-type parameters that are read/written during execution. Abstract
states contain not only abstract values for abstract memory locations but also abstract read/write sets.
The output parameters of a function are determined by the abstract write set at the function’s return
point.

Second, we must determine whether each output parameter is always written. If that is the case, a
*mut T parameter (a raw pointer to T) is removed by returning T ; otherwise, the function is partial, and
the parameter is removed by returning either Option<T> or Result<T, E>. Furthermore, in the latter
scenario, we have to identify which return value indicates success/failure. This information is essential
for transforming the call site inspecting the return value to use pattern matching on Option/Result. To
achieve this, we introduce write set sensitivity, which distinguishes different sets of written pointers. By
examining these distinguished write sets, we can determine whether each parameter is always written;
by examining the return values associated with different write sets, we can determine the return values
when a particular pointer is written and when not written.

Third, we have to differentiate the behavior of each function when a null pointer is given and when
it is not. In C, a caller passes a null pointer as a value for an output parameter when it does not require
the result, and the callee writes the result to the pointer only when it is non-null. Since the absence
of writing to a null pointer cannot be deemed evidence of the function’s partialness, we should check
whether a pointer is always written, except when it is null. To accomplish this, we introduce nullity
sensitivity, which distinguishes the nullity of pointers.

Overall, the contributions are as follows:

• We define output parameters and classify them (Section 4.1).

• We propose an efficient bottom-up static analysis based on abstract interpretation, accompanied
by abstract read/write sets, write set sensitivity, and nullity sensitivity (Section 4.2).

57

• We propose code transformation removing output parameters using the analysis result (Section 4.3).

• We realize the proposed approach as a tool named Nopcrat and evaluate it with 55 real-world C
programs. Our evaluation shows that the approach is (1) scalable, by analyzing and transform-
ing 190k LOC within 213 seconds, (2) useful, by detecting 1,670 output parameters across the
55 programs, and (3) mostly correct, as 25 out of 26 programs pass their test suites after the
transformation (Section 4.4).

4.1 Definition of Output Parameters

In this section, we define output parameters and provide illustrative code examples for clarity. Since
determining whether a certain parameter is an output parameter depends on how the function introducing
the parameter behaves, the definitions in this section only consider the events that occur between the
moments a function is called and when it returns. For example, an execution means the execution of
the specific function under consideration, not the entire program’s execution. Given our objective of
removing output parameters in Rust code generated by C2Rust, we present the code examples in Rust
rather than C.

We begin by defining a path, which represents a memory location pointed by a pointer-type pa-
rameter. A parameter can refer to a struct value, with each field of the struct being a distinct memory
location. Consequently, we define paths as follows:

Definition 4.1 (Path). A path p is a pointer-type parameter x followed by zero or more field projections
l1, · · · , ln: p ::= x | p.l

Not every path represents a valid memory location because it may include non-existing fields. To filter
out such invalid paths, we define well-typed paths:

Definition 4.2 (Well-typed path). The path-type of x is T if the type of the parameter x is *mut T .
The path-type of p.l is T if the path-type of p is S and the struct S has a field l of type T . A path is
well-typed if it has some path-type.

For illustration purposes, assume the following definition of S, used throughout this section:

struct S { a: i32 , b: i32 }

If x has type *mut S, then x and x.a are well-typed, but x.c and x.a.a are not. Note that well-typed
paths can point to overlapping memory regions. For example, x and x.a overlap because x refers to the
entire struct, while x.a refers to its first field. To consider only non-overlapping paths, we define maximal
paths and x-path sets:

Definition 4.3 (Maximal path and x-path set). A path p is maximal if it is well-typed but p.l is not
well-typed for any l. An x-path set is the set of every maximal path starting with x.

For instance, if x has type *mut i32, then the x-path set is {x}; if y has type *mut S, then the y-path set
is {y.a, y.b}. Finally, we define reads from and writes to maximal paths as follows:

Definition 4.4 (Read and write). A read from a maximal path is obtaining the value at the memory
location denoted by the path. A write to a maximal path is modifying the value at the memory location
denoted by the path.

58

A read involves dereferencing a pointer, and a write entails an indirect assignment to a pointer:

• (*x).l1. · · · .ln performs a read from x.l1. · · · .ln.

• (*x).l1. · · · .ln = v performs a write to x.l1. · · · .ln.

In addition, reads and writes can also occur through aliased pointers and function calls. For example, in
both of the following code snippets, f writes to x.

fn f(x: *mut i32) {

let y = x;

*y = 1;

}

fn f(x: *mut i32) {

g(x);

}

fn g(y: *mut i32) {

*y = 1;

}

When dealing with structs, a single expression can read from or write to multiple maximal paths. For
instance, f writes to both x.a and x.b in the following code:

fn f(x: *mut S) {

*x = S { a: 1, b: 2 };

}

Using the notion of a path, we now define different kinds of parameters. The following examples
illustrate that reads do not necessarily prevent a parameter from being an output parameter, and writes
do not necessarily make a parameter an output parameter:

fn f(x: *mut i32) {

*x = 1;

let v = *x;

g(v);

}

fn f(x: *mut i32) {

let v = *x;

g(v);

*x = 1;

}

In the former, f reads x after writing to it. Since the function never uses the value originally referred to
by x, we can consider x an output parameter. In contrast, in the latter, f writes to x after reading it.
This means that the function relies on the value referred to by x, and we cannot consider x an output
parameter. Based on this observation, we define effective reads and writes as follows:

Definition 4.5 (Effective read and write). An effective read from a path p is a read from p that is not
preceded by any write to p. An effective write to a path p is a write to p that is not preceded by any
read from p.

59

In the above examples, the former effectively writes to x, and the latter effectively reads from x. By
definition, a single execution can either effectively read or effectively write to a path but not both.
However, within a single function, one execution may effectively read a path, while another execution
effectively writes to the path. For instance, in the following code, f effectively writes to x if c is true and
effectively reads x otherwise:

fn f(x: *mut i32 , c: bool) {

if c {

*x = 1;

}

let v = *x;

g(v);

}

If a function effectively reads a path in some execution, the function requires the value pointed to by the
pointer, implying that the parameter is used for input. Therefore, we define input parameters:

Definition 4.6 (Input parameter). A parameter x is an input parameter if there is an execution in
which at least one path in the x-path set is effectively read.

Furthermore, when dealing with structs, the absence of effective reads does not necessarily imply
that the parameter is an output parameter. Consider the following code examples:

fn f(x: *mut S) {

(*x).a = 1;

(*x).b = 2;

}

fn f(x: *mut S) {

(*x).a = 1;

}

In the former, f effectively writes to both x.a and x.b. Since this is equivalent to assigning S { a: 1, b:

2 } to *x, we can consider x an output parameter. In contrast, the latter implementation of f effectively
writes to x.a but not to x.b. Since it does not provide a value for x.b, its intention is to mutate the
state of the pointed struct rather than producing a new struct. Therefore, we cannot classify x as an
output parameter. To distinguish whether all the fields are written or not, we define the concepts of full,
partial, and no writes:

Definition 4.7 (Full/partial/no write). A parameter x is fully written in an execution if every path
in the x-path set is effectively written during the execution. A parameter x is partially written in an
execution if some paths in the x-path set are effectively written and some paths are not during the
execution. A parameter x is not written in an execution if none of the paths in the x-path set are
effectively written during the execution.

We then define mutation parameters:

Definition 4.8 (Mutation parameter). A parameter x is a mutation parameter if there is an execution
in which x is partially written.

Note that if the type of x is *mut T , where T is a primitive type like i32, the x-path set is a singleton,
and a partial write is impossible, rendering x incapable of becoming a mutation parameter.

Finally, we can define output parameters:

60

Definition 4.9 (Output parameter). A parameter x is an output parameter if x is neither an input
parameter nor a mutation parameter and there is an execution in which x is fully written.

We classify output parameters into two groups: must and may, as they require different transformations.
A must-output parameter is always fully written by the function, and we have to replace a must-output
parameter of type *mut T with a return type of T . Consider the following function:

fn f(x: *mut i32) {

*x = 1;

}

The function always writes to x, leading to the following transformation:

fn f() -> i32 {

1

}

Conversely, a may-output parameter is utilized by a partial function and may not be written. Its removal
requires returning Option<T>/Result<T, E>. For instance, consider the following function:

fn f(x: *mut i32 , c: bool) {

if c {

*x = 1;

}

}

The function writes to x only if c is true, leading to this transformation:

fn f(c: bool) -> Option <i32 > {

if c {

return Some (1);

}

None

}

An intricate case arises when a function checks whether a given pointer is null, as shown below:

fn f(x: *mut i32) {

if !x.is_null () {

*x = 1;

}

}

It writes to x only when x is non-null, and the caller can ignore the outcome by passing a null pointer.
Transforming this function to return Option presents challenges in determining the proper condition to
replace !x.is_null() because there is no longer x:

fn f() -> Option <i32 > {

if ??? {

return Some (1);

}

return None;

}

A more appropriate transformation is to return just i32:

61

fn f() -> i32 {

1

}

This transformation aligns better with the original function’s intent. The original function does not write
to x because the caller does not require the result, not because the function has failed. Consequently,
we do not classify f as a partial function, and x should be a must-output parameter. Based on these
observations, we define must- and may-output parameters:

Definition 4.10 (Must-/may-output parameter). An output parameter x is a must-output parameter
if x is fully written in every execution in which x is non-null. An output parameter x is a may-output
parameter if there is an execution in which x is non-null but not fully written.

Unfortunately, we cannot remove every output parameter. We now discuss four reasons that make
output parameters unremovable. Note that we do not claim the reasons to be exhaustive. They are
derived from our analysis of real-world C code, in which we identified output parameters and investigated
whether each could be removed without altering the program’s behavior. As our observations span 55
C programs, used for evaluation in Section 4.4, we believe they cover most scenarios where output
parameters cannot be removed, but different reasons can occur (e.g., see Section 4.4.5).

Array Pointers We cannot remove an output parameter pointing to an array. For example, in the
following code, x points to an integer array:

fn f(x: *mut i32 , len: usize) {

for i in 0..len {

*x.offset(i) = i;

}

}

The second parameter len denotes the array’s length, and the function fills the array with integers from
0 to len - 1. Removing x requires the transformed function to return an array of length len, which
Rust disallows, as the size of the return value must be known at compile time. One option is to return
Vec, a pointer to a heap-allocated array in Rust, but we consider this beyond the scope of this work. In
C-to-Rust translation, replacing dynamically sized arrays with Vec is an important goal, even for code
without output parameters. Addressing this involves transforming array operations into corresponding
Vec operations, which is challenging. Therefore, we defer the treatment of array pointers to future
research, treating them as unremovable in this work.

Void Pointers We cannot remove output parameters of type *mut c_void, equivalent to void * in C. C
programmers typically use the void * type to produce values of varying types depending on the context.
For example, the following function returns either a 32-bit or 64-bit integer:

fn f(x: *mut c_void , c: bool) {

if c {

*(x as *mut i32) = i32::MAX;

} else {

*(x as *mut i64) = i64::MAX;

}

}

Transforming this function necessitates returning either i32 or i64, which Rust disallows.

62

Null-Specific Behavior If a function exhibits specific behavior only when an output parameter is
null, we cannot remove it. For instance, the following function prints "null!" when x is null:

fn f(x: *mut i32) {

if !x.is_null () {

*x = 1;

} else {

println !(" null !");

}

}

If we remove x, the function cannot determine when to print "null!".

Stored Pointers We cannot remove an output parameter stored in a memory location accessible even
after the function returns. Such locations include pointers provided as arguments, return values, and
global variables. Consider the following function that stores x to another parameter y:

fn f(x: *mut i32 , y: *mut *mut i32) {

*x = 1;

*y = x;

}

If we remove x, the function cannot correctly update y.
To rule out such cases, we define unremovable and removable parameters:

Definition 4.11 (Unremovable/removable parameter). A parameter x is unremovable if any of the
following condition holds: (1) x points to an array; (2) the type of x is *mut c_void; (3) there is a
program point reachable only when x is null; (4) x is stored in a memory location accessible after the
function returns. A parameter x is removable if it is not unremovable.

4.2 Static Analysis

In this section, we propose a static analysis for identifying output parameters based on the abstract
interpretation framework [73]. The analysis aims to find removable output parameters for each function
and categorize them as either must or may. For each may-output parameter, it computes two kinds
of information: (1) possible return values when the parameter is written and when not written; (2)
program points where the parameter is fully written. The subsequent transformation phase utilizes this
information.

Our analysis design prioritizes scalability, relying on two key decisions. First, it adopts a bottom-up
approach, ensuring each function undergoes analysis only once, except for recursive ones. Second, the
analysis intentionally sacrifices soundness to avoid the expensive overhead of being sound. We discuss
the potential sources of unsoundness throughout this section.

At the same time, our goal is to achieve high precision: minimizing false positives, i.e., non-output
parameters being misclassified as output parameters. Due to unsoundness, both false positives and
false negatives are possible. A false positive occurs when the analysis fails to account for a read in a
concrete execution, while a false negative arises when a write is not encompassed. Among these, false
positives are more concerning, as they lead the subsequent transformation to change the semantics of the
target program. False negatives merely result in fewer output parameters being removed. To enhance

63

Label l ∈ L
Variable x ∈ X

Abstract pointer p# ∈ P#

p# ::= x | arg(x)

Abstract address a# ∈ A# = P(P#)

Abstract integer z# ∈ Z# = {Z ∈ P(Z) : |Z| < N} ∪ {Z}
Abstract value v# ∈ V# = A# × Z#

Abstract memory m# ∈ M# = P# → V#

Abstract read/write/exclude set r#, w#, e# ∈ R#,W#,E# = P(X)
Abstract state s# ∈ S# = L→ (M# × R# ×W# × E#)

Figure 4.2: Abstract domains

precision, the analysis generally overapproximates possible concrete behavior, except for determining
which pointers are written. Since considering non-written pointers as written would generate a false
positive, we underapproximate the set of written pointers.

We now provide a detailed explanation of the analysis. We first introduce a bottom-up static analysis
with abstract read/write/exclude sets (Section 4.2.1). The read/write sets aid in identifying must-output
parameters, while exclude sets identify unremovable parameters, particularly those associated with array
pointers and stored pointers. We then extend the analysis by incorporating write set sensitivity, enabling
the detection of may-output parameters and the computation of possible return values (Section 4.2.2).
Finally, we further extend the analysis with nullity sensitivity (Section 4.2.3). This prevents must-output
parameters from being misclassified as may-output in the presence of nullity checking and identifies un-
removable parameters due to null-specific behavior. Note that we can syntactically identify unremovable
parameters due to void pointers without relying on the analysis.

4.2.1 Abstract Read/Write/Exclude Sets

We begin the analysis by constructing a call graph of the entire program. This allows us to analyze
the leaf nodes of the graph first and then analyze their callers using the results obtained from the callees.
As call graph construction is not our primary focus, we syntactically build the call graph, ignoring
function pointers. Existing control flow analysis techniques [182, 149] can be used to create a sound call
graph and improve the analysis precision.

To maintain focus on the core concepts, we illustrate our analysis using a simplified language where
values are limited to integers and pointers. We briefly discuss the handling of structs later in this section.
Figure 4.2 defines the abstract domains used in the analysis. L is the set of labels (program points).
X is the set of variable names, including parameters. P# is the set of abstract pointers, each is either
a variable address or a pointer given as an argument. The notation arg(x) denotes a symbolic pointer
given to the parameter x. A# is the set of abstract addresses, each is a set of abstract pointers. Z#

is the set of abstract integers, each is a set of fewer than N integers or the top element Z. By setting
a finite value for N , the lattice is ensured to have only finite chains. In our implementation, N is 12.
Our implementation employs widening for faster convergence, ensuring termination even when N =∞.
V# is the set of abstract values, each is a pair of an abstract address and an abstract integer. We use
pairs instead of disjoint unions to precisely analyze C code that casts pointers to integers and then back

64

to pointers. M# is the set of abstract memories, adhering to the conventional definition. R#, W#, and
E# are the set of abstract read/write/exclude sets, respectively. Each abstract read/write/exclude set
is a set of variables. For read/exclude sets, we perform overapproximation, where the bottom element is
empty, and the join operation is union. For write sets, we perform underapproximation, where the top
is empty, and the join is intersection. Finally, S# is the set of abstract states, with each state mapping
a label to a product of an abstract memory and abstract read/write/exclude sets. For ease of notation,
we use m#

l , r
#
l , w#

l , and e#l to denote the elements of s#(l), where s# is the computed abstract state
of a function. The read/write/exclude sets in abstract states can be interpreted as follows:

• x ∈ r#l implies that x may be effectively read before reaching l.

• x ∈ w#
l implies that x must be effectively written before reaching l.

• x ∈ e#l implies that x may be unremovable.

We now demonstrate how abstract states evolve during the analysis with concrete examples. We
begin by focusing on read/write sets and then proceed to exclude sets. Subsequently, we discuss function
calls and finally extend the analysis to support structs. In our examples, we use line numbers in labels:
labels (n, in) and (n, out) denote the program points right before and after the statement in line n,
respectively.

Read/Write Sets Consider the following example, where f effectively writes to x:

1 fn f(x: *mut i32 , y: i32) {

2 *x = y;

3 let v = *x;

4 }

• Line 1: At the beginning, the read/write sets are empty. Given our bottom-up analysis approach,
we lack information about the function’s arguments, except for their types. Consequently, we
initialize each integer parameter to the top, and each pointer parameter, denoted as x, to arg(x),
which maps to the top. Thus, the abstract state is as follows:

m#
1,out = [x 7→ arg(x), y 7→ >, arg(x) 7→ >], r#1,out = ∅, w

#
1,out = ∅

During the analysis, we assume that arg(x1) and arg(x2) are not aliased, where x1 and x2 are
different variables. This assumption is unsound because aliasing can occur in concrete executions.
However, this assumption allows us to obtain meaningful analysis results, preventing a write to a
single parameter from being interpreted as affecting all parameters.

• Line 2: To analyze *E1 = E2, we compute the abstract value of E1, which is a pair of an abstract
address and an abstract integer, and obtain its abstract address element. If the abstract address
is {arg(x)}, we add x to the write set only if x is not already in the read set. When the abstract
address contains multiple pointers, we refrain from updating the write set, as we cannot say a write
must happen to any of those pointers. In the case of the current example, only one pointer belongs
the abstract address, and the read set is empty, so the write set is updated:

m#
2,out = [x 7→ arg(x), y 7→ >, arg(x) 7→ >], r#2,out = ∅, w

#
2,out = {x}

65

• Line 3: To analyze let x = *E, we compute the abstract address of E and add every x that arg(x)

is in the address to the read set only if x is not already in the write set. In this particular example,
x is already in the write set, so the read set remains unchanged:

m#
3,out = [x 7→ arg(x), y 7→ >, v 7→ >, arg(x) 7→ >], r#3,out = ∅, w

#
3,out = {x}

Then, the analysis of the function terminates, and we can conclude that x is an output parameter
because it belongs to the write set upon the function’s return.

Exclude Sets Consider the following example, where y and z are unremovable parameters:

1 fn f(x: *mut *mut i32 , y: *mut i32 , z: *mut i32) {

2 *x = y;

3 *z.offset (1) = 0;

4 ...

5 }

• Line 1: At the beginning, the exclude set is empty.

m#
1,out = [x 7→ arg(x), y 7→ arg(y), z 7→ arg(z), . . .], e#1,out = ∅

• Line 2: When analyzing *E1 = E2, let a#1 and a#2 be the abstract addresses of E1 and E2, re-
spectively. If a#1 contains arg(x1) for some x1, we add every x2 that arg(x2) belongs to a

#
2 to the

exclude set. It is because pointers being stored in a memory location accessible after the function
returns are unremovable. In the current code, the abstract addresses of x and y are {arg(x)} and
{arg(y)}, respectively. As a result, y is added to the exclude set:

m#
2,out = [x 7→ arg(x), y 7→ arg(y), z 7→ arg(z), . . .], e#2,out = {y}

• Line 3: If a statement contains E1.offset(E2), we add every x that arg(x) is in the abstract
address of E1 to the exclude set. Since C2Rust translates C’s array indexing operation to the
offset method invocation in Rust, such an expression indicates x being an array pointer and thus
unremovable. In the current example, the abstract address of z is {arg(z)}, so z is added to the
exclude set:

m#
3,out = [x 7→ arg(x), y 7→ arg(y), z 7→ arg(z), . . .], e#3,out = {y, z}

Since y and z belong to the exclude set, they are considered unremovable parameters and will not
be removed by the transformation even when they are in the write set.

Function Calls As we analyze a callee before its caller, we use the analysis result of the callee when
analyzing the caller. Consider the following example, where f calls g:

1 fn f(x: *mut i32 , y: *mut i32 , z: *mut i32) {

2 g(x, y, z);

3 }

4 fn g(a: *mut i32 , b: *mut i32 , c: *mut i32) {

5 ...

6 }

66

Suppose we have the following analysis result for g upon its return:

r#return = {a}, w
#
return = {b}, e

#
return = {c}

It means that the first argument may be effectively read, the second argument must be effectively written,
and the third argument may be unremovable. Since f passes x, y, and z, whose abstract addresses are
{arg(x)}, {arg(y)}, and {arg(z)}, the call to g updates the abstract state as follows:

r#2,out = {x}, w
#
2,out = {y}, e

#
2,out = {z}

When the abstract address of an argument contains multiple pointers, the write set is not updated to
maintain underapproximation, but the read/exclude sets are updated as they are overapproximated.

A challenge arises when dealing with a recursive function as its analysis result is unavailable when
analyzing the function itself. To address this issue, we employ an iterative analysis approach for recursive
functions. In the initial iteration, we analyze the function under the assumption that it never returns.
In subsequent iterations, we analyze the function using the results obtained in the previous iterations.
This process continues until the analysis results converge. Consider the following example, where f is a
recursive function:

1 fn f(x: *mut i32 , y: u32) {

2 if y == 0 {

3 *x = 1;

4 } else { f(x, y - 1); }

5 }

In the first iteration, line 5 is reachable only from line 3 because we assume that f does not return. As
a result, the analysis result is as follows:

w#
5,out = w#

5,in = w#
3,out = {x}

In the second iteration, we know that f returns in line 4 using the previous result:

w#
4,out = {x}

Since line 5 is now reachable from both lines 3 and 4, we must join the two write sets:

w#
5,out = w#

5,in = w#
3,out t w

#
4,out = {x}

One more iteration is sufficient to achieve convergence in the analysis results, and we can conclude that
x is an output parameter. When dealing with mutually recursive functions, we initially assume that all
functions in the mutual recursion cycle never return and then iteratively analyze them until the analysis
results for all functions converge.

Structs Extending the analysis to support structs is straightforward. We need to modify abstract
read/write/exclude sets to be sets of maximal paths, not just variables. If arg(x1), . . . , arg(xn) belong
to the abstract address of E, the expression (*E).l1. · · · .lm adds each maximal path whose prefix is one
of x1.l1. · · · .lm, . . . , xn.l1. · · · .lm to the read set, except those already in the write set. Similarly, if
{arg(x)} is the abstract address of E1, the expression (*E1).l1. · · · .lm = E2 adds maximal paths starting
with x.l1. · · · .lm to the write set, except those already in the read set.

67

4.2.2 Write Set Sensitivity

The analysis in Section 4.2.1 can detect must-output parameters but not may-output parameters.
Consider the following example, where x is a may-output parameter:

1 fn f(x: *mut i32 , c: bool) -> i32 {

2 let mut v = 0;

3 if c {

4 *x = 1;

5 } else { v = 1; }

6 v

7 }

Listing 4.1: May output parameter

When c is true, f writes to x and returns 0; otherwise, it does not write to x and returns 1. How-
ever, analyzing this function cannot figure out that x is an output parameter because the write set is
underapproximated. Since line 4 writes to x, we get the following state:

m4,out = [v 7→ {0}, . . .], w#
4,out = {x}

On the other hand, line 5 does not write to x, and we get the following result:

m5,out = [v 7→ {1}, . . .], w#
5,out = ∅

Since the join for write sets is intersection, x does not belong to the write set of line 6 and is not considered
an output parameter:

m6,out = m6,in = m4,out tm5,out = [v 7→ {0, 1}, . . .], w#
6,out = w#

6,in = w4,out t w5,out = ∅

To address this limitation, we introduce write set sensitivity, which distinguishes different write sets.
We change the definition of an abstract state to map a product of a label and an abstract write set to a
product of an abstract memory and abstract read/exclude sets:

S# = (L×W#)→ (M# × R# × E#)

Lines 4 and 5 are analyzed the same as before:

m#
4,out,{x} = [v 7→ {0}, . . .], m#

5,out,∅ = [v 7→ {1}, . . .]

However, in line 6, the write sets are not joined because they are different.

m#
6,out,{x} = m#

6,in,{x} = m#
4,out,{x} = [v 7→ {0}, . . .]

m#
6,out,∅ = m#

6,in,∅ = m#
5,out,∅ = [v 7→ {1}, . . .]

From the analysis result, we can conclude that x is effectively written in some executions but not in
others and thus is a may-output parameter. Furthermore, we naturally obtain the possible return values
for each case: {0} when x is written and {1} otherwise. We also need to find program points where
x is fully written. For this purpose, we examine each statement that writes to x, where the write set
before the statement lacks x, and the write set after the statement includes x. Given these criteria, we
determine that x is fully written in line 4.

Unfortunately, write set sensitivity can be extremely costly, especially when structs and loops are
involved. Consider the following code, where C2Rust translates C’s switch-case to Rust’s match:

68

struct S { a0: i32 , ..., a9: i32 }

fn f(x: *mut S) {

...

while c {

match v {

0 => {

(*x).a0 = 0;

}

...

9 => {

(*x).a9 = 0;

}

_ => {}

}

...

}

}

The struct S has ten fields, from a0 to a9, and f has a loop that writes to one of the fields in each iteration,
depending on the value of v. When analyzing f with write set sensitivity, 1,024 (= 210) different write
sets occur because executions can write to different combinations of the ten fields. It means that every
program point in the loop is analyzed under 1,024 different contexts, consuming a significant amount of
time. Adopting widening for write sets is not a solution to this problem because write sets are not even
joined due to the sensitive nature of the analysis.

One solution is to insensitively analyze loops: write sets are joined at every program point in a loop.
However, this approach prevents the analysis from detecting output parameters within loops that can
be sensitively analyzed without a significant computational cost. The following function serves as an
example:

fn f(x: *mut i32) {

...

while c {

if d {

*x = 0;

}

...

}

}

If we analyze f sensitively, x is classified as a may-output parameter, and the analysis can terminate
within a reasonable amount of time because only two distinct write sets occur. However, when analyzed
insensitively, x is not considered an output parameter.

Therefore, a more preferable solution is to sensitively analyze only non-costly loops and insensitively
analyze the rest. The problem is that we cannot know whether a loop is costly or not before analyzing
it. To address this issue, we adopt a try-and-restart approach: we take a hyperparameter max sensitivity
(M) from the user and initiate the analysis with every loop being analyzed sensitively. If a program
point within a certain loop exhibits more than M different write sets, we restart the analysis with the
loop being analyzed insensitively. When M = 1, every loop is analyzed insensitively, and when M =∞,

69

every loop is analyzed sensitively.
In fact, the current use of write set sensitivity is unsound. The issue lies in the fact that different

write sets do not represent disjoint sets of concrete states. Since the write set is underapproximated,
x 6∈ w# is interpreted as x being either effectively written or not, but not as x being guaranteed not
to be effectively written. Consequently, two different write sets can encompass the same concrete state.
For example, both w# = {x} and w# = {y} can approximate states where both x and y are effectively
written.

Two approaches exist to make the use of write set sensitivity sound. First, we can properly join the
states associated with different write sets [121]. For example, in Listing 4.1, the line 6 can be analyzed
as follows:

m#
6,out,{x} = m#

6,in,{x} = m#
4,out,{x} tm

#
5,out,∅ = [v 7→ {0, 1}, . . .]

m#
6,out,∅ = m#

6,in,∅ = m#
4,out,{x} tm

#
5,out,∅ = [v 7→ {0, 1}, . . .]

We can still detect that x is an output parameter, but the return values are now imprecise: {0, 1} are
possible both when x is written and when not written. Since the subsequent transformation relies on the
precise identification of return values, we decided to sacrifice soundness.

Another option is to make each write set track the exact set of written pointers. Currently, under-
approximation occurs due to three reasons. First, we overapproximate read sets, and a parameter can be
added to the write set only when it is not in the read set. Thus, we have to make the read set exact as
well. This involves introducing read set sensitivity. Second, when an abstract address contains multiple
pointers, a read from it makes the read set imprecise, and a write to it makes the write set imprecise.
To resolve this, we must create distinct read/write sets for different pointers in the abstract address.
Finally, insensitively analyzing loops makes the read/write sets joined in loops. Preventing this requires
analyzing all loops sensitively. However, these changes would significantly degrade the scalability of the
analysis, and we decided to sacrifice soundness.

4.2.3 Nullity Sensitivity

We now focus on the analysis of code with nullity checking, specifically addressing the identification
of unremovable parameters without misclassifying must-output parameters as may-output parameters.
Consider the following code snippets:

1 fn f(x: *mut i32) {

2 if !x.is_null () {

3 *x = 1; }

4 }

5

Listing 4.2: Must-output parameter

1 fn f(x: *mut i32) {

2 if !x.is_null () {

3 *x = 1;

4 } else { println !(" null !"); }

5 }

Listing 4.3: Null-specific behavior

A precise analysis should conclude that x in Listing 4.2 is a must-output parameter, and x in Listing 4.3
is an unremovable parameter.

If we interpret arg(x) as a non-null pointer, we get an incorrect result. When analyzing Listing 4.3,
the condition !x.is_null() evaluates to true, causing line 2 to be deemed unreachable. Consequently,
we cannot detect the null-specific behavior of f, thereby misclassifying x as a removable parameter.

On the other hand, considering arg(x) as a nullable pointer also fails to produce a correct result. In
this case, !x.is_null() can be both true and false. Therefore, in Listing 4.2, line 4 can be reached from

70

both lines 2 and 3, resulting in the following analysis result:

m#
4,out,∅ = m#

4,in,∅ = m#
2,out,∅ = [. . .], m#

4,out,{x} = m#
4,in,{x} = m#

3,out,{x} = [. . .]

From the result, we can deduce only that x may not be effectively written but not that it is not written
only when it is null. This leads to a misclassification of x as a may-output parameter.

To enhance the precision of the analysis, we introduce nullity sensitivity, which distinguishes between
arg(x) being null and non-null. U# represents the set of abstract null sets, each of which is a set of
variables, and the definition of abstract states is revised accordingly:

Abstract null set u# ∈ U# = P(X) S# = (L×W# × U#)→ (M# × R# × E#)

Similar to write sets, we underapproximate null sets, resulting in the empty set for the top element and
intersection for the join operation.

When analyzing E.is_null() with nullity sensitivity, if the abstract address of E is arg(x), we create
two distinct null sets: one maintains the current null set, and the other extends the current set with
x. In the state associated with the former, E.is_null() evaluates to false, while in the state associated
with the latter, it evaluates to true. Using nullity sensitivity, we obtain the following analysis result for
Listing 4.2:

m#
4,out,∅,{x} = m#

4,in,∅,{x} = m#
2,out,∅,{x} = [. . .], m#

4,out,{x},∅ = m#
4,in,{x},∅ = m#

3,out,{x},∅ = [. . .]

Since x is effectively written when it is non-null, we can correctly classify x as a must-output parameter.
In Listing 4.3, line 4 is reachable with the following state:

m#
4,out,∅,{x} = [. . .]

This implies that the function has a program point that is reachable only when x is null, allowing us to
correctly classify x as an unremovable parameter.

Since null sets are underapproximated, nullity sensitivity is unsound, like write set sensitivity. The
same solutions can ensure soundness, but we prioritize precision and scalability over soundness.

4.3 Code Transformation

In this section, we describe the transformation of Rust code generated by C2Rust based on the
analysis result. Note that the analysis result cannot fully capture the programmers’ intentions. Even
when an output parameter can be removed without altering the program’s behavior, developers may
prefer to retain it. We suggest that a practical solution would be receiving a list of parameters from the
programmers that they wish to retain.

We demonstrate the code transformation for must-output parameters (Section 4.3.1) and may-output
parameters (Section 4.3.2). For clarity, we provide illustrative examples comprising code snippets be-
fore and after the transformation, accompanied by a line-by-line explanation of the modifications. The
transformation aims to: (1) introduce Rust-idiomatic function signatures by replacing output parame-
ters with return types comprising tuples and Option/Result types; and (2) modify the function bodies to
align with these new signatures. The new signatures offer programmers more precise information about
the functions’ behavior, compared to the original ones, thereby improving code comprehension. How-
ever, modifications in the function bodies, such as the introduction of additional local variables and the

71

complexification of data flow, may negatively impact readability. We believe further transformation sim-
plifying function bodies could enhance readability and briefly discuss potential simplification strategies
after demonstrating our code transformation.

4.3.1 Must-Output Parameters

Consider the following definitions of function f: on the left is the original code before the transfor-
mation, with x as a must-output parameter, and on the right is the code after the transformation.

1 fn f(x: *mut i32) -> i32 {

2

3

4 *x = 2;

5 return 1;

6 }

7 let y = f(x);

8

9

10

11

fn f() -> (i32 , i32) {

let xv = 0;

let x: *mut i32 = &mut xv;

*x = 2;

return (1, xv);

}

let (v0, v1) = f();

if !x.is_null () {

*x = v1;

}

let y = v0;

• Line 1: We remove the output parameter x of type *mut i32 and add i32 to the return type by
changing the return type to (i32, i32).

• Lines 2–3: We introduce a new variable xv of type i32 with an arbitrary initial value. This is where
a value originally stored in the output parameter is stored. Additionally, we redefine x as a pointer
to xv, ensuring expressions referencing x behave correctly without any modification.

• Line 5: For each return, we construct a tuple to return both the original return value and xv.

• Lines 7–11: We remove the argument x and destructure the tuple returned by f into v0 and v1. If
x is non-null, we assign v1 to x. Then, v0 is used in place of the original return value.

We can simplify the function body by removing local variables to enhance readability. If x is solely
utilized for indirect assignments and dereferences without being passed to functions or assigned to other
variables, it can be removed by replacing *x with xv. Moreover, if xv is written to immediately before
a return, xv can be removed as well, directly returning the written value. These simplifications can be
easily achieved through syntactic transformation.

4.3.2 May-Output Parameters

We employ two methods for removing a may-output parameter. If we cannot identify return values
that indicate success (the function has written to the parameter) and failure (the function has not written
to the parameter), we retain the original return value and additionally return the value of the output
parameter as a tuple. Conversely, if such return values can be identified, we remove the original return
value and return only the value of the output parameter.

To identify return values indicating success and failure, we rely on the analysis result. The analysis
computes return values when the output parameter is written. If there are multiple such values, they not
only signify success but also provide additional information to callers through their values. In such cases,

72

we must retain the original return value because removing it prevents callers from obtaining necessary
information beyond mere success or failure. On the other hand, if a unique value v exists, we compare
it with the return values when the output parameter is not written, which are also computed by the
analysis. If v is found among these values, we cannot consider it an indicator of success. Conversely, if
v does not appear among these values, we conclude that v indeed signifies success.

To facilitate successful identification of return values, we employ the set domain for integers instead
of the interval domain during the analysis. For instance, if a function returns 0 for success and −1 or
1 for failure, the set domain enables us to conclude that 0 is not in {−1, 1}. However, when using the
interval domain, 0 belongs to the interval [−1, 1], preventing us from recognizing 0 as an indicator of
success.

Retaining Original Return Values Consider the following definitions of function f. Before the
transformation, x is a may-output parameter, and the return value is always 1:

1 fn f(x: *mut i32 , c: bool) -> i32 {

2

3

4

5 if c {

6 *x = 2;

7

8 }

9 return 1;

10

11 }

12 let y = f(x, c);

13

14

15

16

17

18

fn f(c: bool) -> (i32 , Option <i32 >) {

let xv = 0;

let x: *mut i32 = &mut xv;

let xw: bool = false;

if c {

*x = 2;

xw = true;

}

return (1,

if xw { Some(xv) } else { None });

}

let (v0, v1) = f(c);

if let Some(v) = v1 {

if !x.is_null () {

*x = v;

}

}

let y = v0;

• Line 1: We remove the output parameter x and change the return type to (i32, Option<i32>).

• Lines 2–3: This step aligns with Section 4.3.1.

• Line 4: We introduce a new variable xw to track whether x is fully written.

• Line 7: According to the analysis, x becomes fully written on this line. Thus, we set xw to true.

• Lines 9–10: In addition to the original return value, we return Some(xv) if x is fully written, or None
otherwise.

• Lines 12–18: If v1 is Some(v), we assign v to x using an if-let expression [11]. Other changes are
the same as Section 4.3.1.

Note that we can also use Result<T, ()> instead of Option<T> as the return type, where () is the unit
type; this choice is just a matter of preference.

73

To improve readability, we can simplify return statements, currently depending on xw to select
between Some(xv) and None. If the analysis result indicates that x must have been written to before
reaching a specific return statement, the statement can be modified to directly return Some(xv) without
checking xw. Similarly, if x has not been written to, we can return None. Furthermore, if this simplification
makes xw never read, we can remove its definition and assignments. Note that the proposed analysis
already suffices for providing information required by these simplifications.

Removing Original Return Values Consider the following definitions of function f. Before the
transformation, x is a may-output parameter, and the return value is 0 for success and 1 for failure:

1 fn f(x: *mut i32 , c: bool) -> i32 {

2

3

4

5 let y = 1;

6 if c {

7 y = 0;

8 *x = 2;

9

10 }

11 return y;

12 }

13 if f(c) == 0 {

14

15

16

17

18 ...

19 } else {

20

21 ...

22

23 }

fn f(c: bool) -> Result <i32 , i32 > {

let xv = 0;

let x: *mut i32 = &mut xv;

let xw: bool = false;

let y = 1;

if c {

y = 0;

*x = 2;

xw = true;

}

return if xw {Ok(xv)} else {Err(y)};

}

match f(c) {

Ok(v) => {

if !x.is_null () {

*x = v;

}

...

}

Err(_) => {

...

}

}

• Line 1: We remove x and change the return type to Result<i32, i32>. The first i32 corresponds
to the type of the output parameter, and the second i32 corresponds to the original return type.

• Lines 2–10: These modifications are the same as before.

• Line 11: When x is fully written, we return Ok(xv). Otherwise, we return Err(y), where y is the
original return value, potentially containing information related to the failure.

• Lines 13–23: The original code’s check for the return value and subsequent actions on success and
failure are replaced with pattern matching.

The return value of f may not be immediately checked, as shown in the following example:

74

1 let y = f(x, c);

2

3

4

5

6

7

8

9

10

11

let y = match f(c) {

Ok(v) => {

if !x.is_null () {

*x = v;

}

0

}

Err(v) => {

v

}

};

In this case, we reconstruct the original return value using pattern matching. On success, the value 0

is obtained from the analysis result; on failure, the value is extracted from Err. Note that if the value
indicating failure is unique, we can use Option<T> instead of Result<T, E>.

4.4 Evaluation

In this section, we evaluate our approach using 55 real-world C programs. First, we describe our
implementation of Nopcrat, which embodies our approach (Section 4.4.1), and the process of collecting
the benchmark programs (Section 4.4.2). We then assess our approach by addressing the following
research questions:

• RQ1. Scalability: Does it efficiently analyze and transform large programs? (Section 4.4.3)

• RQ2. Usefulness: How many output parameters can it identify, and to what extent is code modi-
fication required to remove them? (Section 4.4.4)

• RQ3. Correctness: Does it transform code while preserving its semantics? (Section 4.4.5)

• RQ4. Impact on performance: What is the effect of removing output parameters on program
performance? (Section 4.4.6)

Our experiments were conducted on an Ubuntu machine with Intel Core i7-6700K (4 cores, 8 threads,
4GHz) and 32GB DRAM. Finally, we discuss potential threats to validity (Section 4.4.7).

4.4.1 Implementation

We implemented Nopcrat on top of the Rust compiler [12]. It analyzes Rust code after lowering
it to Rust’s mid-level intermediate representation (MIR) [15], which represents functions as control
flow graphs with basic blocks. To transform the code, Nopcrat relies on Rust’s high-level intermediate
representation [14], similar to abstract syntax trees but with syntactic sugar desugared and symbols
resolved. We used C2Rust v0.18.0 with minor modifications.

Additionally, we require post-processing of C2Rust’s output before analyzing and transforming it.
C2Rust translates each C file to a Rust file, declaring definitions in other files as extern definitions, with
function calls resolved at link time. However, Rust provides the use keyword for importing definitions,
which can undergo type checking at compile time. Therefore, to ensure that changes in function signatures
during our transformation properly affect type checking, we need to replace the extern definitions with

75

use statements. While Emre et al. [84]’s ResolveImports tool performs such post-processing, it supports
a previous version of C2Rust. Hence, we implemented a tool that performs the same task on the output
of C2Rust v0.18.0.

Although our implementation utilizes C2Rust for syntactic translation, it does not preclude the use
of other C-to-Rust translators. The implemented analyzer presumes that the input Rust code employs
only C-equivalent features, excluding Rust-specific features such as safe references, traits, and generics.
Any existing C-to-Rust translator that adheres to this constraint can substitute C2Rust. Conversely,
code produced by tools that improve C2Rust’s output with Rust features [84, 83, 203] is incompatible
with our current implementation. However, this limitation is not intrinsic to our approach, as extending
the implementation to support Rust features is feasible without significant challenges.

4.4.2 Benchmark Program Collection

We collected benchmark programs from two sources: (1) those used by Crown [203] and (2) GNU
packages. Since Crown’s benchmark set primarily comprises small programs (< 5k LOC), we decided
to augment it with large programs from GNU packages. Initially, from the packages listed in the GNU
Package Blurbs [6], we gathered 41 packages, which are all of C programs satisfying the following condi-
tions: (1) not exceeding 100k LOC, as measured by cloc [76]; (2) compiled successfully on our Ubuntu
machine; and (3) considered well-known, determined by whether the package has an individual entry on
Wikipedia. During their translation, C2Rust crashes in four packages (adns, gmp, parted, and readline).
Additionally, in two packages (bison and m4), we cannot replace extern declarations with use due to
conflicting type definitions with the same name. Excluding these, we derived a final set of 35 packages.
By adding them to 20 programs from Crown, we obtained a total of 55 benchmark programs. C2Rust
occasionally produces Rust code with type errors, mostly caused by missing type casts, and we manually
corrected them. Table 4.1 reports the sizes of the benchmark programs.

4.4.3 RQ1: Scalability

We evaluate the scalability of the proposed approach by measuring the time required to analyze and
transform code. Our experimental results demonstrate that the proposed approach is scalable, as each
benchmark program can be successfully analyzed and transformed in a maximum of 213 seconds. In this
subsection, we provide a detailed description of the results.

We first investigate howmax sensitivity (M) impacts the successful analysis of complex loops. We use
varying values of M ranging from 20 to 215, as well as ∞. M increases exponentially, doubling the value
each time, as the number of possible write sets doubles when a write to another pointer is introduced
within a loop. Figure 4.4a presents the number of successfully analyzed programs for each M . We
conducted the experiments under a 32GB memory constraint; exceeding this results in analysis failure due
to an out-of-memory error. With M = 1, we successfully analyze all 55 programs. However, increasing
M causes more programs to fail analysis, leading to only 47 programs being analyzed when M = ∞.
When analyzing loops with high values of M , many distinct write sets are constructed, consuming a
significant amount of memory. We believe that existing techniques, e.g., sparse analysis [97, 164], can be
applied to mitigate memory consumption and enable the analysis of more programs with high M values.

We now explore the impact of different values of M on analysis time. We restrict our discussion to
the 47 programs that can be analyzed regardless ofM . Figure 4.4b depicts the average analysis times for
variousM . WhenM = 1, the average analysis time is 7.6 seconds, and it increases asM grows, reaching

76

Table 4.1: Benchmark programs for evaluating Nopcrat

Program C LOC LOC Fns Blocks Stmts

urlparser* 56 1360 21 585 1998
bst* 65 89 5 48 97
avl* 101 114 9 74 170
quadtree-0.1.0* 365 1057 31 378 1352
buffer-0.4.0* 395 1137 42 436 1715
rgba* 396 2128 19 345 1739
robotfindskitten* 398 1508 18 307 1283
genann-1.0.0* 608 1818 25 711 3621
ht* 680 264 10 120 336
libcsv* 965 3010 31 806 4145
libtree-3.1.1* 1412 2632 30 1193 4320
which-2.21 2010 2241 34 910 3332
libzahl-1.0* 2438 4096 108 2032 6207
ed-1.19 2439 5636 135 2815 9040
time-1.9 2828 1830 25 572 2314
lil* 2934 5558 136 2957 8739
libtool-2.4.7 3769 5701 107 2376 7200
json.h* 4490 3831 53 1827 6406
lodepng* 5098 14299 236 6854 24468
bzip2* 5316 13731 110 6357 28054
pexec-1.0rc8 5357 12301 156 5883 22002
binn-3.0* 5686 4298 165 1806 5719
heman* 7048 14690 302 5386 30907
units-2.22 7240 11521 142 4999 17348
pth-2.0.7 7590 12950 217 5481 19981
hello-2.12.1 8340 10688 174 2971 10217
bc-1.07.1 10810 16982 231 5165 20179
tulipindicators* 12371 22864 307 7133 28879
brotli-1.0.9* 13173 127691 867 18375 64394
libosip2-5.3.1 15772 36286 704 16401 53552
mcsim-6.2.0 18112 36454 502 15593 63847
mtools-4.0.43 18266 33895 664 12358 47869
indent-2.2.13 19255 15581 124 4532 22975
less-633 20063 45685 655 10596 38782
cflow-1.7 20601 26375 478 10523 36326
gzip-1.12 20875 21605 242 10917 43162
dap-3.10 22420 43549 355 25059 105696
patch-2.7.6 28215 103839 599 41304 247522
rcs-5.10.1 28286 36267 490 15979 57817
make-4.4.1 28911 36336 439 16777 59691
enscript-1.6.6 34868 78749 251 18815 81269
cpio-2.14 35934 80929 703 41054 151073
screen-4.9.0 39335 72199 691 30062 121018
nano-7.2 42999 74994 797 33598 129165
sed-4.9 48190 68465 669 32887 116429
uucp-1.07 51123 77872 791 28122 110130
gprolog-1.5.0 52193 74381 1709 30520 134299
gawk-5.2.2 58111 140566 1444 53592 209695
diffutils-3.10 59377 95835 841 47191 165136
nettle-3.9 61835 82742 1004 23832 136303
grep-3.11 64084 84902 861 40947 144016
tar-1.34 66172 134972 1665 62175 226080
glpk-5.0 71805 145738 1521 59762 236170
findutils-4.9.0 80015 139858 1220 66231 237408
wget-1.21.4 81188 192742 1353 73258 293725

(C LOC: lines of C code, LOC: lines of Rust code after C2Rust’s translation, Fns: number of functions, Blocks/Stmts: number of
basic blocks/statements in MIR, *: from Crown)

77

20 21 22 23 24 25 26 27 28 29 210211212213214215 ∞
Max Sensitivity

47
48
49
50
51
52
53
54
55

of

 P
ro

gr
am

s

(a) Number of successfully analyzed programs

20 21 22 23 24 25 26 27 28 29 210211212213214215 ∞
Max Sensitivity

7.5

10.0

12.5

15.0

Av
er

ag
e

Ti
m

e
(s

)

(b) Average analysis time

0 50000 100000 150000
Rust LOC

0
50

100
150
200

Ti
m

e
(s

)

(c) Analysis time of each program

0 50000 100000 150000
Rust LOC

0.0
0.5
1.0
1.5

Ti
m

e
(s

)

(d) Transformation time of each program

20 21 22 23 24 25 26 27 28 29 210211212213214215 ∞
Max Sensitivity

20.6

20.7

20.8

of

 Fu
nc

tio
ns

(e) Average number of functions containing output pa-

rameters

20 21 22 23 24 25 26 27 28 29 210211212213214215 ∞
Max Sensitivity

25.6

25.8

of
 P

ar
am

et
er

s

(f) Average number of output parameters

20 21 22 23 24 25 26 27 28 29 210211212213214215 ∞
Max Sensitivity

13.2

13.4

13.6

of

 P
ar

am
et

er
s

(g) Average number of must-output parameters

20 21 22 23 24 25 26 27 28 29 210211212213214215 ∞
Max Sensitivity

12.25

12.30

of

 P
ar

am
et

er
s

(h) Average number of may-output parameters

Figure 4.4: Experimental results of Nopcrat

14.9 seconds when M =∞. Note that this analysis is performed only once during the whole translation
process. Therefore, unless the analysis time is exceedingly long, prioritizing precision is recommended.
Given the moderate increase in analysis time, choosing a higher value of M is advisable for practical
purposes, as it allows higher precision.

We then investigate the impact of program size on analysis time. We set M to 1 and examine all
55 programs. Figure 4.4c shows the analysis time for each program, plotted against Rust LOC on the
x-axis. Overall, the analysis time tends to increase with LOC, but the correlation is not strong. For
instance, a program with 139k LOC (glpk) takes only 18 seconds, while one with 110k LOC (patch) takes
211 seconds. The reason is the bottom-up nature of our analysis, where each function is independently
analyzed. The analysis of a function typically exhibits superlinear time complexity relative to its size.
Therefore, analyzing a single complex function would take considerably more time than analyzing mul-
tiple simpler functions. For example, in patch, a single function yyparse, comprising 7,526 blocks and
46,878 statements, consumes 115 seconds out of the total 211 seconds.

Finally, we turn our attention to the transformation time. In this experiment, we use the analysis

78

result obtained with the highest possible value of M for each program. Figure 4.4d illustrates the
transformation time for each program. Every program can be transformed within 2 seconds, and there
is a linear relationship between the transformation time and LOC. This correlation arises because the
transformation involves straightforward tree walking based on the analysis results.

4.4.4 RQ2: Usefulness

We evaluate the usefulness of the proposed approach, which aims to reduce the burden on pro-
grammers by automating the removal of output parameters. Our approach is considered useful if (1) it
successfully identifies many output parameters in real-world code and (2) their removal requires substan-
tial code modifications. To assess the usefulness, we measure the number of identified output parameters
and the extent of code changes needed to remove them.

Our experimental results confirm the usefulness of the proposed approach. Using the highest possible
value of M for each program, across all 55 programs, we identify an average of 30.4 output parameters,
comprising 15.5 must-output parameters and 14.9 may-output parameters distributed over 24.4 dis-
tinct functions. Thirteen programs (avl, bst, buffer, genann, ht, libcsv, libtree, libzahl, quadtree,
robotfindskitten, time, tulipindicators, and urlparser) have no output parameters, while others have
at least one. We consider the average of 30.4 output parameters to be a significant indicator of the ap-
proach’s usefulness. The removal of the identified parameters necessitates changes in 13.9 files, involving
the insertion of 313.6 lines and the deletion of 285.3 lines. If these modifications are performed manually,
it would entail a significant amount of effort.

Since the analysis may yield false negatives, we conducted manual inspections. We randomly selected
one function with a parameter not identified as an output parameter from each program, totaling 55
functions. We manually examined the parameters to ascertain if they are indeed true negatives. We
found one false negative in the following function in tulipindicators:

fn tc_config_set_to_default(mut config:nopcrat: *mut tc_config) {

memcpy(config , tc_config_default (), size_of::<tc_config >());

}

The analyzer failed to recognize the call to memcpy as a write to config due to the absence of models for
the C library functions. We can address this issue by modeling the functions. Although our investigation
was not exhaustive, it suggests a low false negative rate of the proposed analysis.

We now investigate the influence of different values of M on identifying output parameters. Fig-
ure 4.4e, Figure 4.4f, Figure 4.4g, and Figure 4.4h present the average numbers of output-parameter-
containing functions, output parameters, must-output parameters, and may-output parameters across
the 47 programs, respectively, for each value of M . Increasing M enhances the precision of our analysis.
Consequently, the number of identified output parameters tends to increase as M increases, but there
are exceptions. This is due to that unremovable parameters undetected with low values of M become
identified with higher values of M . Furthermore, as we increase M , the number of identified may-output
parameters initially rises, but it subsequently declines. This decline occurs because some may-output
parameters are reclassified as must-output parameters with higher values of M .

4.4.5 RQ3: Correctness

We evaluate the correctness of the proposed approach by checking whether the transformed program
maintains the same semantics as the original program. If the analysis produces false positives, the

79

transformation phase would remove non-output parameters, altering the program’s semantics. For the
assessment, we use the test suite of each program, where 26 among the 55 programs possess test suites.
Before the transformation, all the 26 programs pass their test suites, and after the transformation, 25
continue to pass their test suites. The only program that encounters failure is tar, due to a specific
function shown below:

static mut current_format: archive_format;

fn decode_header(format_pointer: *mut archive_format , ...) {

*format_pointer = format;

...

if current_format == GNU_FORMAT {

...

}

...

}

decode_header (&mut current_format , ...);

The analysis identifies format_pointer as a must-output parameter. This is not a false positive because
the parameter is always effectively written by the function. The problem is that one caller provides a
pointer to the global variable current_format as an argument, while decode_header reads current_format
after writing to format_pointer. Consequently, the value read from current_format should match the
value written to format_pointer. However, if we remove format_pointer and redefine it as a pointer to a
local variable, writing to it no longer impacts the value of current_format, thus altering the function’s
semantics. We checked that manually excluding format_pointer from the identified output parameters
makes the transformed program pass the test suite.

To address this issue, we need to extend the definition of unremovable parameters to encompass
such patterns, necessitating a corresponding adjustment to our analysis. This extension would involve
identifying pointers to global variables. While the current implementation of the analysis treats all global
variables as a single abstract memory location, we can modify the analysis to distinguish different global
variables.

Since our experiments revealed no false positives, we further conducted a manual investigation. We
randomly selected a function where a may-/must-output parameter was identified, from each program
containing such a function, totaling 41 functions with may-output parameters and 41 with must-output
parameters. We then manually examined whether the identified parameters are indeed output parame-
ters. While we confirmed that all 41 must-output parameters are true positives, we discovered that one
of the 41 may-output parameters is, in fact, a must-output parameter. This parameter appears in the
following function of hello:

80

1 void parse_options (..., char **m){

2 switch (optc) {

3 case 103:

4 *m = ...;

5 break;

6

7 case 128:

8 print_help ();

9

10

11 case 116:

12 *m = ...;

13 break;

14 default:

15 lose = 1;

16 break;

17

18 }

19

20

21

22 if (lose != 0) {

23 exit (1);

24 }

25 }

fn parse_options (..., m: *mut *const char){

match optc {

103 => {

*m = ...;

block = 0;

}

128 => {

print_help ();

block = 1;

}

116 => {

block = 1;

}

_ => {

lose = 1;

block = 0;

}

}

if block == 1 {

*m = ...;

}

if lose != 0 {

exit (1);

}

}

The left is the original C code, and the right is C2Rust’s translation. The parameter m is a must-output
parameter because (1) the function writes to m unless it reaches default (line 4 lacks break), and (2)
the default case sets lose to 1, leading the program to exit. Since Rust’s match does not support fall-
through, C2Rust converts switch with fall-through into an assignment of a specific value to a temporary
variable named block, followed by a conditional statement checking block. When control flow joins (line
7), the analyzer considers both 0 and 1 as possible values for block and lose, failing to recognize that
the function always exits when it has not written to m. It suggests that analyzing the original C code can
lead to more precise results compared to analyzing the translated Rust code. This incorrect classification
of m as a may-output parameter leads to less idiomatic code, where the function always returns Some but
never None, after the transformation. Nevertheless, this does not alter the program’s behavior. As our
experiments and manual investigation did not reveal any false positives, we conclude that the analysis
is sufficiently precise for practical use.

4.4.6 RQ4: Impact on Performance

One possible concern when removing output parameters is the potential performance degradation
of the target program. Compared to writing to an output parameter, directly returning a value may
result in copying the value, which can be costly, especially when dealing with large structs. However, due
to compiler optimizations, copying may not occur even when values are returned, and the performance
impact might be negligible.

To investigate this issue, we measure the performance by executing the test suites. Since they were

81

not originally designed for performance evaluation, they may not exhibit consistent execution times.
To ensure reliable results, we excluded test suites with execution times under 0.1 seconds, resulting
in 20 remaining programs. Additionally, each test suite was executed twelve times, and we calculated
the average execution time from ten runs, excluding the fastest and slowest results. We compare the
execution times of the Rust programs before and after the transformation. We compiled them with the
--release flag to enable optimizations. Our results show that the transformed programs exhibit only a
0.5% slowdown on average compared to the original ones. The original programs outperform in 11 cases,
and the transformed programs outperform in 9 cases. This suggests that removing output parameters
does not lead to meaningful performance degradation.

4.4.7 Threats to Validity

The primary threats to the validity of our evaluation are associated with the use of test suites
for the correctness and performance assessments. Passing the test suites does not guarantee program
correctness. However, in practice, test suites are the most widely used means of checking program
semantics. Furthermore, during the development process, we discovered bugs in our implementation
that resulted in semantics changes through the execution of the test suites. Regarding performance, it
remains unclear whether these test suites can reveal performance differences, as they were not designed
for this purpose. To complement our evaluation, we additionally conducted a performance comparison
between the original C programs and the C2Rust-generated programs and observed an 11.5% average
slowdown due to the translation. While investigating the reasons for this slowdown is outside the scope of
this work, this result suggests that the test suites can effectively expose significant performance differences
if they exist.

82

Chapter 5. Translation Using a Large Language Model

To complement the translation using static analysis, we need to develop a method that can translate
any C features. In particular, we focus on migrating types in function signatures (parameter and return
types) during translation. Our goal is to port an entire C program to Rust by translating each C function
to a Rust function with a signature containing appropriate Rust types. Although types in function bodies
also require migration, migrating types in signatures already poses several challenges. Thus, we make
a significant step towards a type-migrating translation by addressing the difficulties in signature type
migration.

The first challenge is that type migration cannot be achieved through syntactic mappings between
type names. This hinders the adoption of existing API mapping mining techniques [204, 159], which
automatically extract type mappings from existing codebases. API mapping mining has proven useful
for Java-to-C# translation due to the one-to-one correspondence between most Java types and their
C# counterparts. Once the mappings are constructed, a translator can migrate types by syntactically
replacing a Java type with its corresponding C# type. In contrast, C-to-Rust translation involves an
m-to-n correspondence. Depending on the context, a single C type can be migrated to multiple Rust
types, and multiple C types can be migrated to a single Rust type. To migrate types, a translator must
understand the semantics of functions and choose proper Rust types according to Rust idioms.

The second challenge arises from restructuring the bodies of a function and its callers after migrating
types in the signature. Restructuring bodies requires a precise understanding of how parameters are used
and how the return value is constructed in the function, as well as how arguments are constructed and
the return value is used in the caller. This cannot be accomplished by simply replacing function names
used by library function calls.

To address this problem, this work proposes leveraging LLMs, such as ChatGPT [165, 46], for C-
to-Rust translation. LLMs are trained on vast collections of human-written code, providing an intuitive
understanding of program semantics and programming idioms. This understanding includes knowledge
of which Rust type should replace a certain C type in a signature. Consequently, LLMs have the potential
to translate C functions to Rust while migrating the types in their signatures.

Unfortunately, simply requesting LLMs to translate each C function does not yield satisfactory
results for various reasons. First, they often retain a C type as it is or migrate a C type to a Rust type
not following Rust idioms. Second, they frequently fail to properly restructure the function bodies due
to the lack of information about how the types in the signatures of their callees are migrated. Third,
since current LLMs have limited ability to handle formal reasoning tasks, they often produce code that
does not adhere to Rust’s strict typing rules. These problems collectively result in generating Rust
functions with unmigrated or improperly migrated types and a huge number of type errors. Such results
significantly harm the usability of the translator, as programmers have to manually migrate more types
and fix type errors to obtain safe and compilable Rust code. Therefore, naïvely applying LLMs to the
type migration problem does not form an effective solution. We need techniques to effectively utilize
LLMs for C-to-Rust translation by bringing out their capabilities at the maximum.

As a solution, we propose techniques to address these limitations and achieve effective type-migrating
C-to-Rust translation using LLMs. First, to increase the possibility of migrating each C type to a proper
Rust type, we explicitly instruct the LLM to perform the following steps: (1) generate multiple candidate

83

Rust signatures for each C function; (2) translate the function using each candidate signature; and (3)
select the most idiomatic translation. Second, to facilitate proper restructuring of function bodies, we
translate callees before their callers and provide the translated callees’ signatures to the LLM when
translating the callers. Third, to aid the LLM in producing code that adheres to the typing rules, we
leverage compiler feedback. When the compiler suggests a fix in an error message, we apply it to the code;
otherwise, we provide the error message to the LLM, enabling it to generate fixed code. Our techniques
allow the translator to produce Rust code with more migrated types and fewer type errors compared to
the naïve application of LLMs, significantly reducing the burden on programmers for manual code fixes
after automatic translation.

Overall, our contributions are as follows:

• We use LLMs for type-migrating C-to-Rust translation and identify the challenges in this approach.
We also propose techniques to address these challenges. (Section 5.1)

• We concretize the proposed approach as a tool named Tymcrat and evaluate it with 39 GNU
programs written in C. We observe a 63.5% increase in migrated types and a 71.5% decrease in
type errors compared to the baseline (the naïve LLM-based translation) with modest performance
overhead. (Section 5.2)

5.1 Translation

This section presents techniques to translate C to Rust while migrating types in signatures and
minimizing type errors. Type-migrating translation requires the translator to migrate types based on the
understanding of functions’ semantics and Rust idioms. In addition, the translator needs to restructure
function bodies after type migration by handling various code patterns. Given the huge number of Rust
types, designing static analysis and rewriting rules tailored to each Rust type is infeasible.

As a solution, we leverage LLMs, which possess knowledge of program semantics and language idioms
derived from training on a vast corpus of human-written idiomatic code. LLMs have shown promising
abilities in code-related tasks, including code generation [70, 79, 132, 133, 200], program repair [85, 199],
and code summarization [49]. This leads us to expect that LLMs can properly migrate types and rewrite
function bodies. However, as we show in this section, simply instructing the LLM to translate each C
function does not yield satisfactory results. The remainder of this section describes the challenges in
applying LLMs to type-migrating translation and proposes techniques to address them.

Figure 5.1 presents the proposed approach’s workflow, which comprises several steps. Initially, we
syntactically construct a call graph of a given C program by identifying the callees’ names in each
function. We then translate each function individually, as is common in neural code translation [160,
117, 161, 71, 175]. In our approach, the order in which the function is translated is important: we
translate leaf nodes of the call graph first and then move towards their parents. This ensures that we
translate each function after all of its callees have been translated and obtained Rust signatures.

We employ a four-step process to translate each function. First, we generate candidate Rust signa-
tures (Section 5.1.1). Second, we augment the function with Rust signatures of its callees and translate
it to Rust for each candidate signature (Section 5.1.2). Third, we type-check the translated code and
iterate to resolve type errors using compiler feedback (Section 5.1.3). Finally, we select the most suitable
translation (Section 5.1.4) and record the signature of the translated function to use it while translating
its callers. Each step is explained in-depth in the remaining section.

84

LLM

Call Graphint div(…) { … }
int div5(…) { … }C Program

int div5(…) { … }FunctiondivCallees

fn div5(…)
Candidate Signatures

fn div5(…) -> Option<i32>

div: (…) -> Option<i32>
…Translated Signatures

Callee Signatures fn div(…) -> Option<i32>
The following has been translated:
fn div(…) -> Option<i32>

Translate the following:
int div5(…) { … }

Your answer must start with:
fn div5(…) -> Option<i32> {

Augmented Function

fn div5(…) -> Option<i32> { … n / d }Rust Translation

Rust
Compiler

help: convert i32 to i64
(n / d).into()
+ ++++++++

Suggested Fixes fn div5(…) -> Option<i32> {
 … (n / d).into() }Fixed Code

error:
cannot divide i32 by i64
n / d
 ^

Error Messages
fn div5(…) -> Option<i32> {
… (n as i64 / d).into() }Fixed Code

fn div5(…) -> Option<i32> { … }

fn div5(…) { … }
Translations

Best Translation

…

fn div5(…) -> Option<i32> { … }

Figure 5.1: Overview of type-migrating translation via LLM

Note that examples in this section are prompts and responses from ChatGPT [165, 46] with sim-
plifications. The examples focus on chat prompts, given that ChatGPT is trained for chat completion.
However, we posit that our approach can be adapted to utilize LLMs for text completion by tweaking
the prompts.

5.1.1 Candidate Signature Generation

We generate candidate signatures for a given C function using the LLM. This step is crucial because
directly requesting the LLM to translate the function may not migrate types correctly. For example, the
LLM translates div as follows:

[Prompt]

Translate the following function using Rust idioms:

int div(int n, int d, int *q) {

if (d == 0) {

return 1;

}

*q = n / d;

return 0;

}

85

[Response]

fn div(n: i32 , d: i32 , q: &mut i32) -> i32 {

if d == 0 {

return 1;

}

*q = n / d;

return 0;

}

Although Option is commonly used for partial functions in real-world Rust code on which the LLM has
been trained, it fails to migrate the pointer type to Option.

To tackle this problem, we employ a technique in which we request the LLM to generate candidate
signatures. This approach aligns with the eliciting reasoning with prompting method [148], e.g., incor-
porating a step-by-step thinking prompt [125]. By instructing the LLM to produce candidate signatures
and use them to translate the function, we can increase the possibility of properly migrating types. An
example is demonstrated below:

[Prompt]

Consider the following C function:

int div(int n, int d, int *q) {

if (d == 0) {

return 1;

}

*q = n / d;

return 0;

}

If this function was written in Rust , what would be

its signature? Give 2 idiomatic signatures.

[Response]

fn div(n: i32 , d: i32 , q: &mut i32) -> i32;

fn div(n: i32 , d: i32) -> Option <i32 >;

One of the two proposed signatures migrates int * to Option<i32>. We set the number of candidate
signatures to two for brevity in this example, while it is configurable. To prevent type errors in signatures
from adversely affecting the subsequent steps, we discard signatures with type errors and proceed only
with those without type errors.

5.1.2 Translation of Function Augmented with Callee Signatures

We translate the function to Rust with each candidate signature using the LLM. While our approach
involves augmenting the function with the signatures of its callees, we initially consider a function that
has no callees for illustration purposes. To translate a function, we supply the C code and the candidate
signature to the LLM. The resulting outcome is a Rust function that has the desired signature, as
illustrated in the following example:

[Prompt]

Translate the following function using Rust idioms:

int div(int n, int d, int *q) {

if (d == 0) {

86

return 1;

}

*q = n / d;

return 0;

}

Your answer must start with:

fn div(n: i32 , d: i32) -> Option <i32 > {

[Response]

fn div(n: i32 , d: i32) -> Option <i32 > {

if d == 0 {

return None;

}

Some(n / d)

}

We now deal with functions that have callees. For instance, consider the function div5, which calls
div to divide 5 by a given divisor. If we translate div5 without providing the translated signature of div
to the LLM, it fails to correctly restructure the body of div5, as shown in the following example:

[Prompt]

Translate the following function using Rust idioms:

int div5(int d, int *q) {

return div(5, d, q);

}

Your answer must start with:

fn div5(d: i32) -> Option <i32 > {

[Response]

fn div5(d: i32) -> Option <i32 > {

let mut q = 0;

let res = div(5, d, &mut q);

if res == 0 {

Some(q)

} else {

None

}

}

The body of the translated function passes three arguments to div and treats the return value as an
integer, which matches the original C code. However, it is incompatible with the translated signature
of div, which takes two arguments and returns Option. As a result, the translated code encounters type
errors. The problem is that the LLM lacks knowledge about the translated signature of div.

To address this issue, we augment the function by incorporating the callees’ signatures before feeding
the code into the LLM. By starting the translation from the leaf nodes of the call graph and moving
towards their parents, we ensure that the translated signatures of the callees are available. Note that
signatures with type errors are already discarded during candidate signature generation, guaranteeing
that the signature of every callee used for function augmentation is free of type errors. The following
example demonstrates the translation using augmented code:

87

[Prompt]

The following definition has been translated:

fn div(n: i32 , d: i32) -> Option <i32 >;

Translate the following function using Rust idioms:

int div5(int d, int *q) {

return div(5, d, q);

}

Your answer must start with:

fn div5(d: i32) -> Option <i32 > {

[Response]

fn div5(d: i32) -> Option <i32 > {

div(5, d)

}

Considering the provided signature of div, the LLM successfully restructures the body to pass two
arguments to div and directly return the Option value. This code has no type errors.

One challenge with this approach arises from the presence of mutually recursive functions. When
functions are mutually recursive, it is impossible to translate all the callees before translating a function.
To address this issue, we arbitrarily choose one of the mutually recursive functions and translate it without
the signatures of the other functions involved in the mutual recursion. This allows us to subsequently
translate the remaining functions within the mutual recursion cycle using the translated signature of the
chosen function. Once the other functions have been translated, we revisit the initially chosen function
and translate it again, this time considering the translated signatures of the others. This improves the
translation compared to the initial trial. During this second translation, we maintain the signature
determined in the initial trial to ensure that the translation of the others, which relies on the initial
signature, remains valid.

Another potential concern is the presence of function pointers. However, we believe that our ap-
proach does not require special treatment for function pointers. If a function takes a function pointer as
an argument, the type of the function pointer is specified in the original signature of the function itself,
and the LLM can utilize this information. If a function passes a function pointer to another function, the
LLM can properly translate it because we augment the function with the signature of the callee, which
provides the type of the function pointer.

5.1.3 Compiler Feedback-Based Iterative Fix

After translating each function, we type-check the function along with its callees. During type
checking, the body of each callee is temporarily replaced with a todo! macro invocation while retaining
the signature, as shown below:

fn div(n: i32 , d: i32) -> Option <i32 > {

todo !()

}

todo! is a built-in macro that can be called anywhere, regardless of the expected type of the location.
By using todo! instead of the actual translated body, we prevent the type checking from being affected
by type errors in the callees.

88

Despite augmenting functions with callee signatures, the LLM still frequently generates code with
type errors. To address this issue, we employ an iterative approach to resolve type errors based on the
Rust compiler’s feedback. The compiler presents two kinds of error messages: those accompanied by
suggested fixes and those without any suggested fixes. Our error resolution strategy handles these two
kinds differently. We begin by illustrating each kind of error message through examples and subsequently
describe our approach to fix them. Specifically, we select code snippets that exhibit missing type casts
as examples due to their simplicity.

Consider the following div function that produces long, not int:

int div(int n, int d, long *q) {

...

*q = n / d;

...

}

In C, the conversion between different integer types is implicit. Thus, the result of division can be
assigned to q even if q has type long, while the result of the division has type int. When translating this
code using the LLM, the resulting Rust code is as follows:

fn div(n: i32 , d: i32) -> Option <i64 > {

...

Some(n / d)

}

However, Rust requires explicit type casts for every conversion between integer types. Consequently, the
above code does not compile and produces the following error message:

error[E0308]: mismatched types

Some(n / d)

^^^^^ expected `i64 `, found `i32 `

help: you can convert an `i32 ` to an `i64 `

Some((n / d).into())

+ ++++++++

The compiler identifies that a value of type i32 occurs where a value of type i64 is expected and includes
a suggested fix in the error message. The fix suggests inserting an into method invocation to cast i32

to i64.
Unfortunately, not all error messages suggest a fix. Consider a slightly different scenario where the

divisor is also a long:

int div(int n, long d, long *q) {

...

*q = n / d;

...

}

In C, n is implicitly cast to a long before the division. The LLM translates the code as follows:

fn div(n: i32 , d: i64) -> Option <i64 > {

...

Some(n / d)

}

89

Algorithm 5.1: Fix-by-suggestion algorithm
Input : code
Output: code, errorsno-fix

1 def fix-by-suggestion:
2 errorsfix, errorsno-fix ← type-check(code);
3 while errorsfix is not empty:
4 code ← apply-fix(code, errorsfix);
5 errorsfix, errorsno-fix ← type-check(code);

Algorithm 5.2: Fix-by-LLM algorithm
Input : code
Output: code, errors

1 def fix-by-llm:
2 code, errors ← fix-by-suggestion(code);
3 while errors is not empty:
4 code ′ ← llm-fix(code, errors);
5 code ′, errors ′ ← fix-by-suggestion(code ′);
6 if length(errors) ≤ length(errors′):
7 break;
8 code, errors ← code ′, errors ′;

Due to the lack of type cast, this code produces a type error:

error[E0277]: cannot divide `i32 ` by `i64 `

Some(n / d)

^ no implementation for `i32 / i64 `

In this case, the compiler fails to suggest a fix because it recognizes only the absence of a division operator
of i32 that accepts an i64.

Algorithm 5.1 shows the initial phase of error resolution, which leverages error messages that provide
suggested fixes. We first distinguish such errors from those without fixes (line 2). We then apply the
fixes to the code (line 4) and type-check the code again (line 5). This iterative process continues until
no error messages with suggested fixes remain (line 3).

After the initial phase, the resolution of errors without suggested fixes becomes necessary. To
generate the corrected code, we supply the erroneous code along with the error message to the LLM. In
cases where multiple errors occur, we simultaneously provide all the error messages to the LLM, rather
than making separate queries for each error message. This approach is motivated by that multiple errors
are often related to each other, enabling the LLM to fix the code by considering all the errors collectively.
A concrete illustration of this process is provided below:

[Prompt]

The following code has a compilation error:

fn div(n: i32 , d: i64) -> Option <i64 > {

if d == 0 {

return None;

}

90

Some(n / d)

}

The error message is:

error[E0277]: cannot divide `i32 ` by `i64 `

Some(n / d)

^ no implementation for `i32 / i64 `

Write the code of the fixed function.

[Response]

fn div(n: i32 , d: i64) -> Option <i64 > {

if d == 0 {

return None;

}

Some(n as i64 / d)

}

The LLM may fix the code by considering the error message.
Algorithm 5.2 describes the iterative process of minimizing type errors through the aforementioned

LLM-based fix generation. When the LLM generates fixed code (line 4), we type-check the code and
apply all the compiler-suggested fixes (line 5). Next, we assess if the number of type errors has decreased
compared to the original code (line 6). If not, we classify the fix as unsuccessful, discard it, and stop
the iteration (line 7). Otherwise, we consider the fix successful and provide the corrected code and the
remaining errors to the LLM for a further fix (line 8). The iteration continues as long as the fix is
successful, terminating when no type errors remain (line 3).

5.1.4 Best Translation Selection

In the final step, we choose the most desirable translation from the available translations. Note
that we have multiple translations because we translate a single function multiple times using different
candidate signatures.

The primary criterion for selecting the best is the number of type errors. Therefore, we select the
translation that exhibits the fewest type errors. It allows us to minimize type errors.

However, multiple translations can have the same number of type errors. In such cases, we rely on
the LLM to select the most suitable translation, taking Rust idioms into account. If there are more than
two translations, we compare two at a time until the best one is determined. This constraint arises from
the token limit imposed by the LLM API. When a function is lengthy and multiple translations exist,
collecting the code of all translations may exceed the token limit of the prompt. To address this issue,
we only compare two translations at a time, allowing the function to occupy up to half of the token limit.
An example comparison through the LLM is provided below:

[Prompt]

Implementation 1

fn div(n: i32 , d: i32 , q: &mut i32) -> i32 {

if d == 0 {

return 1;

}

*q = n / d;

return 0;

91

}

Implementation 2

fn div(n: i32 , d: i32) -> Option <i32 > {

if d == 0 {

return None;

}

Some(n / d)

}

Which one is more Rust -idiomatic?

[Response]

Implementation 2

The LLM is expected to choose a translation that follows Rust idioms. For instance, if a function is
a partial function, a translation that migrates a pointer type to Option would be favored. Conversely, if a
function always succeeds, a translation that does not migrate a pointer type to Option would be favored
because it is not idiomatic for a function to always return Some and never return None.

5.2 Evaluation

In this section, we first provide an overview of our implementation (Section 5.2.1) and the process
of collecting benchmark programs (Section 5.2.2). We then evaluate the effectiveness of the proposed
approach with the following five research questions:

• RQ1. Promotion of type migration: Does the proposed approach effectively promote type migration
by generating candidate signatures? (Section 5.2.3)

• RQ2. Quality of type migration: Do the Rust types introduced by the proposed approach adhere
to Rust idioms? (Section 5.2.4)

• RQ3. Type error reduction: Does the proposed approach effectively reduce type errors by aug-
menting functions and iteratively fixing errors? (Section 5.2.5)

• RQ4. Comparison with existing approaches: How does the translation of the proposed approach
differ from that of the existing approaches? (Section 5.2.6)

• RQ5. Overhead: Does the proposed approach entail reasonable overhead? (Section 5.2.7)

Our experiments were conducted on an Ubuntu machine with Intel Core i7-6700K (4 cores, 8 threads,
4GHz) and 32GB DRAM. Finally, we dicuss threats to validity (Section 5.2.8).

5.2.1 Implementation

We implemented the proposed approach as a tool, Tymcrat. It is built on the Rust compiler, enabling
access to the compiler’s internal diagnostic data structures. This allows us to easily extract the suggested
fixes from error messages without the need for text processing. For Tymcrat’s language model, we use
GPT-3.5 Turbo or GPT-4o mini, specifically the gpt-3.5-turbo-0125 and gpt-4o-mini-2024-07-18 models.
GPT-4o mini has higher intelligence than GPT-3.5 Turbo [47]. We employ both models to assess our
approach’s effectiveness with models with different capabilities. Although GPT-4o is the most powerful

92

model offered by OpenAI, we use GPT-4o mini instead due to its lower cost. GPT-4o is ten times
more expensive than GPT-3.5 Turbo, while GPT-4o mini is cheaper than GPT-3.5 Turbo. We set the
temperature of the models to 0 to ensure that the behavior of the language model is mostly deterministic,
although some nondeterministic behavior may still occur [9]. Tymcrat interacts with ChatGPT through
the API provided by OpenAI.

Unfortunately, the token limit of the ChatGPT API poses a restriction on Tymcrat’s ability to
translate lengthy functions. Specifically, Tymcrat does not translate functions exceeding 3,000 tokens.
This is because gpt-3.5-turbo-0125 has an output token limit of 4,096, and a translated Rust function
typically requires more tokens than the original C function. Although gpt-4o-mini-2024-07-18 can output
up to 16,384 tokens, we exclude functions exceeding 3,000 tokens even with this model to ensure a fair
comparison between the two models.

We leverage parallelism to enhance the speed of translation. Although the translation of a caller
and a callee cannot occur simultaneously, many functions, such as the leaf nodes in the call graph,
are independent of one another, allowing simultaneous translation. The translation of a function using
different candidate signatures is also independent of each other and thus peformed in parallel.

Since type definitions and global variables are common in real-world C programs, Tymcrat needs
to translate them to handle entire programs. However, this work mainly focuses on migrating types in
function signatures. Therefore, Tymcrat does not ask the LLM to generate candidate signatures for type
definitions and global variables but simply requests their translation. In addition, when translating a
function, Tymcrat augments it with not only its callees’ signatures but also the translations of the type
definitions and global variables used in the function.

5.2.2 Benchmark Collection

we collected 41 GNU packages written in C as benchmark programs. while previous studies on
C-to-Rust translation provide benchmark sets, they mostly consist of small programs (< 5k LOC). Since
we believe that large programs with many types to migrate are more appropriate for demonstrating
the characteristics of the proposed approach, we decided to use GNU packages as benchmark programs.
Initially, we gathered all the C programs from the packages listed in GNU Package Blurbs [6]. We
then filtered out programs that exceeded 100,000 lines, as measured by cloc [76], and those that do
not compile. This process yields 88 packages. From these, we selected 41 packages that are considered
especially famous, determined by whether the package has an individual entry on Wikipedia.

Table 5.1 presents the collected programs and their respective code sizes. The second column displays
the number of lines of C code; the third to sixth columns indicate the numbers of type definitions, global
variable declarations, function definitions, and call edges, respectively; the last column shows the numbers
of functions omitted from translation due to exceeding 3,000 tokens.

5.2.3 RQ1: Promotion of Type Migration

To evaluate the effectiveness of the proposed approach in promoting type migration, we compare
five settings, ranging from 0 to 4 candidate signatures generated for each function. Zero candidate
signatures mean directly translating each function without generating candidates. We denote the number
of candidate signatures with a subscript, resulting in settings from Tymcrat0 to Tymcrat4. Tymcrat0
serves as the baseline, allowing us to investigate how type migration is promoted as we generate more
candidate signatures.

93

Table 5.1: Benchmark programs for evaluating Tymcrat

Program LOC Types Variables Functions Calls Omitted

time-1.9 796 4 12 29 184 0
which-2.21 998 5 35 33 242 0
libtool-2.4.7 2255 30 18 101 429 0
ed-1.19 2419 11 62 132 790 0
hello-2.12.1 3699 15 16 142 507 1
pth-2.0.7 5046 51 44 202 1119 1
units-2.22 5127 22 56 136 1496 1
pexec-1.0rc8 5149 26 4 150 1382 2
gzip-1.12 6383 41 151 220 1144 2
adns-1.6.0 7132 58 80 433 2009 1
indent-2.2.13 7613 27 171 119 877 3
bc-1.07.1 7878 62 110 219 1518 1
cflow-1.7 12256 79 123 455 1878 4
libosip2-5.3.1 13219 136 27 682 3742 3
rcs-5.10.1 13607 77 89 452 2711 3
mtools-4.0.43 13687 107 116 582 2823 2
mcsim-6.2.0 14782 100 53 447 3286 3
less-633 15508 42 408 637 2833 1
make-4.4.1 15556 56 163 415 3942 4
patch-2.7.6 15601 72 186 529 2782 9
enscript-1.6.6 16693 139 270 229 3170 9
sed-4.9 16751 114 70 627 3094 4
cpio-2.14 16999 82 158 607 3311 6
readline-8.2 19373 71 421 725 3464 3
nettle-3.9 19605 186 173 967 3194 8
dap-3.10 20923 15 150 319 5719 10
diffutils-3.10 23999 132 158 723 3704 6
grep-3.11 24028 148 131 783 3699 5
m4-1.4.19 25125 175 129 933 4463 4
nano-7.2 25711 105 191 762 6466 6
screen-4.9.0 30837 53 240 673 5160 8
gmp-6.2.1 31576 80 83 898 7920 26
gprolog-1.5.0 31781 131 574 1660 6690 4
findutils-4.9.0 32245 190 134 1105 6063 7
bison-3.8.2 32390 294 325 1600 6631 6
uucp-1.07 36520 78 519 756 7035 13
parted-3.6 38958 434 222 1650 7585 8
tar-1.34 41632 215 362 1475 8570 8
gawk-5.2.2 45989 214 368 1257 10510 11
wget-1.21.4 48184 198 166 1200 7908 15
glpk-5.0 59030 338 24 1492 13482 12

94

0 1 2 3 4
of candidate signatures

0

500

1,000

1,500
Av

g

of
 R

us
t t

yp
es

999 1049

1432
1591 1634

(a) GPT-3.5 Turbo

0 1 2 3 4
of candidate signatures

0

500

1,000

1,500

Av
g

of

 R
us

t t
yp

es 1450
1278

1531
1675 1723

(b) GPT-4o mini

Figure 5.2: Average number of Rust types introduced after translation

For the evaluation, we classify types into three categories: common types, C types, and Rust types.
Common types are types that exist in both C and Rust and can be safely used in Rust. These in-
clude array, bool, char, floating point, integer, and unit types. Such types do not require migration.
C types are types used in C and can still be used in Rust but compromise the safety guarantee of the
type checker. These include C pointer types, the types provided by std::os::raw, std::os::unix::raw,
std::os::linux::raw, std::os::fd::raw, and core::ffi of the Rust standard library, and the types pro-
vided by the official libc [2] library for Rust. The goal of type migration is to avoid using these types in
Rust code. Finally, Rust types are types exclusive to Rust, and their safety is guaranteed by the type
checker. These include never, reference, slice, str, and tuple types, as well as the types provided by the
Rust standard library other than the aforementioned C types. These types should be introduced during
type migration.

We now evaluate the number of Rust types introduced by the translation. If a single type oc-
curs multiple times, we count all occurrences. Figure 5.2 illustrates the average number of Rust types
introduced in benchmark programs translated by Tymcrat0 to Tymcrat4.

When using GPT-3.5 Turbo (Figure 5.2a), Tymcrat1 to Tymcrat4 introduce 5.0%, 43.3%, 59.2%,
and 63.5% more Rust types, respectively, compared to the baseline. These results show that generating
two or more candidates for each function effectively promotes type migration, while generating only one
candidate does not exhibit significant improvement over the baseline. This underscores the importance
of generating multiple candidates to consider various options for promoting type migration. While the
gains from generating more than two candidates are small, they still lead to improved results. As shown
in Section 5.2.7, the translation time increases with the number of candidates, and users can configure
the number of candidates considering the trade-off between translation time and quality.

When using GPT-4o mini (Figure 5.2b), Tymcrat1 to Tymcrat4 introduce -11.9%, 5.6%, 15.5%, and
18.8% more Rust types, respectively, compared to the baseline. These results lead to the same conclusion
as with GPT-3.5 Turbo, highlighting the importance of generating multiple candidates, although the
gain is smaller than with GPT-3.5 Turbo. Even Tymcrat0 introduces an average of 1,450 Rust types,
comparable to Tymcrat2 using GPT-3.5 Turbo. This aligns with OpenAI’s claim that GPT-4o mini has
higher intelligence than GPT-3.5 Turbo.

We also evaluate the number of signatures migrated by the translation. For this evaluation, we
categorize signatures into three groups: unmigrated, partially-migrated, and fully-migrated signatures.
Unmigrated signatures contain C types but no Rust types. They represent the worst case, as none of

95

0% 20% 40% 60% 80% 100%
0
1
2
3
4

of

 si
gn

at
ur

es

15.5%

12.9%

13.8%

14.5%

17.7%

19.1%

17.8%

70.7%

72.6%

77.9%

78.4%

79.9% Unmigrated
Partial
Full

(a) GPT-3.5 Turbo

0% 20% 40% 60% 80% 100%
0
1
2
3
4

of

 si
gn

at
ur

es

9.9%

11.5%

13.6%

14.7%

13.0%

87.1%

81.1%

83.9%

83.7%

85.6% Unmigrated
Partial
Full

(b) GPT-4o mini

Figure 5.3: Proportions of unmigrated, partially migrated, and fully migrated function signatures after
translation

the types in the signature have been migrated. Partially-migrated signatures contain both C and Rust
types, representing an improvement over unmigrated ones but still with room for enhancement. Fully-
migrated signatures consist of only common types and Rust types, representing the best case as they
do not contain any C types. Figure 5.3 depicts the proportions of unmigrated, partially-migrated, and
fully-migrated signatures in all benchmark programs translated by Tymcrat0 to Tymcrat4.

When using GPT-3.5 Turbo (Figure 5.3a), Tymcrat0 and Tymcrat1 fully migrate 70.7% and 72.6%
of the signatures, respectively, while Tymcrat2 to Tymcrat4 achieve 77.9%, 78.4%, and 79.9% full migra-
tion, respectively. This aligns with the observation on the number of Rust types: generating two or more
candidates effectively promotes type migration. Comparing Tymcrat0 and Tymcrat4, the proposed ap-
proach increases fully-migrated signatures by 14.8% and decreases unmigrated types by 84.7% compared
to the baseline.

When using GPT-4o mini (Figure 5.3b), Tymcrat0 fully migrates 87.1% of the signatures, while
Tymcrat1 to Tymcrat4 fully migrate 81.1%, 83.9%, 83.7%, and 85.6%, respectively. These results show
that generating candidate signatures is less effective in increasing the number of fully-migrated signatures
with GPT-4o mini. However, Tymcrat0 leaves 3.0% of the signatures unmigrated, while Tymcrat2
to Tymcrat4 leave only 2.5%, 1.5%, and 1.4% unmigrated, respectively. Comparing Tymcrat0 and
Tymcrat4, the proposed approach reduces unmigrated signatures by 50.9% compared to the baseline.
Thus, generating candidate signatures effectively reduces the number of unmigrated signatures even when
using GPT-4o mini.

From these experimental results, we conclude that candidate signature generation significantly pro-
motes type migration, especially when using GPT-3.5 Turbo. It is also useful when using GPT-4o mini,
but the improvement is smaller. Despite GPT-4o mini being available, users may choose to employ

96

0 1 2 3 4
of candidate signatures

0

20

40

60

of
 d

ist
in

ct
 R

us
t t

yp
es

41 41
46

54

73

(a) GPT-3.5 Turbo

0 1 2 3 4
of candidate signatures

0

20

40

60

of

 d
ist

in
ct

 R
us

t t
yp

es

57
46

54 56

69

(b) GPT-4o mini

Figure 5.4: Number of distinct Rust types introduced after translation

GPT-3.5 Turbo or other open-source models with similar capabilities. Thus, the proposed approach can
be utilized in practice to effectively promote type migration.

Summary of RQ1: Promotion of Type Migration

• Generating multiple candidate signatures significantly promotes type migration.

• Compared to GPT-3.5 Turbo, GPT-4o mini demonstrates higher baseline performance, and
the improvement from generating candidates is smaller.

• Generating candidates substantially increases the percentage of fully-migrated signatures
for GPT-3.5 Turbo, but not for GPT-4o mini.

• Generating candidates effectively reduces the proportion of unmigrated signatures for both
GPT-3.5 Turbo and GPT-4o mini.

5.2.4 RQ2: Quality of Type Migration

It is crucial for the translator not only to migrate many types but also to introduce types that adhere
to Rust idioms. Therefore, we assess the quality of the types migrated by the proposed approach.

We measure the number of distinct Rust types introduced in signatures through the translation.
Since real-world Rust code employs various Rust types, a higher count of distinct Rust types would
indicate a more idiomatic translation. Figure 5.4 illustrates the number of distinct Rust types introduced
in all benchmark programs translated by Tymcrat0 to Tymcrat4.

When using GPT-3.5 Turbo (Figure 5.4a), Tymcrat0 and Tymcrat1 introduce 41 distinct types,
while Tymcrat2 to Tymcrat4 introduce 46, 54, and 73 distinct types, respectively. These results suggest
that generating multiple candidates effectively enhances the diversity of introduced Rust types. Notably,
generating four candidates for each function is particularly effective, achieving a 78.0% increase compared
to the baseline.

When using GPT-4o mini (Figure 5.4b), Tymcrat0 already introduces 57 distinct types, outperform-
ing Tymcrat1 to Tymcrat3. This indicates that generating fewer than four candidates does not increase
the number of distinct types. Only generating four candidates increases the count, achieving 69 distinct
types, which is 21.1% higher than the baseline.

We also count the frequency of each introduced Rust type. This enables us to identify the commonly

97

ref
ere

nce
Resu

lt str
Option slic

e
Strin

g Box Vec File neve
r

Write tuple Cow

Meta
data

Orderin
g

1

10

100

1,000

10,000

5

50

500

5,000

Fr
eq

ue
nc

ie
s

0
1
2
3
4

(a) GPT-3.5 Turbo

ref
ere

nce
Resu

lt
Option str slic

e Box
Strin

g Vec Any File neve
r

Write tuple

Syst
em

Tim
e

Erro
r

1

10

100

1,000

10,000

5

50

500

5,000

Fr
eq

ue
nc

ie
s

0
1
2
3
4

(b) GPT-4o mini

Figure 5.5: Frequencies of each introduced Rust type after translation

introduced Rust types and understand the characteristics of type migration facilitated by our approach.
The following fifteen types are the most frequently introduced by Tymcrat4 using GPT-3.5 Turbo, in
decreasing order: reference, Result, str, Option, slice, String, Box, Vec, File, never, Write, tuple, Cow,
Metadata, and Ordering. In contrast, the top fifteen types from Tymcrat4 using GPT-4o mini are:
reference, Result, Option, str, slice, Box, String, Vec, Any, File, never, Write, tuple, SystemTime, and
Error. While the two lists share many common types, Cow, Metadata, and Ordering appear only in the
list from GPT-3.5 Turbo, whereas Any, SystemTime, and Error appear only in the list from GPT-4o mini.

Figure 5.5 shows the frequencies of these types in all benchmark programs translated by Tymcrat0
to Tymcrat4. The y-axis is shown on a log scale. When using GPT-3.5 Turbo (Figure 5.5a), Tymcrat4
increases the frequency of all the types except File, compared to Tymcrat0. Here, File decreases because
it is replaced by Write, which is more idiomatic, and we further discuss this issue later with case studies.
When using GPT-4o mini (Figure 5.5b), Tymcrat4 increases the frequency of reference, Result, str,
String, Any, never, Write, tuple, and Error, while decreasing the frequency of Option, slice, Box, Vec,
File, and SystemTime. As with GPT-3.5 Turbo, File is replaced by Write. In addition, Box, Vec, and
slice are replaced by String and str, which are more idiomatic by indicating the use of strings rather
than arbitrary collections. Thus, these results suggest that generating multiple candidates increases the
frequency of idiomatic Rust types.

For comparison, we also investigate the top fifteen Rust types in the signatures of the ten most-
starred Rust projects. They are, in decreasing order: reference, Option, str, String, Result, Vec, slice,
tuple, Path, PathBuf, Arc, HashMap, Box, RefCell, and Rc. Although the order differs slightly, nine types
are common between the top fifteen types in our translation and those in real-world code, suggesting that
the proposed approach introduces idiomatic Rust types. File, never, Write, Cow, Metadata, and Ordering

appear only in our list from GPT-3.5 Turbo; Any, File, never, Write, SystemTime, and Error appear only

98

in our list from GPT-4o mini. Since Cow, never, Write, and Error still rank in the top 30 in real-world
code, they align with Rust idioms. However, File, Metadata, Ordering, Any, and SystemTime are rarely
used in real-world code, which we discuss further with case studies. On the other hand, Path, PathBuf,
Arc, HashMap, RefCell, and Rc are exclusive to the list from real-world code. Nonetheless, Arc, RefCell,
and Rc also rank in the top 30 of Tymcrat4’s translation using GPT-3.5 Turbo, and Path ranks in the top
30 of Tymcrat4’s translation using GPT-4o mini. Increasing the frequency of the other types, PathBuf
and HashMap, is worth considering as a future research direction.

To achieve a more accurate analysis of type migration quality, we conducted case studies involving
the manual investigation of 300 functions in the translated code. Specifically, we randomly selected 10
functions for each of the top fifteen types introduced by Tymcrat4 using GPT-3.5 Turbo and repeated
this process with the code generated by GPT-4o mini. The goal was to determine whether the introduced
Rust types align with Rust idioms. Using the standard formula for estimating proportions, this sample
size provides a 10% margin of error with a 90% confidence level. The investigation was conducted
independently by both the authors and another researcher familiar with Rust.

From the case studies, we found that the use of most types conforms to Rust idioms. Specifically,
123 out of 150 functions (82%) in GPT-3.5 Turbo’s translation and 128 out of 150 functions (85%) in
GPT-4o mini’s translation align with Rust idioms. Another researcher independently reported similar
findings, with 130 out of 150 functions for GPT-3.5 Turbo and 128 out of 150 for GPT-4o mini. Of
the 300 functions, our conclusions differ from the other researcher’s ones in only 19 cases. Given the
subjective nature of idiomatic Rust, such discrepancies are expected. Despite this, the small number of
disagreements suggests that the proposed approach introduces idiomatic Rust types in most cases.

Notably, Metadata, Ordering, and SystemTime adhere to Rust idioms despite their rare occurrences
in real-world code. Metadata and SystemTime occur frequently in the translated code because the C types
stat and timespec appear frequently in the benchmark programs. This implies that the benchmark
programs often deal with file status and times, while the ten most-starred Rust projects do not due to
their different domains. On the other hand, Ordering is the return type of functions that compare values,
which are common in both the benchmark programs and the Rust projects. The occurrence of Ordering
is rare in the Rust projects because developers often use the derive attribute to automatically implement
comparison functions without manually writing code containing Ordering.

Nevertheless, some types in the translated code do not conform to Rust idioms and require further
improvement. In the case of GPT-3.5 Turbo, 27 unidiomatic translations are due to the use of Result,
File, and Cow types. For GPT-4o mini, 22 unidiomatic translations are attributed to the use of Result,
File, and Any types.

First, the translation often introduces Result types, which are used for partial functions like Option.
However, we observed that some functions have Result types in their signatures but are not partial
functions in fact. This implies that the assumption made in Section 5.1.4, stating that the LLM would
not choose a function with a Result type as the best translation if it is not a partial function, is not
always valid. Exploring the use of static analysis to determine whether a function is partial would be
interesting future research. It will allow the translator to instruct the LLM to introduce Option or Result
and restructure the bodies only if the function is partial.

Second, the translation often introduces File, a type representing an open file. Although the LLM
typically migrates C’s FILE to Rust’s File, they are not equivalent. FILE is a stream that can be
read or written to, representing not only files but also standard input/output/error. In contrast, File
denotes only files. Rust provides the Write and Read traits for writable and readable streams, respectively.

99

Therefore, if a function writes to FILE , it should be migrated to Write, and if it reads from FILE , it
should be migrated to Read. Although increasing the number of candidates promotes the use of Write,
the LLM still frequently chooses File. A promising future direction would be to more effectively reduce
the occurrences of File than the current approach.

Third, the translation using GPT-3.5 Turbo often introduces Cow, which represents copy-on-write
heap-allocated data. In Rust, a function takes a Cow pointer as input to copy the data before mutating it
only when it is referenced by multiple pointers. However, GPT-3.5 Turbo frequently generates functions
that return Cow pointers, even when the return values do not need to be passed to functions taking Cow.
This is far from the idiomatic use of Cow, and a potential future direction is to improve the translation
to avoid unnecessarily returning Cow pointers.

Fourth, the translation using GPT-4o mini frequently introduces Any, a type representing an ar-
bitrary value. This is because void * in C code is often migrated to Any by the LLM. However, Rust
programmers tend to avoid using Any; only one (rustc) among the ten most-starred Rust projects utilizes
Any in signatures. Instead, they prefer using generics to define functions that can accept any value. An
interesting future direction would be to reduce the occurrences of Any by translating functions taking
void * to generic functions.

These examples demonstrate that using LLMs for candidate signature generation and best transla-
tion selection does not always yield accurate results. LLMs often produce signatures with non-idiomatic
types and may favor translations with such signatures during selection. This suggests that adopting
heuristic rules based on syntactic patterns or static analysis for these procedures could improve transla-
tion quality. We believe that our findings can guide the development of heuristic rules, moving toward
effective integration of machine learning, static analysis, and heuristics for idiomatic and correct C-to-
Rust translation.

Summary of RQ2: Quality of Type Migration

• Generating two or more candidate signatures enhances the diversity of introduced Rust
types when using GPT-3.5 Turbo, but four candidates are needed for a similar effect with
GPT-4o mini.

• Most of the top fifteen types in the translated code also frequently appear in real-world
Rust code.

• Generating candidates often increases the occurrence of the top fifteen types, promoting the
introduction of idiomatic Rust types.

• Future research should focus on improving type migration quality by reducing the incorrect
use of Result and Cow, replacing Any with generics, and substituting File with Write or Read.

5.2.5 RQ3: Type Error Reduction

To evaluate the efficacy of the proposed approach in reducing type errors, we compare settings
where function augmentation with callee signatures and error fixes are selectively enabled or disabled.
We denote the disabled features using superscripts: -a indicates the lack of function augmentation,
and -f indicates the absence of error fixes. Thus, the settings are Tymcratn, Tymcrat-fn, Tymcrat-an ,
and Tymcrat-fan , where n varies from 0 to 4. Tymcrat-fan serves as the baseline by not employing any
error-reducing techniques.

100

0 1 2 3 4
of candidate signatures

0

1,000

2,000

3,000

4,000

Av
g

of

 ty
pe

 e
rro

rs

2198 2108
1791 1595 1530

3701 3597
3301 3144 30872926 2818

2412
2129 2051

4851 4811 4608 4449 4387 Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(a) GPT-3.5 Turbo

0 1 2 3 4
of candidate signatures

0

1,000

2,000

3,000

4,000

Av
g

of

 ty
pe

 e
rro

rs

1825 1698
1413 1243 1155

3224 3115
2851 2676 26422431 2424

2033
1790 1679

4390 4427 4256 4157 4061 Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(b) GPT-4o mini

Figure 5.6: Average number of type errors after translation

Figure 5.6 shows the average number of type errors in benchmark programs translated by each
setting. Since the results show consistent trends across different n values, we explain only the case of
n = 4. When using GPT-3.5 Turbo (Figure 5.6a), Tymcrat-f4 outperforms Tymcrat-fa4 , resulting in a
29.6% reduction in type errors. This demonstrates that augmenting functions with callee signatures
effectively reduces type errors. Additionally, Tymcrat-a4 outperforms Tymcrat-fa4 , leading to a 53.2%
reduction in type errors, showing that iteratively fixing errors is also an effective method for reducing
type errors. Finally, comparing Tymcrat4 to Tymcrat-fa4 reveals a collective impact of the two error-
reducing techniques, with a 65.1% reduction in type errors.

Similar results are observed when using GPT-4o mini (Figure 5.6b). Compared to Tymcrat-fa4 ,
Tymcrat-f4 and Tymcrat-a4 reduce type errors by 34.9% and 58.7%, respectively. Collectively, Tymcrat4
reduces type errors by 71.5%. With Tymcrat-fa4 , GPT-4o mini generates 7.4% fewer type errors than
GPT-3.5 Turbo, indicating its higher intelligence. Furthermore, GPT-4o mini reduces type errors more
effectively than GPT-3.5 Turbo when functions are augmented and errors are iteratively fixed, suggesting
its better capability of utilizing the provided additional information.

Another notable trend is that the number of type errors decreases as n increases. When using
GPT-3.5 Turbo, Tymcrat2 to Tymcrat4 reduce type errors by 15.1%, 24.3%, and 27.5% compared to
Tymcrat1, respectively. When using GPT-4o mini, the reductions are 16.8%, 26.8%, and 32.0%. This
is because generating more candidate signatures results in more diverse translations and increases the
likelihood of obtaining a translation with fewer type errors.

Nevertheless, even with Tymcrat4 using GPT-4o mini, each program exhibits an average of 1,155.3

101

0 1 2 3 4
of candidate signatures

0

100

200

300
Av

g

of
 n

o-
er

ro
r f

un
cs

268 280
314 332 340

149 165
187 198 204190 205

239
260 269

74 90 100 105 108

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(a) GPT-3.5 Turbo

0 1 2 3 4
of candidate signatures

0

100

200

300

Av
g

of

 n
o-

er
ro

r f
un

cs

270
292

330
354 362

162 178
208 223 229

207 219
254 270 278

92 101 110 116 122

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(b) GPT-4o mini

Figure 5.7: Average number of functions without type errors after translation

type errors, which is still a significant number. Further research is needed to reduce the number of type
errors to a manageable level.

We further investigate the effectiveness of the proposed approach in reducing type errors by examin-
ing the number of functions without type errors. Figure 5.7 shows the average number of such functions
in benchmark programs translated by each setting. The results demonstrate that our techniques sig-
nificantly increase the number of functions without type errors by reducing type errors. When using
GPT-3.5 Turbo (Figure 5.7a), Tymcrat-a4 and Tymcrat-f4 generate 147.9% and 88.5% more functions
without type errors than Tymcrat-fa4 , respectively. Collectively, Tymcrat4 increases the number of such
functions by 213.5%. When using GPT-4o mini (Figure 5.7b), Tymcrat-a4 , Tymcrat-f4 , and Tymcrat4
increase the number of functions without type errors by 127.9%, 88.0%, and 197.4%, respectively. How-
ever, even with Tymcrat4 using GPT-4o mini, only 55.9% of functions have no type errors, indicating
that further research is needed to enhance this number.

We also count the number of functions that have no type errors in themselves and their callees.
By definition, these numbers are always less than or equal to the number of functions without type
errors. Figure 5.8 shows the average number of such functions in benchmark programs translated by
each setting. The overall trend is similar to that in Figure 5.7.

While the goal of this work is to reduce type errors in the translated code, the absence of type errors
does not necessarily imply the correctness of the translation. The translated program can still exhibit
different behavior from the original, even when no type errors exist.

Unfortunately, automatically verifying the correctness of the translation is challenging. The most

102

0 1 2 3 4
of candidate signatures

0

50

100

150

200
Av

g

of
 n

o-
er

ro
r f

un
cs

(n
o

er
ro

rs
 in

 c
al

le
es

)
156 158

182
197 207

81 91
106 112 116121 126

147
164 169

56 62 72 78 80

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(a) GPT-3.5 Turbo

0 1 2 3 4
of candidate signatures

0

50

100

150

200

Av
g

of

 n
o-

er
ro

r f
un

cs
(n

o
er

ro
rs

 in
 c

al
le

es
)

152
166

192
207 214

88
102

119 127 132131 135

165 173 179

63 68
81 85 90

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(b) GPT-4o mini

Figure 5.8: Average number of functions that do not have type errors in themselves and their callees
after translation

common method in practice is to run test suites on the translated program. However, this cannot be
applied in our evaluation because each translated program does not compile due to type errors and thus
cannot be executed. Although functions without type errors can be compiled separately, the benchmark
programs have test suites only for the entire programs and do not provide unit tests for individual
functions.

For this reason, we conducted case studies to manually investigate the correctness of the translation,
involving 41 functions. For each benchmark program, we randomly selected a function with no type errors
after translation by Tymcrat4 both using GPT-3.5 Turbo and GPT-4o mini. This sample size provides
a 7% margin of error with a 95% confidence level. The investigation was conducted independently by
the authors and another researcher familiar with Rust.

Our case studies show that some functions are semantically incorrect despite the absence of type
errors. We found that 23 functions (56.1%) were correctly translated by GPT-3.5 Turbo, and 32 functions
(78.0%) were correctly translated by GPT-4o mini. In contrast, another researcher reported that 30
functions were correctly translated by GPT-3.5 Turbo and 35 by GPT-4o mini. This discrepancy stems
from our use of more conservative criteria to determine correctness. For instance, the other researcher
deemed translations that replace abort-on-error with logic that returns error-indicating values as correct,
whereas we considered these incorrect. Despite these differences, the case studies consistently suggest
that the proposed approach sometimes produces semantically incorrect translations. Using our criteria,
18 functions were translated correctly by both, 5 were translated correctly only by GPT-3.5 Turbo,

103

14 were translated correctly only by GPT-4o mini, and 4 were translated incorrectly by both. While
GPT-4o mini demonstrates a better ability to preserve semantics during translation compared to GPT-
3.5 Turbo, the ratio of correct translations is still not satisfactory. An important future direction is
to develop techniques to automatically verify the correctness of translations and properly fix incorrect
translations.

Summary of RQ3: Type Error Reduction

• Both function augmentation with callee signatures and iterative error fixes effectively reduce
the number of type errors in the translated code and increase the number of functions
without type errors.

• Generating more candidate signatures leads to fewer type errors by increasing the diversity
of translations.

• Despite the proposed techniques, translated programs still contain a significant number of
type errors, and further research is needed to reduce this number further.

• A function may not preserve the original behavior even when it has no type errors, high-
lighting the need for techniques to verify the correctness of translations.

5.2.6 RQ4: Comparison with Existing Approaches

We compare the translation of the proposed approach with that of existing C-to-Rust translators:
C2Rust, Laertes, and Crown. The goal of the comparison is not to claim the superiority of the
proposed approach but to understand the characteristics of different approaches. While our approach
uses LLMs, existing tools translate code using syntactic rules and static analysis. These two directions
have their own advantages and disadvantages and can be used in a complementary manner. We believe
that future work is required to unify these directions and leverage the best of both worlds.

We first compare the proposed approach with C2Rust and Laertes. As Laertes works by trans-
forming Rust code generated by C2Rust, we do not perform a separate comparison with C2Rust. Unfor-
tunately, Laertes can translate only 1 out of the 41 benchmark programs. While Laertes is capable of
transforming compilable Rust code, C2Rust fails to produce compilable code for 32 programs. Further-
more, during code transformation, Laertes crashes in 8 out of the remaining 9 programs. To augment
our evaluation, we incorporate an additional set of 14 C programs used in the Laertes paper [83],
resulting in a total of 15 programs.

Figure 5.9a depicts the proportions of different kinds of signatures in the 15 programs translated
by C2Rust, Laertes, or Tymcrat0 to Tymcrat4 using GPT-3.5 Turbo or GPT-4o mini. Our approach
provides significantly better type migration capabilities compared to C2Rust and Laertes, regardless of
the number of candidates. C2Rust introduces only never and Option types and fully migrates 12.4% of
the signatures. Laertes replaces C pointers with Rust pointers in the given Rust code by introducing
reference, slice, Box, and Option types. This increases the portion of fully migrated signatures to 16.9%.
On the other hand, Tymcrat4 using GPT-4o mini fully migrates 91.3% of the signatures. However,
Laertes outperforms our approach in avoiding type errors and preserving semantics. Laertes intro-
duces no type errors during translation. It always preserves semantics as it only replaces C pointers with
Rust pointers. In contrast, our approach introduces an average of 597 type errors per program across 15
programs, even when using Tymcrat4 with GPT-4o mini, and may not preserve semantics, as shown in

104

0% 20% 40% 60% 80% 100%
C2Rust
Laertes

0 (GPT-3.5 Turbo)
1 (GPT-3.5 Turbo)
2 (GPT-3.5 Turbo)
3 (GPT-3.5 Turbo)
4 (GPT-3.5 Turbo)

0 (GPT-4o mini)
1 (GPT-4o mini)
2 (GPT-4o mini)
3 (GPT-4o mini)
4 (GPT-4o mini)

of

 si
gn

at
ur

es

86.1%
80.2%

11.6%
11.1%

10.9%
11.8%

12.3%
13.5%
12.4%

7.7%
8.9%

8.1%
8.2%
7.3%

12.4%
16.9%

77.5%
77.1%

82.4%
83.8%
84.6%

90.4%
87.2%

89.5%
90.4%
91.3% Unmigrated

Partial
Full

(a) Comparison with Laertes

0% 20% 40% 60% 80% 100%
C2Rust
Crown

0 (GPT-3.5 Turbo)
1 (GPT-3.5 Turbo)
2 (GPT-3.5 Turbo)
3 (GPT-3.5 Turbo)
4 (GPT-3.5 Turbo)

0 (GPT-4o mini)
1 (GPT-4o mini)
2 (GPT-4o mini)
3 (GPT-4o mini)
4 (GPT-4o mini)

of

 si
gn

at
ur

es

86.1%
64.1%

12.2%
11.1%

8.3%

14.3%

11.6%
13.3%

14.6%
13.9%
12.7%

8.6%
10.9%
12.4%

11.0%

13.4%
21.6%

81.4%
77.3%

83.1%
83.7%
84.2%
84.9%
83.1%

87.6%
86.9%

88.5% Unmigrated
Partial
Full

(b) Comparison with Crown

Figure 5.9: Proportions of unmigrated, partially migrated, and fully migrated function signatures after
translation with C2Rust, Laertes, Crown, or Tymcrat

RQ3.
We then compare the proposed approach with Crown. Unfortunately, Crown is incapable of

handling some C features, including variadic functions and unions, and crashes when the target code
contains them. Since these features are frequently used in GNU projects, Crown cannot translate any
of the 41 benchmark programs. To facilitate the comparison, we instead use 20 programs utilized in the
Crown paper [203].

Figure 5.9b shows the proportions of different kinds of signatures in the 20 programs translated
by C2Rust, Crown, or Tymcrat0 to Tymcrat4 using GPT-3.5 Turbo or GPT-4o mini. Our approach
migrates significantly more types compared to Crown. C2Rust fully migrates 13.4% of the signatures,
while Crown introduces reference, Box, and Option types, achieving 21.6% of the signatures being fully
migrated. In contrast, Tymcrat4 using GPT-4o mini fully migrates 88.5% of the signatures. However,
Crown does not introduce type errors during the type migration process and always preserves semantics.
This highlights the benefits of Crown, as our approach introduces an average of 148 type errors per
program across 20 programs, even when using Tymcrat4 with GPT-4o mini, and may not preserve
semantics.

105

0 1 2 3 4
of candidate signatures

0

500

1,000

1,500

2,000
Av

g
tim

e
(s

)

883 962

1433
1565

1756

340 428
629 716

1068
895 988

1345

1742
1915

362 423
577

903 888

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(a) GPT-3.5 Turbo

0 1 2 3 4
of candidate signatures

0

1,000

2,000

3,000

Av
g

tim
e

(s
)

1838 1941

2458
2769

3097

550 648 818 978
1286

2186 2336
2735

3325
3734

562 745 895
1176 1266

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(b) GPT-4o mini

Figure 5.10: Average time taken to translate each GNU package

Summary of RQ4: Comparison with Existing Approaches

• The proposed approach migrates more signatures than existing approaches, including
C2Rust, Laertes, and Crown.

• Laertes and Crown do not introduce type errors during translation, while the proposed
approach may introduce them.

• Future research should explore the possibility of combining LLM-based translation with
static analysis-based translation to effectively migrate types while avoiding type errors.

5.2.7 RQ5: Overhead

To evaluate the performance overhead of the proposed approach, we investigate the following set-
tings: Tymcratn, Tymcrat-fn, Tymcrat-an , and Tymcrat-fan , with n ranging from 0 to 4. Figure 5.10 displays
the average of the translation times of the GNU packages in each setting.

The results reveal that the proposed approach introduces a reasonable additional time compared to
the baseline. First, we analyze the results from GPT-3.5 Turbo (Figure 5.10a). Comparing Tymcrat0 and
Tymcrat4, we observe a 98.8% increase in translation time due to generating four candidate signatures
per function. The overhead arises not only from generating candidate signatures but also from translating
a single function multiple times with different signatures. Although these translations are attempted in
parallel, the maximum translation time among them is likely to exceed the time required for a single

106

0 1 2 3 4
of candidate signatures

0

1,000

2,000

Av
g

ki
lo

-to
ke

ns
 (i

np
ut

)

712 750

1394

2037
2371

204 264
460

641 755827 846

1575

2307

2685

200 250
429

613 720

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(a) GPT-3.5 Turbo

0 1 2 3 4
of candidate signatures

0

2,000

4,000

6,000

Av
g

ki
lo

-to
ke

ns
 (i

np
ut

)

1287 1374

2593

3929

5107

224 316 524 768 977
1692 1693

3080

4686

5908

200 294 490 712 880

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(b) GPT-4o mini

Figure 5.11: Average number of input tokens required to translate each GNU package

translation attempt. Additionally, comparing Tymcrat-fa4 and Tymcrat-a4 , we find that the iterative fix
process increases translation time by 115.6%. This process inherently consumes significant time as it
involves a series of sequential LLM invocations. Conversely, Tymcrat-fan and Tymcrat-fn exhibit similar
translation times for any n because providing callee signatures does not prolong the translation process.
Moreover, Tymcratn is faster than Tymcrat-an , with an 8.3% speedup when n = 4. This is because function
augmentation mitigates type errors in the initial translation, often reducing the iterations needed to fix
them.

When using GPT-4o mini (Figure 5.10b), the overall trend is similar to that with GPT-3.5 Turbo.
Generating four candidate signatures per function increases translation time by 68.5%, and iterative error
fixes increase it by 194.9%. Tymcrat-fan and Tymcrat-fn provide similar translation times, and Tymcrat4
is faster than Tymcrat-a4 by 17.1%.

We also report important statistics to further understand the runtime of the proposed approach.
When using Tymcrat4 with GPT-3.5 Turbo, the minimum and maximum translation times are 150
seconds for time-1.9 and 5,474 seconds for gawk-5.2.2, with a standard deviation of 1,446 seconds. When
using Tymcrat4 with GPT-4o mini, the minimum and maximum times are 287 seconds for time-1.9 and
9,900 seconds for nano-7.2, with a standard deviation of 2,349 seconds. These statistics indicate that the
proposed approach translates programs within a reasonable time frame, considering that the translation
process is performed only once for each program. Additionally, the high standard deviation values suggest
that translation time varies significantly depending on the size of the program.

We now investigate the overhead in terms of tokens used by the LLM. Figure 5.11 shows the average

107

0 1 2 3 4
of candidate signatures

0

2,000

4,000

6,000
Av

g
ki

lo
-to

ke
ns

 (o
ut

pu
t)

1650

2601

4115

5651
6384

707

1724
2407

3026
3381

1535
2101

3517

4887
5566

315
959

1317
1682 1881

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(a) GPT-3.5 Turbo

0 1 2 3 4
of candidate signatures

0

2,000

4,000

6,000

8,000

Av
g

ki
lo

-to
ke

ns
 (o

ut
pu

t)

1936
2937

4823

6863

8696

702
1717

2403
3155

3796

2124
2636

4454

6509

8102

316
960 1336 1750 2064

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(b) GPT-4o mini

Figure 5.12: Average number of output tokens required to translate each GNU package

number of input tokens required to translate the benchmark programs. The trend is consistent with that
of the translation time. When using GPT-3.5 Turbo (Figure 5.11a), Tymcrat4 increases input tokens by
233.2% compared to Tymcrat0. The increase in token usage is significantly higher than the increase in
time, as token usage does not benefit from parallelism. Additionally, error fixes incur a 273.2% increase
when n = 4. When using GPT-4o mini (Figure 5.11b), candidate signature generation and error fixes
increase input tokens by 296.7% and 571.1%, respectively.

Figure 5.12 shows the average number of output tokens required to translate the benchmark pro-
grams. While the trend is similar, the number of output tokens is higher than the number of input
tokens due to the longer length of the translated Rust code compared to the original C code. When
using GPT-3.5 Turbo (Figure 5.12a), candidate signature generation and error fixes increase the number
of output tokens by 287.0% and 195.9%, respectively. When using GPT-4o mini (Figure 5.12b), the
increases are 349.1% and 292.5%, respectively.

Finally, we investigate the monetary cost of the proposed approach. The OpenAI API charges
different prices for input and output tokens. The cost for gpt-3.5-turbo-0125 is $0.50 per 1M input
tokens and $1.50 per 1M output tokens, while the cost for gpt-4o-mini-2024-07-18 is $0.15 per 1M input
tokens and $0.60 per 1M output tokens. Figure 5.13 shows the average cost to translate the benchmark
programs. While the cost increases with the number of tokens used, it remains reasonable, averaging
$10.76 even when using Tymcrat4 with GPT-3.5 Turbo, which is the most expensive configuration.

108

0 1 2 3 4
of candidate signatures

0

2

5

7

10
Av

g
co

st
 (U

SD
)

2.83

4.28

6.87

9.50
10.76

1.16

2.72
3.84

4.86
5.45

2.72
3.57

6.06

8.48
9.69

0.57
1.56

2.19
2.83 3.18

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(a) GPT-3.5 Turbo

0 1 2 3 4
of candidate signatures

0

2

4

6

Av
g

co
st

 (U
SD

)

1.35
1.97

3.28

4.71

5.98

0.45
1.08

1.52
2.01

2.42

1.53 1.84

3.13

4.61

5.75

0.22
0.62 0.88 1.16 1.37

Tymcrat
Tymcrat-f
Tymcrat-a
Tymcrat-fa

(b) GPT-4o mini

Figure 5.13: Average cost required to translate each GNU packages

Summary of RQ5: Overhead

• Generating candidate signatures increases both translation time and token usage, with the
increase being higher for token usage because it does not benefit from parallelism.

• Error fixes significantly increase translation time and token usage, but this overhead remains
reasonable.

• Function augmentation does not exhibit a meaningful overhead in terms of time and tokens
and even improves performance when combined with error fixes by reducing the iterations
needed to fix type errors.

• The monetary cost of the proposed approach is reasonable, averaging $10.76 even when
using the most expensive configuration.

5.2.8 Threats to Validity

The threats to internal validity relate to the nondeterministic nature of the approach. Despite
the temperature of the API set to 0, the LLM can still exhibit nondeterministic behavior, meaning
Tymcrat may yield different translation results for the same program. Additionally, since Tymcrat
utilizes parallelism, measured times can be affected by thread scheduling and may vary across runs. To
reduce these threats, future work could conduct more experiments and average the results.

109

The threats to external validity concern the selection of C programs. We collected C programs
from GNU Package Blurbs, and GNU packages may share similar coding styles and idioms. Programs
from other sources might exhibit different characteristics. Furthermore, filtering out programs without
individual Wikipedia entries might exclude newer, lesser-known packages that potentially use modern
C programming practices. Also, excluding programs with over 100,000 lines of code may omit complex
patterns found in large-scale software. These limitations restrict the diversity of the C programs used in
the evaluation and may impact the generalizability of the results. To mitigate these threats, future work
could include additional experiments with C programs from various sources and of different sizes.

The threats to construct validity primarily concern the assessment of type migration quality. Merely
introducing more diverse Rust types more frequently does not necessarily imply better quality. The
idiomatic use of types involves various factors, such as the intention of the original C code and the
meaning of the types. We mitigated this threat by conducting case studies, but they do not cover
the entire translated codebase. Additionally, they are subject to our interpretation of the code and
understanding of Rust idioms. To mitigate these threats, future work could conduct more case studies
and involve more researchers to assess the quality of the type migration.

Another threat to construct validity is measuring the reduction of type errors as a proxy for the
effectiveness of the translation. Fewer type errors do not necessarily indicate a superior translation. In
some cases, code with fewer type errors may require more code changes to compile successfully. No-
tably, the Rust compiler performs two-phase checking, consisting of type checking and borrow checking,
terminating after the first phase if any type errors are encountered. This means that fixing type errors
may reveal errors in borrow checking, requiring additional changes. A possible solution to this threat
is to consider not only the number of type errors but also the phase in which they occur in both Al-
gorithm 5.2 and evaluation. Moreover, even when the translated code has no type errors, it may not
preserve the original semantics. We addressed this threat by conducting case studies, although these do
not encompass the entire translated codebase. To enhance the reliability of our approach, future work
could complement the current metric, e.g., by generating unit tests.

110

Chapter 6. Modular Abstractions for Unsafe Features

In OSs, shared mutable states are necessary for low-level control and efficiency. For example, for
low-level control of hardware, OSs need to mutate arbitrary shared memory locations; and for efficiency,
they typically use data structures with complex sharing in the form of pointer aliasing. To ensure the
safety of these shared mutable states, type checking should be precise enough to prove the absence of
invalid memory accesses and data races.

Rust supports shared mutable states through a twofold design: Safe Rust guaranteeing type safety
and Unsafe Rust with user-defined modular abstractions.

On the one hand, Safe Rust, the default mode of Rust, enforces the aliasing XOR mutability (A⊕M)
discipline for shared mutable states, stating that every state is either aliased (shared) or mutated, but not
both at the same time. By enforcing this discipline, Rust type checker can prove that a program written
in Safe Rust with shared mutable states is memory-safe, i.e., no memory bugs, and even thread-safe, i.e.,
no data races.

On the other hand, Unsafe Rust is an escape hatch from the restrictiveness of Safe Rust. The A⊕M
discipline misses the aliased AND mutable (A&M) class of shared mutable states, heavily used in system
programs. To use A&M states in certain regions of code, programmers elude the A⊕M discipline by
locally enabling Unsafe Rust. Since Unsafe Rust does not guarantee safety, programmers must validate
safety themselves, which is a big burden. Therefore, Rust programmers have “tamed” A&M states by
(1) identifying groups of A&M states with the same reasoning principle, as we call A&M patterns, which
facilitate design reuse; and (2) hiding their use of Unsafe Rust behind modular abstractions, which
facilitate modular reasoning [55]. Once A&M states are encapsulated inside modular abstractions, one
can informally reason about their safety or even apply formal verification methods [115].

Unfortunately, modular abstractions for A&M patterns found in legacy OSs, such as Linux, are
lacking. Since A&M patterns have been studied mostly in the context of general system software,
modular abstractions for A&M patterns appearing especially in legacy OSs have not been explored yet.
Clean-slate Rust OSs [131, 127, 128, 67, 156] do not tackle this problem and instead replace such A&M
patterns with well-known A&M patterns whose modular abstractions already exist. However, as we
show in Section 6.1, replacing a certain A&M pattern with another A&M pattern undesirably degrades
performance. Considering that people expect retrofitting Rust onto legacy kernel development will
reduce memory bugs without sacrificing the performance, such replacement is unsatisfactory. Modular
abstractions for legacy OSs’ A&M patterns are necessary to acquire safety while retaining performance.

In this chapter, we propose modular abstractions of crucial A&M patterns in OSs. Specifically, our
contributions are as follows:

• We show the impact of the choice of A&M patterns on the performance of OSs with an experi-
ment. We compare the performance of an OS with a modified version of the OS that replaces a
certain A&M pattern with another A&M pattern. The result of the experiment indicates that the
replacement of the A&M pattern noticeably degrades the performance (Section 6.1);

• We present a general guideline on choosing an implementation strategy for A&M states in Rust.
Rust provides two implementation strategies for A&M states, raw pointers and interior mutability.
Since there has been no guideline to choose between them, programmers have chosen one of them

111

where w for write, r for read, and × for inaccessible

Figure 6.1: Process-owned value: cwd in Proc

for each A&M pattern in an unsystematic manner. We propose a simple guideline to address this
issue (Section 6.2);

• We discover six A&M patterns in OSs and design their modular abstractions by rewriting the xv6
OS [74] entirely in Rust as open-source xv6Rust [103]. We claim that our discovery of patterns is
complete with respect to xv6Rust as we systematically find them with a dependency graph among
types. The six patterns are as follows: process-owned values, CPU-owned values, memory pools,
lock-protected immovable values, lock-protected separated values, and asynchronous ownership
transfer for I/O (Section 6.3);

• We evaluate our modular abstractions. We show that the modular abstractions are practical in
rewriting legacy OSs in Rust, as all the six A&M patterns are utilized in Linux, a representative
legacy OS. In addition, the modular abstractions are original, as none of them are found in existing
Rust OSs. We also show that the modular abstractions reduce the safety reasoning cost of xv6Rust
to the level of the clean-slate Rust OSs by measuring the amount of Unsafe Rust used in each
OS. At the same time, the modular abstractions incur no run-time overhead. On average, xv6Rust
performs 31.1% faster than xv6 for benchmark programs (Section 6.4).

6.1 Motivation

This section illustrates a concrete example giving a motivation to retain A&M patterns in legacy
OSs while rewriting them in Rust. We reveal by experiment that the choice of A&M patterns in OSs
significantly impacts the performance and show that A&M patterns in legacy OSs must remain the same
to preserve the performance.

To show the performance gap between different A&M patterns, we compare two A&M patterns:
lock-protected values and process-owned values. A lock-protected value is shared among multiple threads
and uses a lock for synchronization. A process-owned value does not use locks despite being shared
among threads because only a thread handling a certain process’s system call accesses it. This property
guarantees exclusive access, so there is no need for a synchronization scheme.

In xv6, where each process consists of a single thread, process-owned values reside in process control
blocks (PCBs). We represent a PCB with the type Proc. Proc’s cwd, an in-memory inode for a process’s
working directory, is an example of a process-owned value in Proc. In Figure 6.1, P1 invokes a chdir

system call to change its working directory. The thread changes the inode in the Proc to a new inode.
At the same time, P2 opens a file with a relative path, and the thread resolves the path with respect to

112

null read stat fstat open write fork shell pipe
100.0%

105.0%

110.0%

115.0%

120.0%

La
te

nc
y

(a) Latency

pipe open2close io_only

100%

60%

70%

80%

90%

Ba
nd

wi
dt

h

(b) Bandwidth

Figure 6.2: Performance of xv6LockRust compared to xv6Rust

the working directory. As this example shows, each process reads or changes its own working directory
to handle system calls, but it does not need to access the working directories of the other processes.
Therefore, cwd is a process-owned value.

To compare the performance of process-owned values with that of lock-protected values, we im-
plement xv6Rust and xv6LockRust , two different rewrites of the xv6 OS in Rust. The former keeps all the
process-owned values in Proc by using a novel modular abstraction we propose in Section 6.3.1. Since
values of this kind occur only in OSs, the Rust community has not made any effort to design a modular
abstraction. The latter replaces all the process-owned values with lock-protected values whose modular
abstraction, Mutex, is provided by the Rust standard library. Therefore, accessing cwd requires a thread
to acquire a lock, which is unnecessary in fact. This change incurs additional overhead at run time.

Our experiment shows that replacing process-owned values with lock-protected values harms the
performance. The experiment measures the latency and bandwidth of xv6Rust and xv6LockRust . We run
benchmark programs in LMBench [147] with the parallelism parameter set to 8. The environment for
the experiment is the same as that of Section 6.4.3. Figure 6.2 shows the result of the comparison.
Compared to xv6Rust , xv6LockRust performs worse by 9.80% and 22.93% in terms of latency and bandwidth,
respectively.

Despite the significant impact of the choice of A&M patterns on performance, modular abstractions
for A&M patterns in legacy OSs are missing. Clean-slate Rust OSs [131, 128, 67, 156, 10] prefer well-
known A&M patterns with modular abstractions provided by existing libraries over A&M patterns in
legacy OSs whose modular abstraction is unknown. For example, they replace process-owned values,
whose modular abstraction is unknown, with another well-known A&M pattern, lock-protected values.

Considering the current status, we believe that it is important to design modular abstactions for
A&M patterns in legacy OSs, which will help OS developers preserve the performance of legacy OSs
when rewriting them in Rust.

113

6.2 Background

This section reviews Safe Rust’s A⊕M discipline (Section 6.2.1) and Unsafe Rust’s A&M sup-
port (Section 6.2.2) with two example A&M patterns in Rust (Section 6.2.3). It also proposes a guideline
on choosing unsafe operations to implement A&M patterns (Section 6.2.4).

6.2.1 Safe Rust’s A⊕M Discipline

Rust enforces the A⊕M discipline by leveraging an ownership and borrowing type system.

Ownership In Rust, a value is owned by a unique variable called an owner. One can change a value’s
owner by assigning it to another variable or passing it as a function argument:

1 fn main() {

2 let x = vec![0, 1, 2];

3 // can use `x`

4 foo(x);

5 // cannot use `x`

6 }

7 fn foo(v: Vec <i32 >) { ... }

Here, x owns a heap-allocated integer array. After line 2, the function main can access the array with
x. Because passing x to foo transfers the ownership of the array to v, x is no longer its owner and
main cannot access it after line 4. Ownership not only ensures safety but also removes the burden of
manual destruction on programmers without resorting to garbage collection. When an owner goes out of
scope without passing the ownership to another variable, the compiler automatically inserts a destructor
invocation.

Mutable Reference Rust allows temporary acquisition of ownership via borrowing instead of complete
transfer:

1 fn main() {

2 let mut x = vec![0, 1, 2];

3 let r = &mut x;

4 // cannot use `x`

5 foo(r);

6 // can use `x`

7 }

8 fn foo(v: &mut Vec <i32 >) { ... }

On line 3, &mut x indicates that the ownership is temporarily borrowed from x to create a mutable
reference. Like an owner, a mutable reference guarantees unique accesses so that main cannot use x after
line 3 till line 5. Now foo takes a mutable reference and can freely mutate the array as if it owns it.
When foo returns, the borrowing finishes because foo does not return r, preventing its further use [24].
This makes main able to use x again.

Shared Reference While owners and mutable references allow mutation, shared references support
aliasing:

114

1 fn main() {

2 let x = vec![0, 1, 2];

3 let r1 = &x; let r2 = &x;

4 foo(r1);

5 // cannot create `&mut x`

6 println !("{}" , r2[0]);

7 }

8 fn foo(v: &Vec <i32 >) { ... }

Line 3 creates two shared references to x via &x. Rust supports aliasing by creating multiple shared
references to the same location. Although foo takes r1, main still can access the array with r2. Shared
references are read-only, e.g., foo can read data in v but not mutate.

Lifetime Since a reference gains ownership temporarily, each reference has a lifetime of how long it
retains ownership. The type of a reference that lives for a lifetime 'a is &'a mut T or &'a T. Assume that
the following function takes a reference to an array and returns a reference to its first element:

fn head <'a>(v: &'a Vec <i32 >) -> &'a i32 {...}

It is polymorphic over a lifetime parameter 'a. The input array’s and output element’s lifetimes are the
same because an element cannot outlive its array. Since the compiler infers some omitted lifetimes based
on predefined rules [21], the previous head can be simplified as follows:

fn head(v: &Vec <i32 >) -> &i32 { ... }

6.2.2 Unsafe Rust’s A&M Support

Rust’s ownership and borrowing type system ensures strong type safety, but Safe Rust restricts the
scope of the safety guarantee to A⊕M states. A&M states require unsafe operations of Rust to relax
type checking at the cost of forgoing the safety guarantee. A primary example of unsafe operations is
dereference of raw pointers as in C: it allows concurrent accesses from multiple threads while the compiler
does not guarantee its thread safety.

Safety of Unsafe Rust Because the compiler does not guarantee the safety of unsafe operations,
programmers should validate it. They must avoid undefined behaviors (UBs) [20] by inspecting every
unsafe operation. For example, programmers must ensure that (1) every dereference of raw pointers is
neither invalid memory access nor data race; and (2) every reference points to a valid object and follows
A⊕M.

To facilitate manual inspection of unsafe operations, Rust requires them to be enclosed within unsafe
blocks:

1 let mut x = vec![0, 1, 2];

2 let p = &raw mut x;

3 unsafe { (*p)[0] = 1; }

4 // *can* use `x`

Line 2 creates a mutable raw pointer to x, and line 3 dereferences it, which is unsafe, enclosed by an
unsafe block. We call code in unsafe blocks unsafe code.

115

A&M Pattern and Modular Abstraction Even with unsafe blocks, validating A&M states within
unsafe code is challenging primarily due to its intrusive nature: a single buggy use of an unsafe operation
may corrupt the entire program, and errors may manifest syntactically far from the unsafe operation.

To address this, programmers have (1) identified groups of A&M states that share the same rea-
soning principle as A&M patterns; and (2) encapsulated these patterns within Rust types as modular
abstractions [55]. For example, the lock-protected values pattern includes A&M states that use locks to
synchronize simultaneous accesses by multiple threads. All of them rely on the same principle: only a
single thread can hold a lock at a time. This pattern is encapsulated in Mutex<T>.

Modular abstractions confine the consequences of unsafe operations within types, facilitating mod-
ular reasoning about safety [56, 55]. Ideally, each method’s implementation with unsafe code should be
validated within its type so that its use sites can freely invoke it without unsafe blocks. Such modularity
significantly reduces the safety reasoning cost.

However, types with completely safe APIs cannot represent some A&M patterns. Such types provide
a few unsafe methods, marked unsafe, that are safe only when their callers satisfy certain method-specific
conditions described by the type’s implementor. Every call to an unsafe method must be within an unsafe
block. For example, Rc [36], a type for the reference counting pattern, provides the methods get_mut

and get_mut_unchecked, each of which returns a mutable reference to the reference-counted data. While
get_mut succeeds only when the reference count is one, get_mut_unchecked always succeeds regardless
of the reference count. Therefore, a caller of get_mut_unchecked must ensure that no other threads are
accessing the same reference-counted data, rendering get_mut_unchecked an unsafe method. Types with
unsafe methods still reduce reasoning costs because most of the reasoning is confined within the types.

Unsafe Operations for A&M Patterns To support A&M patterns, Unsafe Rust provides two classes
of unsafe operations: raw pointers and interior mutability.

Raw pointers in Rust are similar to pointers in C. The type of a raw pointer to a value of type T

is *mut T. Unlike references, raw pointers are not tracked by the ownership and borrowing type system:
raw pointers lack lifetime information and do not borrow ownership. Consequently, one can create raw
pointers regardless of the existence of other pointers, and these raw pointers can persist even after the
deallocation of their referent. Therefore, dereferencing raw pointers is an unsafe operation. One can
support A&M patterns by creating multiple raw pointers to the same value.

On the other hand, interior mutability is a mechanism to circumvent the immutability of shared
references. Recall that shared references permit aliasing but are immutable by default, enabling com-
piler optimizations based on the assumption that shared references are not mutated. A value of the
UnsafeCell<T> type—the sole source of interior mutability—contains a value of type T and provides an
unsafe operation to mutably dereference the interior value from &UnsafeCell<T>. For compiler correctness,
optimizations do not presume that interior values are immutable even in the presence of &UnsafeCell<T>.
One can support A&M patterns by placing a value in an UnsafeCell and creating multiple shared refer-
ences to it.

For modular abstractions of A&M patterns, we propose when to use each class: raw pointers if the
lifetimes of pointers are dynamically determined, and interior mutability otherwise. For more detail, see
Section 6.2.4.

116

(a) Structure of Procs
(b) Moving Procs makes pointers dangling

Figure 6.3: Self-referential value example: process manager

1 struct Proc { parent: UnsafeCell <*mut Proc >, ... }

2 struct Procs { process_pool: [Proc; NPROC], ... }

3 impl Procs {

4 fn init(self: Pin <&mut Self >) { ... }

5 }

Listing 6.1: Modular abstraction of self-referential value

6.2.3 A&M Pattern Examples

Now, we review two well-known A&M patterns: self-referential values implemented with raw pointers
and lock-protected values with interior mutability. We describe each pattern and its modular abstraction.

Self-Referential Values

Pattern Self-referential values contain pointers to their inner data and are utilized for various purposes
in OSs. For example, Figure 6.3a depicts xv6’s process manager, referred to as Procs, containing an array
of Proc values. Each Proc comprises a process control block (PCB) that describes the process, specifically
including a pointer to its parent process. This pointer is utilized, e.g., when a process terminates, to
wake up its parent because it may be sleeping in a wait system call.

A mutable self-referential value is A&M because it is always aliased: its self-referenced field is
accessible both through direct field access and via the self-referencing pointer. Additionally, the lifetime
of a self-referencing pointer is dynamically determined, persisting until the enclosing value is destroyed.
Consequently, self-referential values are typically implemented using raw pointers.

Furthermore, to ensure safety, self-referential values must be immovable, i.e., they must not change
their memory addresses. Generally, a value must not move when there is a pointer referencing it. Moving
to a new memory address renders the original address obsolete, yet the pointer does not automatically
update, leading to dangling pointers. By definition, a self-referential value always includes a pointer to
itself. Hence, it must not move. As illustrated in Figure 6.3b, moving a self-referential value makes its
self-referencing pointers dangling.

Abstraction In Safe Rust, the compiler prevents the move of immovable values. Pointers in Safe Rust
can only be references, and their existence is tracked by the compiler. When a reference to a value exists,
the compiler prohibits any move of the value, ensuring that dangling pointers cannot be created in Safe
Rust.

Unfortunately, in Unsafe Rust, immovable values may be inadvertently moved, particularly when

117

1 struct Mutex <T> { data: UnsafeCell <T>, lock: Lock }

2 struct Guard <'a, T> { ptr: &'a Mutex <T> }

3 impl <T> Mutex <T> {

4 fn lock(&self) -> Guard <'_, T> { ... }

5 }

6 impl <T> Guard <'_, T> {

7 fn deref_mut (&mut self) -> &mut T { ... }

8 }

Listing 6.2: Modular abstraction of lock-protected value

using raw pointers. Unlike references, the compiler does not track raw pointers, which means that a
value can be moved even when there is a raw pointer pointing to it. Consequently, self-referential values,
which are A&M and require the use of raw pointers, are not guaranteed by the compiler to be immovable.

To enforce immovability, we use the Pin type [28]. A pinned reference that refers to a value of type
T has type Pin<&mut T> or Pin<&T>. Since it is just a pointer, its run-time representation is the same as
a normal reference. A key invariant of a pinned reference is that its referent must not move. Thus, a
pinned reference serves as evidence that its referent resides in the same location until it is removed.

To maintain this invariant, a pinned reference does not expose a mutable reference pointing to the
value through a safe method. Note that mutable references are always eligible for moves: when variables
x and y have type &mut T, one can swap the referents with mem::replace(x, y), which is considered a safe
operation. Instead, a pinned reference provides unsafe methods that convert it to a mutable reference
and vice versa. To perform such conversions, one should ensure that the mutable reference is not used
for moves.

Listing 6.1 shows that Procs’s method takes a pinned reference (line 4) to ensure that Procs values
do not move.

Apart from Pin, developers have proposed other abstractions for self-referential values [4, 139, 143, 3].
They restrict the use of self-referencing pointers while keeping self-referencing values movable.

Lock-Protected Values

Pattern Locks are a classical synchronization scheme commonly used to protect a value shared among
multiple threads. Only the thread holding the lock can read or mutate the value, thus preventing data
races.

A lock-protected value is A&M because it is aliased among multiple threads, and a thread holding
the lock can mutate it. A thread acquires a lock at the beginning of a lexical scope and releases it when
the scope finishes. Since possible access to the value is statically determined, lock-protected values are
implemented with interior mutability.

Abstraction Listing 6.2 shows that Mutex couples a lock with a lock-protected value [39] (line 1).
Mutexes are shared among multiple threads as shared references. A thread can mutate the value in a
Mutex when it acquires the lock, so the value must be in an UnsafeCell.

A Guard is evidence of holding the lock of the referenced mutex (line 2). Its API encapsulates the
Mutex’s A&M pattern as follows:

• A Mutex issues a guard to a thread when it acquires the lock (line 4).

118

• The thread can then access the value with a mutable reference provided by the guard (line 7).

• When the guard goes out of scope, its destructor releases the lock, allowing other threads to acquire
it.

While the concept of Guard originates from C++’s std::lock_guard [41], Rust’s abstraction offers
a much stronger safety guarantee than C++’s. In C++, a thread acquires the lock when the guard is
constructed and releases it upon the guard’s destruction by going out of scope. This mechanism prevents
the lock from not being released after the use of the protected value. However, C++’s std::mutex [42]
is merely a lock and not coupled with a value. Threads access the protected value directly, not through
the guard. Thus, they can access the protected value without holding the lock despite the use of guards.

6.2.4 Raw Pointer or Interior Mutability?

A&M patterns with dynamically determined lifetimes, such as Rc in Rust’s standard library, should
be implemented through raw pointers. Only raw pointers facilitate mutation without any restrictions
on lifetimes because interior mutability permits mutation via references during statically determined
lifetimes.

Conversely, A&M patterns with statically determined lifetimes, such as Mutex in Rust’s standard
library, should be implemented through interior mutability. Interior mutability helps modular reasoning
by encapsulating A&M-ness within types. Consider the following type T, where y is intended to be A&M:

struct T { x: X, y: Y }

With interior mutability, it suffices to change only the type of y:

struct T { x: X, y: UnsafeCell <Y> }

This modification allows y to be mutated even with a shared reference to T. The A&M-ness of y is safely
confined within T and remains invisible externally.

However, with raw pointers, the only way to make y A&M is to use raw pointers to T, as shared
references do not permit mutating y. This approach compromises modularity by delegating the reasoning
about its safety to the users of T. Moreover, it restricts optimization opportunities. Even if x still follows
A⊕M, the compiler considers x mutable.

This guideline is supported by observations of the Rust standard library. Rc, Arc, LinkedList, and
BTreeMap are implemented with raw pointers, whose lifetimes are dynamically determined, allowing them
to point to on-heap values that persist indefinitely. In contrast, Cell, OnceCell, SyncOnceCell, RefCell,
RwLock, and Mutex employ interior mutability with pointers of statically determined lifetimes. They can
be placed on stack and thus do not necessitate heap allocation. Therefore, pointers to these values are
used in a lexically scoped manner.

6.3 A&M Patterns in OSs

To discover A&M patterns in OSs, we rewrite the xv6 OS [74] entirely in Rust. The result is xv6Rust ,
which is functionally equivalent to xv6 except that it supports a few more system calls (e.g., getppid,
which returns the process ID of the parent) and ARMv8 in addition to RISC-V. It is available online [103]
and open-source.

We completely identify A&M patterns in xv6Rust and design their modular abstractions. We sys-
tematically identify A&M patterns in xv6Rust by drawing a dependency graph among types and finding

119

1 struct OwnedData { cwd: RcInode , ... }

2 struct Proc { owned: UnsafeCell <OwnedData >, ... }

3 struct CurrentProc <'a> { ptr: &'a Proc }

4 unsafe fn current_proc () -> CurrentProc <'_> { ... }

5 unsafe fn user_trap () {

6 let proc = unsafe { current_proc () };

7 ...

8 }

9 impl CurrentProc <'_> {

10 fn owned_mut (&mut self) -> &mut OwnedData { ... }

11 }

Listing 6.3: Modular abstraction of process-owned value

all the reachable nodes from UnsafeCell and raw pointer types, which are the only sources of A&M-ness
in Rust. However, some of them are not A&M patterns; they just depend on other types providing
A&M-ness. For this reason, we exclude each type whose path from UnsafeCell or a raw pointer type con-
tains a type for an A&M pattern. Then, we additionally exclude already-known patterns, such as Mutex.
As a result, we discover six A&M patterns whose modular abstractions have not yet been proposed and
design a modular abstraction for each pattern.

In the rest of the section, we explain each of the six A&M patterns in xv6Rust and its abstraction.

6.3.1 Process-Owned Value

Pattern A process-owned value is shared among threads without being protected by a lock. For each
process-owned value, only a thread handling a certain process’s system call accesses the value. In xv6,
whose process consists of only one thread, PCBs have process-owned values, e.g., cwd. Section 6.1 explains
the pattern in detail.

Abstraction We propose a modular abstraction for process-owned values. Note that thread-local
storage (TLS) [80] cannot be utilized for process-owned values. TLS creates per-thread variables by
storing values in a private memory area of each thread, preventing access to thread-local variables of
other threads. In contrast, PCBs are stored in the shared memory area of the kernel. Although any
thread can access PCBs, process-owned values are exclusively accessed by the thread that handles a
system call of a specific process. This guarantee of exclusive accesses is derived from the behavior of the
kernel, not where process-owned values are stored, and our abstraction leverages this behavior.

Listing 6.3 shows modular abstraction for process-owned values. We aggregate process-owned values
of Proc in the type OwnedData (line 1) and put OwnedData in an UnsafeCell (line 2). Proc values are stored
in global variables, so none of the threads own Procs, and each thread has only shared references to Proc.
The use of UnsafeCell allows mutation of OwnedData by the owning process while the enclosing Proc is
shared by multiple threads as shared references.

Providing a safe method to mutate OwnedData is challenging. A naïve approach would be a method
that takes &Proc as an argument and returns &mut OwnedData. But, it is unsound because it allows creating
multiple mutable references to the same OwnedData, breaking the invariant of process-owned values and
Rust’s aliasing model.

120

(a) CPU accesses and interrupts

(b) Scheduler thread’s CPU accesses

where u/s for unsafe/safe accesses to Cpu, × for inaccessible,

sched for a scheduler thread, and trap for a trap-handling thread

Figure 6.4: CPU accesses from threads

As a solution, we introduce CurrentProc, which represents the current process. It wraps a shared
reference to a Proc (line 3). CurrentProc has two invariants: (1) the inner reference must point to the Proc
of the process for which the current thread works; and (2) at most one CurrentProc value exists in each
thread. To satisfy the second invariant, current_proc, which creates a CurrentProc value, is an unsafe
function that requires a caller to ensure the absence of a CurrentProc (line 4). The condition is easily
validated because it is called only in user_trap, a kernel’s entry point where every trap (including system
calls, CPU exceptions, and hardware interrupts) from the user space arrives (line 6). The kernel_trap

function, an entry point for kernel-mode traps, does not call current_proc because the kernel does not
need to access PCBs while handling kernel-mode traps. CurrentProc has a method owned_mut, which
returns a mutable reference to the inner OwnedData (line 10). The invariant and API of CurrentProc

ensure a process’s OwnedData is exclusively accessed from the unique thread that handles a system call
for the process.

While every process has a single thread in xv6Rust , we can still apply the same abstraction to OSs
with multi-threaded processes. In such OSs, thread control blocks (TCBs) have thread-owned values, each
of which is accessed only by a thread handling a system call of a certain user thread. We can use the
same strategy to implement thread-owned values in TCBs because each user thread triggers at most one
system call at each time.

6.3.2 CPU-Owned Value

Pattern A value is CPU-owned if it is accessed only by the thread running on a specific CPU core.
CPU-owned values are similar to process-owned values in that they are shared among multiple threads
without locks. However, they are different form process-owned values because unique access is guaranteed
by that at most one thread runs on a CPU core each moment, instead of that at most one thread handles
a certain system call. We aggregate the values owned by a CPU core in a Cpu. A Cpu has, e.g., a pointer
to the process running on the core. When the kernel runs on a multi-core CPU, the kernel has multiple
Cpu values.

Modular abstraction of CPU-owned values has two challenges. First, a thread may move to another
core after a context switch incurred by a timer interrupt. As Figure 6.4a illustrates, when a thread
moves to another core after an interrupt, any existing pointers to the previous Cpu must no longer be
dereferenced. The thread must newly acquire a pointer to the Cpu where it is now located. It implies

121

1 struct HeldInterrupts;

2 impl Cpu {

3 fn push_off (&self) -> HeldInterrupts { ... }

4 fn pop_off (&self , intr: HeldInterrupts) { ... }

5 }

6 static mut CPUS: [Cell <Cpu >; NCPU] = ...;

7 fn current_cpu(intr: &HeldInterrupts) -> &Cell <Cpu > { ... }

Listing 6.4: Modular abstraction of CPU-owned value

that a pointer to a Cpu is guaranteed to remain dereferenceable only while interrupts are disabled: when
interrupts are enabled, a context switch might have happened already, so pointers to a Cpu are unreliable.
In fact, it is enough to disable only preemption or inter-CPU task migration to make pointers to a Cpu

reliable. Although disabling all the interrupts is inefficient, this work follows xv6’s implemenation. One
can easily improve the performance by disabling only preemption or inter-CPU task migration.

Second, the scheduler may reference Cpu. The kernel creates a scheduler thread for each core while
booting. As in Figure 6.4b, each scheduler thread obtains a pointer to the Cpu where it runs and retains
the pointer until the kernel terminates. At the same time, a thread handling a trap also requires, at
least temporarily, a pointer to the Cpu where it runs to get a pointer to the current process and create a
CurrentProc.

Abstraction Listing 6.4 presents a modular abstraction of CPU-owned values. To address the first
challenge, we adopt, from the Tifflin kernel [98], the idea of HeldInterrupts type that serves as evidence
of disabling interrupts (line 1). HeldInterrupts has one invariant: interrupts must be disabled if a
HeldInterrupts value exists. A HeldInterrupts value is created by a function push_off, which disables
interrupts of the current core (line 3). Calling a function pop_off is the only way to enable interrupts
again (line 4). As their names imply, push_off and pop_off work in a stack-like manner: they push and
pop “off” onto an imaginary stack, respectively, and interrupts are enabled when the stack is empty. Since
each call to pop_off consumes a HeldInterrupts value, a HeldInterrupts exists only when interrupts are
disabled. HeldInterrupts is a zero-sized type and does not introduce any run-time overhead.

For the second challenge, we put Cpus in Cells [34] (line 6). Cell is a standard library type with
interior mutability that provides getter and setter (but not a reference) for the interior value via shared
references. This API prevents memory bugs even when multiple shared references are used to mutate
the same Cell’s interior value. Cell itself does not have a synchronization mechanism, but it is safe for
CPU-owned value because at most one thread runs on each core at a time.

Putting it all together, the function current_cpu takes &HeldInterrupts as an argument and returns
a reference to the current Cpu with the same lifetime as the argument (line 7). It ensures interrupts are
disabled while the Cpu is in use.

Our abstraction facilitates a better understanding of CPU-owned values, an important A&M pattern
in xv6, while not being completely novel. It utilizes two well-known concepts in the Rust community:
guards of lock-protected values and Cell. Our work provides a better view of this pattern by decomposing
it into well-known patterns.

122

6.3.3 Memory Pool

Pattern Memory pool maintains a chunk of memory consisting of multiple entries of the same type.
Like heap, memory pool provides dynamic allocation, but it incurs less run-time overhead than heap
because, among other things, it does not suffer from fragmentation. For example, memory pool is used
to maintain (in-memory) inodes, each consisting of an inode number and a copy of on-disk inode data. In
this work, we focus on memory pools with reference-counted entries because many use cases of memory
pools involve reference counting.

When the kernel needs a specific inode, it invokes the find_or_alloc method of the memory pool.
The method takes an inode number for a key and an initial value as arguments. If the memory pool
already has an entry with the same key, it increases the entry’s reference count by one and returns
a pointer to the entry. Otherwise, the memory pool finds an unoccupied entry, initializes it, sets the
reference count to one, and returns a pointer. We call such a pointer to an inode in a memory pool
RcInode, which is reference-counting and thus read-only.

A memory pool must ensure the absence of duplicated keys. Otherwise, processes may refer to
different in-memory copies of a single on-disk inode, leading the processes to corrupt data and incurring
functionality (and possibly safety) bugs.

RcInodes are cloned and destroyed—and their corresponding reference counters are increased and
decreased, respectively—in system calls. For example, when a process forks, the parent’s working direc-
tory, represented as an RcInode, is cloned and used for the child’s working directory, and when a process
terminates, its working directory is destroyed. When a reference count becomes zero, a pre-registered
finalizer is called to destruct the value in the entry. The finalizer of an RcInode checks any remaining
file-system link to the inode. If no such link exists, then the file denoted by the inode has been deleted
from the file system already, and thus the finalizer removes the content of the file from the disk.

The example shows three functionalities of each entry in a memory pool. First, an entry allows the
memory pool to mutate its content when its reference count is zero for the initialization of find_or_alloc.
Second, an entry provides multiple read-only cloneable pointers returned by find_or_alloc. Third, when
a pointer to an entry is unique, it can mutate the referent. It is essential for the finalization of an entry,
which happens when the last pointer goes out of scope because the finalization may need to mutate the
value in the entry.

Abstraction We design memory pool as an array of entries. To avoid data races among multiple
threads, we protect the entire array with a single lock and allow only one thread to traverse the array
at a time. An alternative design would protect each entry with per-entry lock, but this allows multiple
threads to simultaneously allocate distinct entries with the same key, breaking memory pool’s functional
requirement.

Each memory pool entry is reference-counted, but none of the reference-counted types provided in
the Rust standard library satisfies memory pool’s functional requirement. The Rust standard library has
three reference-counted types: Rc [36], Arc [37], and RefCell [35]. Rc and Arc—Rc’s thread-safe version—
introduce pointer indirection, which defeats the purpose of memory pool as allocator. RefCell’s lifetime
is statically determined, but that of memory pool entries is dynamically determined. For example, the life
cycle of in-memory inodes is dynamically determined by system calls from user processes and, therefore,
cannot be expressed by static lifetimes. In addition, RefCell is not thread-safe, but memory pools are
shared among multiple threads.

For memory pool entries, we propose ArcCell, a reference-counted type that serves memory pools’

123

where r for read-only and rw for read & write

Figure 6.5: Three states of RefCell and ArcCell

1 struct ArcCell <T> { data: T, rc: AtomicUsize }

2 struct Ref <T> { ptr: *mut ArcCell <T> }

3 struct RefMut <T> { ptr: *mut ArcCell <T> }

4 impl <T> ArcCell <T> {

5 fn try_borrow(self: Pin <&mut Self >) -> Option <Ref <T>> { ... }

6 }

7 impl <T> Drop for ArcCell <T> {

8 fn drop(&mut self) { while self.rc != 0 {} }

9 }

10 impl <T> Ref <T> {

11 fn try_into_mut(self) -> Result <RefMut <T>, Self > { ... }

12 }

Listing 6.5: Modular abstraction of ArcCell

purposes. It is atomic, has dynamic lifetime like Arc, and does not introduce pointer indirection like
RefCell. ArcCell provides two sorts of pointer: read-only Ref and read-write RefMut.

Our design of ArcCell is inspried by the design of RefCell. Figure 6.5 illustrates how RefCell and
ArcCell operate. We discuss the operation of RefCell first and then how ArcCell differs from RefCell.

In State 1, which is the initial state, RefCell does not have pointers, and its reference count is zero.
Since only the owner can access the RefCell, it can read and mutate the data. For memory pool, this
state represents an unoccupied entry that can be initialized by the memory pool. In State 2, one or more
Refs exist, and the reference count equals the number of the Refs. This state is reachable from State 1
by creating a new Ref. Since each Ref is read-only, multiple Refs may coexist, and the owner can create
Refs repeatedly. It is also possible to create new Refs by cloning existing Refs. When every Ref goes out
of scope, the RefCell returns to State 1. In State 3, a single RefMut exists, and the reference count is a
special value -1 indicating the presence of a RefMut. This state is reachable from State 1 by creating a
new RefMut. Since a RefMut can mutate the data, it should be unique. Thus, a RefMut disallows cloning.
In this state, the owner cannot create a new pointer. Destroying the RefMut changes the state to State 1.

We now discuss ArcCell presented in Listing 6.5. Just like RefCell, ArcCell has four invariants: (1)

124

1 struct StrongPinMut <'a, T> { ptr: *mut T }

2 impl <T> ArcCell <T> {

3 fn try_borrow(self: StrongPinMut <'_, Self >) -> Option <Ref <T>> { ... }

4 }

Listing 6.6: Modular abstraction of StrongPinMut

if its reference count equals -1, then a single RefMut refers to the ArcCell; (2) if its reference count is
n, which is not -1, then n Refs refer to the ArcCell; (3) A RefMut can mutate both the data and the
reference count; and (4) A Ref can read the data and mutate the reference count. However, ArcCell has
three characteristics distinct from RefCell.

First, for thread safety, we use an AtomicUsize for the reference counter (line 1). AtomicUsize is the
type of an integer that allows atomic operations such as compare_and_swap.

Second, ArcCell allows transitions from State 2 to State 3. In memory pool, when the last remaining
pointer to an entry is destroyed, the pointer is used for the finalization of the entry. To mutate the value
during the finalization, the pointer must become a RefMut. To this end, we add a method try_into_mut to
Ref, which converts a Ref to a RefMut if possible (line 11). When the reference count is one, it consumes
a given Ref and returns a RefMut. Otherwise, it returns the Ref back.

Third, Ref and RefMut do not have lifetime parameters because their lifetimes are not statically
determined (lines 2 and 3). Thus, we implement them with raw pointers instead of UnsafeCell. Since
we use raw pointers, we need to prevent the possibility of dangling pointers. To this end, (1) we disallow
the move of an ArcCell value by using Pin. Recall that Pin prevents values from moving. By making
the methods of ArcCell take pinned references, we prohibit ArcCells from moving after the creation of
pointers (line 5); (2) we ensure an ArcCell value is not destructed in the presence of remaining pointers
by inserting dynamic checking into the destructor of ArcCell (line 8).

StrongPinMut ArcCell presented so far, however, is not fully safe because it violates Rust’s aliasing
model. According to Stacked Borrows, the state-of-the-art aliasing model for (Unsafe) Rust [114], a
mutable reference and raw pointers should not coexist: when a mutable reference is created, any existing
raw pointers to the same referent become invalidated even if the address itself is still valid. Dereferencing
such invalidated pointers is considered a UB because the compiler optimizes programs assuming that the
mutable reference is unique. For ArcCell, each of Refs and RefMuts contains a raw pointer to an ArcCell,
and thus they are valid only until a mutable reference is created, and Pin<&mut ArcCell> contains a
mutable reference inside it. Thus, if one creates a Ref from an ArcCell, creates a Pin<&mut ArcCell>

pointer, and reads the value through the Ref, then it is a UB.
To resolve this problem, we propose StrongPinMut, presented in Listing 6.6, that strengthens Pin<&mut>.

StrongPinMut is a type of a mutable pointer with three invariants: (1) the referent must not move; (2)
there must be at most one StrongPinMut to a certain referent; and (3) mutable references to the same
referent must not coexist with StrongPinMut. To this end, a StrongPinMut consists of a raw pointer, so
it can coexist with raw pointers without invalidating them (line 1). We make ArcCell’s methods take
StrongPinMuts instead of pinned references (line 3). For example, to create a Ref or RefMut from an
ArcCell, the owner should give a StrongPinMut to the ArcCell, preventing the created references from
being invalidated by mutable references.

Concurrently with our development of StrongPinMut, the Rust community also has discussed the

125

1 impl <T> Mutex <T> {

2 fn lock(self: Pin <&Self >) -> Guard <'_,T> { ... }

3 }

4 impl <T> Guard <'_, T> {

5 fn deref_mut (&mut self) -> Pin <&mut T> { ... }

6 }

Listing 6.7: Modular abstraction of lock-protected immovable value

same problem of Stacked Borrows being too restrictive to immovable values [113]. While the discussion
is still ongoing, a temporary solution exempting the uniqueness requirement for mutable references to
immovable values [112] has been proposed and applied to Miri [8], a Rust interpreter detecting UBs.
Although it changes the aliasing model of Rust, its impact on existing Rust code has not been system-
atically studied yet. At the same time, there are proposals of new types that avoid the invalidation of
raw pointers without any changes to the aliasing model, just like StrongPinMut, as alternative solutions.
However, their designs have not been thoroughly investigated yet. We believe StrongPinMut is a strong
candidate for solving this problem because it does not change the aliasing model of Rust and has proven
its practicality by being used in xv6Rust .

6.3.4 Lock-Protected Immovable Value

Pattern OSs protect various immovable values with locks. For example, Disk, the interface type of
a single disk, is immovable due to its array for direct memory access (DMA) of its target disk. When
a Disk is initialized, it informs the disk about the array’s address, and the disk reads and modifies the
content of the array during I/O. In addition, each Disk must be protected with a lock because multiple
threads may simultaneously try to initiate disk operations.

The standard implementation of Mutex does not work well with immovable values for two reasons.
First, when a Mutex moves, the inner value moves together, breaking the invariant of the inner immovable
value. Second, a Mutex exposes a mutable reference to the inner immovable value via Guard, breaking the
same invariant again.

Abstraction Listing 6.7 shows a modular abstraction of Mutex that supports immovable values by
disallowing the inner value from moving. It has two invariants: (1) the inner value must be accessed
only by the thread holding the lock; and (2) the inner value must not move. To satisfy the second
invariant, we make two changes: (1) to acquire a lock, a thread requires a pinned reference instead of a
shared reference (line 2), enforcing the immovability of Mutex acquired at least once; (2) Guard provides
a pinned reference instead of a mutable reference (line 5), preventing exposing a mutable reference to
the inner value. Although the abstraction is straightforward, we help understand this real-world pattern
by decomposing it into two well-known types, Pin and Mutex.

6.3.5 Lock-Protected Separated Value

Pattern While the standard Mutex protects only a single value with a lock, there is a need for protecting
multiple separated values with a lock. An example is Proc’s parent.

The parent field is shared among multiple threads, e.g., to handle a wait system call, as illustrated

126

(a) A child is running when the parent checks the

state.

(b) The parent reaches the end of the array and

sleeps.

(c) The child terminates and wakes up the parent.
(d) The parent restarts the iteration and reaps the

child.

Figure 6.6: How a wait system call is handled

(a) A child ends while its parent in a loop, failing

wake-up.

(b) The parent reaches the array end and sleeps

forever.

Figure 6.7: Problem of using per-process locks

in Figure 6.6. When a process handles wait, it iterates through the all-process array and compares
each process’s parent with itself to determine if the process is its child. If so, it checks the child’s
state (Figure 6.6a). If no child is a zombie and the process reaches the end of the array, it starts
sleeping (Figure 6.6b). When a child terminates, it changes its state to ZOMBIE, and wakes up its parent
(Figure 6.6c). Then, the parent re-iterates through the array and finds the zombie child (Figure 6.6d).

For functional correctness of wait, the parent fields of all Procs should be protected together by a
single lock, as shown in Figure 6.7. If each parent were protected with a per-process lock, then a child
might terminate while its parent is still in the loop. In that case, the child wakes up the parent before it
sleeps, losing the wake-up (Figure 6.7a). When the parent reaches the end of the array, it sleeps forever
unless it has another child (Figure 6.7b). To avoid the problem, we require a process to hold a single lock
for all parent fields while (1) iterating the all-process array to handle wait; or (2) waking up its parent.

Abstraction Listing 6.8 shows a naïve implementation of wait. A Procs has wait_lock, which is a
lock coupled with a value of type () (line 1). Since () is a zero-sized type, the lock is meaningless per
se. Instead, it protects the separated parents of the Procs. Each Proc stores a pointer to its parent in an

127

1 struct Procs { wait_lock: Mutex <() >, ... }

2 struct Proc { parent: UnsafeCell <*mut Proc >, ... }

3 struct WaitGuard <'a> { inner: Guard <'a, ()> }

4 impl Procs {

5 fn proc(&self , index: usize) -> &Proc { ... }

6 fn wait_guard (&self) -> WaitGuard <'_> { ... }

7 }

8 impl Proc {

9 fn parent_mut (&self , guard: &mut WaitGuard <'_>) -> &mut *mut Proc { ... }

10 }

11 fn wait(procs: &Procs , ...) {

12 let mut guard = procs.wait_guard ();

13 for i in 0.. NPROC {

14 let p = procs.proc(i);

15 let parent = p.parent_mut (&mut guard);

16 ...

17 }

18 }

Listing 6.8: Naïve abstraction of wait without branded types

UnsafeCell (line 2). A thread must acquire wait_lock to obtain a reference to the parents.
A WaitGuard, which wraps a Guard, is evidence of holding wait_lock (line 3). When a thread acquires

wait_lock of a Procs, the Procs returns a WaitGuard (line 6). Each Proc provides a mutable reference to
its parent when a WaitGuard is given (line 9). The wait function, which handles a wait system call, first
acquires wait_lock of a given Procs (line 12) and uses WaitGuard to access the parent of each Proc in the
Procs (line 15).

The implementation so far, however, is unsafe because it admits data races. Consider two Procses,
procs1 and procs2. One can acquire two WaitGuards, one from procs1 and the other from procs2. Since
two WaitGuards are indistinguishable with their types, both can be used to mutably access the parent of
a Proc in procs1, which may incur data race.

To distinguish WaitGuards from different Procses, we employ branded types, types decorated with
brands, which differentiate types that are otherwise the same. In Haskell, the ST monad [129] uses
branded types. In Rust, branded types enable implementation of safe array indexing without run-
time overhead [63], and GhostCell, a thread-safe cell with interior mutability without synchronization
overhead [202]. As a new application of branded types, we brand locks and lock-protected separated
values to ensure safety without overhead.

Listing 6.9 shows wait implementation with branded types. We make the following changes compared
to the previous implementation without branded types:

• We brand &Procs. ProcsRef<'id, 'a> is a branded version of &Procs with a brand parameter 'id

(line 1). The brand parameter, as in [63, 202], has a form of a lifetime but its purpose is to
distinguish different &Procs: for each brand 'id, ProcsRef<'id, 'a> is a singleton type.

• We brand &Proc and WaitGuard to annotate in their types ProcsRef from which they originate.
ProcRef is a branded version of &Proc (line 2). The brand of a ProcRef equals the brand of a

128

1 struct ProcsRef <'id , 'a> { inner: &'a Procs }

2 struct ProcRef <'id , 'a> { inner: &'a Proc }

3 struct WaitGuard <'id, 'a> { inner: Guard <'a, ()> }

4 impl <'id > ProcsRef <'id, '_> {

5 fn proc(&self , index: usize) -> ProcRef <'id , '_> { ... }

6 fn wait_guard (&self) -> WaitGuard <'id , '_> { ... }

7 fn new <'a, F: for <'id > FnOnce(ProcsRef <'id , 'a>) >(procs: &'a Procs , f: F) {

8 ...

9 }

10 }

11 impl <'id > ProcRef <'id , '_> {

12 fn parent_mut (&self , guard: &mut WaitGuard <'id , '_>) -> &mut *mut Proc {

13 ...

14 }

15 }

16 fn wait <'id >(procs: &ProcsRef <'id , _>, ...) { ... }

Listing 6.9: Modular abstraction of wait with branded types

ProcsRef it belongs to. The proc method, which is now a method of ProcsRef, returns a ProcRef of
the same brand (line 5). WaitGuard now also has a brand (line 3). The method wait_guard returns
a WaitGuard of the same brand (line 6). ProcRef and WaitGuard have the same invariant: each can
be created only from a ProcsRef of the same brand.

• We make the parent_mut method aware of brands. It is now a method of ProcRef and requires a
WaitGuard of the same brand as an argument (line 12). To access the parent of a ProcRef from
a certain ProcsRef, a thread needs a WaitGuard originated from the same ProcsRef. Consider the
previous example again where one uses a WaitGuard from procs2 to access the parent of a ProcRef

from procs1. It fails to pass type checking because the WaitGuard and the ProcRef have different
brands.

• The function ProcsRef::new creates a ProcsRef using a &Procs and a closure that takes a ProcsRef

as an argument (line 7). For example, the following code creates a ProcsRef with the given &Procs

and applies the closure to the ProcsRef:

ProcsRef ::new(procs , |p| wait(p, ...));

Since the closure is universally quantified over 'id, the lifetime is opaque, which ensures that two
different ProcsRefs always have different brands.

6.3.6 Asynchronous Ownership Transfer for DMA

Pattern DMA allows peripheral devices to read from or write to memory directly. It is preferred over
programmed I/O because it enables data transfers between memory and devices without involving the
CPU, allowing efficient data movement by freeing up the CPU to perform other tasks. For DMA, OSs
need to send resource ownership to hardware and back. For example, OSs transfer a buffer to a disk to
read from or write on the disk.

129

Figure 6.8: Ownership transfer of buffer in disk operations

1 struct Disk { inflight: [InflightInfo; NUM], ... }

2 struct InflightInfo { b: *mut Buf , ... }

3 impl Disk {

4 fn rw(&mut self , b: &mut Buf) {

5 ...

6 self.inflight[idx].b = b as *mut Buf;

7 unsafe { MmioRegs :: notify_queue (0); }

8 b.wait_channel.sleep();

9 ...

10 }

11 fn intr(&mut self) {

12 ...

13 unsafe { (*self.inflight[idx].b).wait_channel.wakeup (); }

14 }

15 }

Listing 6.10: Modular abstraction of ownership transfer to disk

Due to the asynchronous nature of I/O, its ownership transfer is fairly different from that of normal
Rust function calls. For example, Figure 6.8 illustrates how a buffer’s ownership transfers between kernel
and disk. An I/O thread sends a buffer to a disk with memory-mapped I/O (MMIO) registers by writing
the buffer’s address in an MMIO register and then a special value in another MMIO register to notify
the disk. After the notification, the disk owns the buffer, and the thread starts sleeping not to access the
buffer. When the disk finishes the operation, it raises a hardware interrupt that passes the buffer from
the disk to the kernel’s interrupt handler. Finally, the handler wakes up the sleeping thread to complete
the job, giving the buffer back to the thread.

Abstraction Listing 6.10 shows Disk, a modular abstraction for asynchronous ownership transfer for
disk operations. Disk has two methods rw and intr, for the I/O thread and the interrupt handler,
respectively. The rw method takes a mutable reference to a buffer as an argument and initiates disk
operations. During the execution of rw, Disk has an invariant: the mutable reference to the buffer has a
unique owner. The reference to the buffer is converted to a raw pointer and written in inflight, which
is accessible from the disk (line 6). The disk is notified to perform its operation with the buffer (line 7),
which is safe because the thread immediately sleeps (line 8). After the disk operation finishes, the
interrupt handler calls intr that wakes up the thread sleeping in rw (line 13), which effectively transfers
the buffer back from disk to intr and then rw. In doing so, the dereference in intr is safe because it
temporarily owns the buffer on line 13.

130

Table 6.1: Manual analysis of the A&M patterns in other OSs

Process-owned CPU-owned Memory pool Lock, immovable Lock, separated Asynch transfer

Linux
xv6-rust n n n n n n n n

Tock
RustyHermit n n

Theseus
RedLeaf
Redox

n: non-modular abstraction

6.4 Evaluation

We evaluate the identified patterns and the proposed modular abstractions with the following three
research questions:

• RQ1. Existence of abstractions: Do the modular abstractions of the A&M patterns exist in legacy
OSs and Rust OSs? (Section 6.4.1)

• RQ2. Effectiveness in reducing unsafe code: Do the modular abstractions effectively reduce the
number of unsafe lines? (Section 6.4.2)

• RQ3. Impact on performance: Do the modular abstractions incur only modest overhead at run
time? (Section 6.4.3)

6.4.1 RQ1: Existence of Abstractions

To show that the proposed abstractions are practical and original, we investigate whether the six
A&M patterns and their abstractions in xv6 are utilized in Linux, a representative legacy OS, Qi et
al.’s xv6-rust [170], another port of xv6 to Rust, and five clean-slate Rust OSs: Tock [131], RustyHer-

mit [128], Theseus [67], RedLeaf [156], and Redox [10].
Table 6.1 shows the result. Linux uses all six patterns. Thus, our abstractions are practical in

that they can help rewrite legacy OSs in Rust. xv6-rust utilizes the same A&M patterns as xv6 but
does not provide modular abstractions for most patterns. It directly accesses A&M values using unsafe
operations, similar to xv6, instead of encapsulating each value within a modular abstraction and accessing
them through a set of API calls. This is because xv6-rust aims not at designing modular abstractions
for A&M values to reduce the reasoning cost, but rather focuses on syntactically translating C to Rust
and adopting some well-known Rust idioms, e.g., using iterators instead of index-based loops. Some
clean-slate Rust OSs use CPU-owned values and memory pools, but their abstractions are different from
ours. Since none of the existing OSs have proposed the same abstractions, our abstractions are original.

Process-Owned Value Linux uses process-owned values in task_struct, the type of PCBs. While
task_struct protects many of its fields with locks, some fields including journal_info are accssed by a
single thread and not protected by any locks.

struct task_struct { void *journal_info; ... }

131

Such fields are process-owned values and can benefit from our abstraction.
xv6-rust uses process-owned values without a modular abstraction. It employs UnsafeCell but

always accesses the inner data with an unsafe method provided by UnsafeCell.
Tock does not use process-owned values. Its system calls are non-blocking; the kernel may have

multiple ongoing system calls from a single process. Process-owned values can exist only when the kernel
handles only one system call from a single process at a time. Therefore, although Tock provides grants,
per-process kernel heap, they are not process-owned values. Since multiple kernel threads handling system
calls from the process owning a particular grant may access the grant simultaneously, Tock protects each
grant with run-time checks, like Rust’s RefCell, but not like process-owned values.

The other Rust OSs utilize reference-counted or lock-protected values, instead of process-owned
values, thereby requiring run-time checks even when the unique access is guaranteed. Note that xv6Rust
can access process-owned values without any run-time checks. In RustyHermit, PCBs have the type
Task, and Rc and RefCell protect each Task.

struct PerCoreScheduler { current_task: Rc<RefCell <Task >>, ... }

In Theseus, Mutex protects all the mutable values of Task.

struct Task { inner: Mutex <TaskInner >, ... }

In RedLeaf, values uniquely accessed by a system-call-handling thread are in ThreadLocal, which uses
Mutex.

struct ThreadLocal <T> { values: Mutex <HashMap <u64 , Option <T>>>, ... }

In Redox, the type of PCBs is Context, and Context protects each mutable field with Arc and RwLock.

struct Context { files: Arc <RwLock <Vec <Option <FD >>>>, ... }

CPU-Owned Value Linux uses CPU-owned values. For example, it has a run queue for each CPU
core. Each run queue is modified only by the thread running on the corresponding core. The kernel
disables preemption before modifying a run queue.

xv6-rust uses CPU-owned values without a modular abstraction. It creates a mutable reference to
a global data structure containing CPU-owned values without ensuring that the reference is used only
while interrupts are disabled.

Tock does not use CPU-owned values because it supports only single-core processors. There are no
per-core data.

RustyHermit uses CPU-owned values, but its abstraction is unsafe. In RustyHermit, per-core
schedulers are CPU-owned values. The following function can construct multiple mutable references to
a specific core’s scheduler, while aliasing of mutable references is UB:

fn core_scheduler () -> &'static mut PerCoreScheduler { ... }

Theseus does not use CPU-owned values. It has per-core run queues, but they are implemented
with lock-protected values.

static RUNQUEUES: AtomicMap <u8 , RwLock <RunQueue >>;

RedLeaf and Redox use CPU-owned values, but their abstractions are different from that of xv6Rust .
They rely on the ELF TLS ABI [80] by using the #[thread_local] attribute [44] for CPU-owned values.
The actual implementation of TLS depends on the compiler, linker, and architecture. RedLeaf defines
per-core schedulers with CPU-owned values.

132

#[thread_local]

static SCHED: RefCell <Scheduler >;

Redox defines CPU core numbers with CPU-owned values.

#[thread_local]

static CPU_ID: AtomicUsize;

Memory Pool Linux uses a slab allocator [66], which is effectively a group of multiple memory pools
for different data types. While slab allocators are more complicated than memory pools, they share the
same idea of reducing fragmentation. Some structs such as inode have reference counts, and they are
managed manually by each struct.

struct inode { atomic_t i_count; ... }

xv6-rust uses memory pools, but its abstraction is much more inefficient than xv6 and xv6Rust . It
protects each cell in a memory pool with an individual lock in addition to a lock protecting the whole
memory pool, thereby always acquiring a lock when accessing the data in each entry.

Tock does not use memory pools. It uses grants for dynamic memory allocation, and grants do not
reserve a chunk of memory.

RustHermit does not use memory pools. It uses heap managed by a linked list of free blocks. It
is less efficient for reducing fragmentation than memory pools.

Theseus, RedLeaf, and Redox use slab allocators. They use Rc and Arc in the standard library for
reference counting.

Lock-Protected Immovable Value Linux has lock-protected immovable values. For example, super_block
has s_inodes, which is a list entry for an intrusively linked list. Since s_inodes is referenced by adjacent
nodes, super_block must not move. At the same time, super_block is protected by s_inode_list_lock.

struct super_block {

spinlock_t s_inode_list_lock;

struct list_head s_inodes;

...

}

Therefore, super_block is a lock-protected immovable value.
The Rust OSs do not have lock-protected immovable values. They do not use Pin at all or use Pin

only without locks.

Lock-Protected Separated Value Linux uses lock-protected separated values. For example, task_struct
has parent, a pointer to the parent process, and there is a global lock named tasklist_lock sychronizing
accesses to parent.

struct task_struct {

struct task_struct *parent;

...

}

rwlock_t tasklist_lock;

133

Table 6.2: Numbers of total and unsafe lines of code

OS LOC LOUC Unsafe code percentage

xv6Rust 11676 345 2.95%
xv6-rust 6579 339 5.15%
Tock 135347 1559 1.15%
RustyHermit 39860 1114 2.79%
Theseus 48886 930 1.90%
RedLeaf 29430 949 3.22%
Redox 56785 1306 2.30%

The parent process acquires tasklist_lock before iterating the task list to handle a wait system call, and
the child process acquires tasklist_lock before notifying the parent process to handle an exit system
call.

xv6-rust uses lock-protected separated values without a modular abstraction. Since it does not
employ branded types, it cannot ensure whether a proper lock is acquired when accessing separated
data.

The clean-slate Rust OSs do not use lock-protected separated values. None of them utilizes branded
types. They uses lock-protected values instead by protecting the whole data structure, not individual
fields. In RustHermit, the whole collection of waiting tasks are protected by a lock, and the lock must
be held while accessing any fields of Task to handle a join system call.

static WAITING_TASKS: Mutex <BTreeMap <Id,Vec <Task >>>;

In Redox, the whole list of processes is protected by a lock, and accessing any fields of Context during a
waitpid system call requires holding the lock.

static CONTEXTS: RwLock <ContextList >;

The use of lock-protected values for this purpose leads to the more frequent acqusition of locks, which
degrades performance, compared to lock-protected separated values.

Asynchronous Ownership Transfer for DMA Linux uses asynchronous ownership transfer for
DMA. It has DMA notified by interrupts. xv6-rust also uses asynchronous ownership transfer for DMA,
but its ownership transfer is not explicitly described by a modular abstraction. On the other hand, the
clean-slate Rust OSs use polling for DMA, unlike xv6Rust and Linux.

6.4.2 RQ2. Effectiveness in Reducing Unsafe Code

To show that the proposed abstractions successfully mitigate the burden of manual safety reasoning
about A&M states, we compare the lines of unsafe code (LOUC) of xv6Rust with those of the other Rust
OSs. LOUC is a reasonable proxy to estimate the burden for manual reasoning [128] because safe code
is automatically validated by type checking. We exclude the unsafe lines of libraries used by each OS
from LOUC because developers do not reason about the safety of the libraries. Developers usually trust
libraries, assuming that their developers have reasoned about their safety.

134

We measure LOUC by counting the number of lines in unsafe blocks that are not in unsafe functions.
In Rust, unsafe code must be placed in an unsafe block unless it resides in an unsafe function. Since most
lines in unsafe blocks consist of unsafe code, counting these lines is a reasonable approach. In contrast,
only a small portion of the lines in unsafe functions contain unsafe code because an unsafe function
signifies that calling the function, but not the operations in its body, is unsafe. Therefore, counting
the lines in unsafe functions leads to a significant overestimation of LOUC, whereas not counting them
results in a slight underestimation of LOUC. If the deny(unsafe_op_in_unsafe_fn) attribute [25] is used
in the codebase, unsafe code always requires an unsafe block, even in an unsafe function. Thus, using this
attribute allows for precise LOUC measurement through counting the lines in unsafe blocks. However,
since only xv6Rust employs this attribute, counting the lines in unsafe blocks would result in an unfair
comparison for xv6Rust . For this reason, we count the lines in unsafe blocks that are not in unsafe
functions, allowing for a slight underestimation of every OS’s LOUC. To measure LOC and LOUC, we
implemented a line-counting tool using the Rust parser, which excludes comments and empty lines.

Table 6.2 shows the result of each Rust OS. While both xv6Rust and xv6-rust port xv6 to Rust,
xv6-rust has a higher ratio of LOUC to LOC than xv6Rust . Since xv6-rust has not ported all the
functionalities of xv6, the LOC of xv6-rust is much smaller than that of xv6Rust , but its LOUC is
already comparable to that of xv6Rust . Using our abstractions, xv6Rust achieves a similar reasoning cost
to xv6-rust while providing more functionalities. This demonstrates that the abstractions are effective
in reducing the number of unsafe lines.

The proportion of unsafe code in xv6Rust is slightly higher than (but within the same order of
magnitude as) the proportion of unsafe code in the clean-slate Rust OSs, except for RedLeaf. We believe
that the design of xv6Rust unavoidably leads to more unsafe code. To utilize A&M patterns in legacy
OSs, xv6Rust has to implement its own modular abstractions for the A&M patterns in its codebase with
some amount of unsafe code. On the other hand, the other OSs rely only on well-known A&M patterns.
Although such patterns also require unsafe code for implementation, their implementation resides in
pre-existing libraries, not the codebase of the OSs. It allows them to complete their functionalities with
less amount of unsafe code. In conclusion, our abstractions reduce the reasoning cost of xv6Rust to the
level of the other Rust OSs despite the use of A&M patterns originated from legacy OSs.

6.4.3 RQ3: Impact on Performance

To show that the run-time overhead of the proposed abstractions is modest, we compare the perfor-
mance of xv6Rust with that of xv6. We compile xv6 with GCC 9.3.0 and xv6Rust with Rust nightly-2021-
06-19, both using the -O3 optimization level. We run these OSs in the QEMU emulator [64] running on
an Ubuntu 20.04 machine with AMD Ryzen 5900X (12 cores, 24 threads, 3.7GHz), 64GB DRAM, and
SSD. We measure the execution cycles of xv6’s usertests benchmark programs on xv6 and xv6Rust ten
times. We attempted to include xv6-rust in this experiment as well because it is another port of xv6 to
Rust. However, xv6-rust has not fully ported the functionality of xv6, preventing most programs in the
usertests suite from running. Thus, we exclude xv6-rust from this experiment.

Figure 6.9 shows the average execution cycles of the benchmark programs on xv6Rust compared to
xv6. Each vertical bar represents a program and its height is the ratio of its average execution time on
xv6Rust to that on xv6. Table 6.3 describes each benchmark program. Surprisingly, xv6Rust performs
31.1% faster than xv6 on average. It turns out that our modular abstractions optimize the kernel although
we only focused on safety reasoning while designing them. For example, xv6Rust calls current_proc only
at the kernel entry point, but xv6 calls the equivalent function in multiple places, including loop bodies.

135

Table 6.3: Description of benchmarks

Benchmark Description Benchmark Description

bsstest execute a program rmdot remove directories

manywrites write to a file concurrently sharedfd write to a file concurrently

truncate2 truncate and write to a file exectest fork and execute a program

writebig write to and read a big file sbrkfail grow heap a lot

bigwrite write to a big file sbrkbasic grow heap a bit

copyin write to a file and a pipe exitwait fork many processes

writetest write to a small file sbrkmuch grow and shrink heap

bigdir create a big directory twochildren fork processes

iref create and remove a directory and a file bigargtest execute a program

truncate1 truncate a file reparent2 fork processes

concreate create and remove a file concurrently copyout read a file and a pipe

rwsbrk grow heap sbrkbugs shrink heap a lot

unlinkread remove and read a file forktest forks a lot

createdelete create and remove files concurrently validatetest create a symbolic link

fourfiles write to files concurrently kernmem incur CPU exceptions

createtest remove and read files stacktest overflow stack

fourteen create and remove directories argptest read a file

linktest create symolic links execout grow and shrink heap

dirtest create a directory reparent fork processes

linkunlink create and remove a file concurrently badarg execute a program

sbrkarg grow heap and create a pipe mem grow and shrink heap

dirfile create a directory and files copyinstr2 open a file

iputtest change the working directory openiputtest create, open, and remove a directory

subdir create subdirectories killstatus kill a process

pgbug grow heap and create a pipe forkforkfork fork processes

exitiputtest create and remove a directory pipe1 read and write to a pipe

truncate3 truncate and write to a file copyinstr1 open a file

bigfile write to and read a big file copyinstr3 grow heap and open a file

opentest open files preempt fork and kill processes

forkfork fork concurrently

136

bs
st

es
t

m
an

yw
rit

es
tru

nc
at

e2
wr

ite
bi

g
bi

gw
rit

e
co

py
in

wr
ite

te
st

bi
gd

ir
ire

f
tru

nc
at

e1
co

nc
re

at
e

rw
sb

rk
un

lin
kr

ea
d

cr
ea

te
de

le
te

fo
ur

fil
es

cr
ea

te
te

st
fo

ur
te

en
lin

kt
es

t
di

rte
st

lin
ku

nl
in

k
sb

rk
ar

g
di

rfi
le

ip
ut

te
st

su
bd

ir
pg

bu
g

ex
iti

pu
tte

st
tru

nc
at

e3
bi

gf
ile

op
en

te
st

fo
rk

fo
rk

rm
do

t
sh

ar
ed

fd
ex

ec
te

st
sb

rk
fa

il
sb

rk
ba

sic
ex

itw
ai

t
sb

rk
m

uc
h

tw
oc

hi
ld

re
n

bi
ga

rg
te

st
re

pa
re

nt
2

co
py

ou
t

sb
rk

bu
gs

fo
rk

te
st

va
lid

at
et

es
t

ke
rn

m
em

st
ac

kt
es

t
ar

gp
te

st
ex

ec
ou

t
re

pa
re

nt
ba

da
rg

m
em

co
py

in
st

r2
op

en
ip

ut
te

st
ki

lls
ta

tu
s

fo
rk

fo
rk

fo
rk

pi
pe

1
co

py
in

st
r1

co
py

in
st

r3
pr

ee
m

pt

40%

50%

60%

70%
80%
90%

100%
110%
120%

Cy
cle

s

Figure 6.9: Execution cycles of each benchmark on xv6Rust compared to xv6

We could decrease the performance difference to 16.1% by applying the optimizations in xv6Rust to xv6.
We anticipate that the remaining difference also originates from similar unintended optimizations or
benefits from the compiler optimization based on the Rust aliasing model.

While xv6Rust performs 20% slower than xv6 for one benchmark program, our investigation shows
that this slowdown is not attributable to the overhead of the proposed abstractions. The benchmark
program creates three child processes via fork, kills each child, and then waits for each of them. If a
context switch occurs due to a timer interrupt before the parent calls wait, the children handle the kill
signals before the parent’s wait call. This allows wait to find a zombie child in the first iteration and
return immediately. Conversely, if a timer interrupt does not occur before calling wait, it reaches the end
of the process list and makes the parent sleep until a child handles the kill signal, thereby significantly
increasing the execution time, in our experiments, by more than twice. Therefore, the execution time
largely depends on the timing of a timer interrupt. We find that timer interrupts occur more frequently
before wait calls in xv6 than in xv6Rust . Considering the results from other benchmarks, we believe that
xv6Rust handles most system calls faster than xv6, increasing the likelihood of calling wait before a timer
interrupt. This explains the observed slowdown, and thus, we do not consider the slowdown as evidence
of the overhead incurred by the proposed abstractions.

Comparison with Linux To evaluate the performance of the abstractions, we additionally compare
xv6Rust with the Linux kernel, specifically Ubuntu 18.04 [43]. We run both OSs on an ARMv8 machine
with KVM virtualization [122]. We measure latency and bandwidth with 13 benchmark programs from
LMbench [147]. We exclude the other benchmarks from our experiment because they cannot be executed
on xv6Rust . The excluded benchmarks fall into four categories: network-related, signal-related, mmap-
related, and hardware-related.

• Network-related benchmarks include bw_tcp, lat_tcp, bw_udp, lat_udp, bw_unix, lat_unix, lat_connect,
lat_select, and lat_rpc. To run these benchmarks, various system calls (e.g., socket, bind, listen)
must be implemented, but neither xv6 nor xv6Rust incorporates a network stack. The integration
of a network stack would present considerable challenges and likely necessitate new abstractions.

• A signal-related benchmark (lat_sig) requires the implementation of system calls to register signal
handlers (signal, sigaction, sigemptyset, and posix_kill) and a mechanism for delivering signals
to processes. This involves augmenting PCBs with signal-related metadata and their appropriate
manipulation upon system calls and traps. We anticipate that these modifications would not
present significant challenges nor require new abstractions.

137

null read stat fstat open write fork shell pipe
10 1

100

101

102

103
La

te
nc

y
(m

s)

xv6_Rust
Ubuntu

(a) Latency

pipe open2close io_only
10 1

100

101

102

103

Ba
nd

wi
dt

h
(m

b/
s)

xv6_Rust
Ubuntu

(b) Bandwidth

Figure 6.10: Performance of xv6Rust compared to Ubuntu 18.04

• mmap-related benchmarks (bw_mmap_rd, lat_pagefault, and lat_mmap) necessitate the implementation
of the mmap, munmap, and msync system calls. This involves adding mmap-related metadata to PCBs
and their appropriate manipulation upon system calls. We believe these changes would not present
significant challenges nor necessitate new abstractions.

• Hardware-related benchmarks (mhz, tlb, line, cache, stream, par_mem, and par_ops) aim to measure
hardware rather than kernel performance. They can be supported by increasing user-mode stack,
heap, and file sizes, which does not require the introduction of new abstractions.

As shown in Figure 6.10, xv6Rust performs a few times to a few thousand times worse than Linux,
depending on the benchmark program. We analyze the reasons for Linux outperforming xv6Rust as
follows:

• Following the design of xv6, xv6Rust maintains only a single page table on the memory and swaps
the page table at the start and end of each kernel trap. On the other hand, Linux always keeps
page tables for both kernel and user processes on the memory. As a result, xv6Rust spends 15 clock
cycles on swapping the page table, barrier instructions, and TLB cache flush in each system call,
while Linux does not. Thus, short system calls in xv6Rust have a much longer latency than Linux.

• xv6Rust uses inefficient algorithms of xv6 without any change. For example, the wakeup function,
which wakes up every sleeping process, acquires the lock of every existing process and incurs huge
contention. On the other hand, Linux avoids such contention by managing a wait queue consisting
only of sleeping processes.

• As in xv6, xv6Rust uses spin locks in many places. However, Linux replaces some of them with
much cheaper locks, such as RCU read locks [54].

• Like xv6, xv6Rust disables interrupts when accessing CPU-owned values. Linux, in contrast, often
employs more efficient strategies, e.g., disabling only preemption.

138

As our analysis shows, xv6Rust ’s performance issues originate from the design of xv6, which has little
consideration for performance, not our abstractions for A&M patterns. We believe that we can make the
performance of xv6Rust comparable to that of Linux by addressing the aforementioned inefficiencies.

139

Chapter 7. Related Work

Transforming C2Rust-Generated Code Several tools have been proposed to incorporate Rust’s
language features into C2Rust-generated code. However, they focuses only on syntactic improvement or
removal of scalar pointers. CRustS [137] utilizes syntactic replacement rules and lacks the capability to
perform intricate transformations that require a deeper understanding of semantics. Both Laertes [84,
83] and Crown [203] address the replacement of scalar pointers with safe references. Laertes relies
on feedback from the Rust compiler to determine which raw pointers can be converted to references. In
contrast, Crown conducts ownership analysis for pointers and can convert a wider range of pointers
into references compared to Laertes.

C to Safe Languages Many safe substitutes for C and (semi-) automatic translation to those lan-
guages have been proposed [157, 93, 141, 81, 72, 89, 177, 57, 90, 91]. However, they guarantee only a
limited form of safety. Necula et al. [157] proposed CCured, a language extending C with new kinds
of pointer and the type system to statically verify or dynamically enforce the safety of each pointer.
Grossman et al. [93] proposed Cyclone, which extends C with region-based memory management [190].
Cyclone’s type system prevents dangling pointer dereference by annotating each pointer with a region to
use the pointer. Machiry et al.’s 3C tool [141] automatically translates C to Checked C [81], an extension
of C with checked pointer types. Checked pointers guarantee the absence of null pointer dereference and
out-of-bound accesses.

Static Analysis for Rust A few static analysis techniques have been proposed for Rust, primarily
focusing on bug detection. Their goal is to analyze human-written Rust code, unlike this work, which
deals with C2Rust-generated code. A notable study is MirChecker [135], which employs a static
analysis based on the abstract interpretation framework. It specifically targets the detection of unique
bug patterns in Rust programs, such as runtime panics and lifetime corruption, but does not introduce
novel sensitivities. Additionally, Rudra [58] and SafeDrop [75] perform dataflow analyses to detect
memory bugs.

Static Analysis for Concurrent Programs Various static analyzers for concurrent C programs
have been proposed. Our analyzer used in Concrat analyzes concurrent Rust programs but assumes
only C2Rust-generated code, which uses C features rather than Rust features and thus shares charac-
teristics with C programs. While the goal of existing analyzers is to detect concurrency bugs, our goal
is to efficiently generate lock summaries for code transformation. This different goal makes our design
completely distinct from the others. Our analyzer targets the same precision as the Rust type checker
by using context- and path-insensitive dataflow analyses. However, other analyzers perform context-
or path-sensitive analyses to reduce false alarms. Goblint [192, 180] and others [155, 154, 153] are
based on abstract interpretation [73]. RELAY [193] and SDRacer [196] utilize symbolic execution [61].
Locksmith [169] and Kahlon et al’s tool [116] perform context-sensitive analyses.

A few static analyzers for concurrent Java programs [134, 65] exist. Because Java provides a syntactic
synchronized block, a lock acquired by a certain function cannot be released by another function, which
frequently happens in C.

140

Must-Points-To Analysis Researchers have studied must-points-to analysis, but their techniques
differ from our analysis in Urcrat in purpose, method, and target language. Our analysis aims to precisely
compute struct field values. In contrast, most studies use must-points-to analysis to enhance the precision
of other analyses. Altucher and Landi [51] use must-points-to relations to compute def-use relations. Ma
et al. [140] and Fink et al. [88] improve may-points-to relations using must-points-to relations, enabling
more precise detection of null pointer dereferences and Java typestate checking, respectively. Nikolić
and Spoto [162] use must-points-to analysis to improve other analyses, such as nullness and termination
analyses. While our approach uses may-points-to analysis as a pre-analysis, some techniques compute
may- and must-points-to relations simultaneously. Emami et al. [82] conduct interprocedural may- and
must-points-to analysis for compiler optimizations and parallelizations. Sagiv et al. [178] propose a
parametric framework that generates a family of shape analyses based on three-valued logic, expressing
must-, must-not-, and may-points-to relations. Unlike most studies, including ours, which focus on
imperative languages, Jagannathan et al. [109] propose must-points-to analysis for functional languages,
with results used for optimizations such as closure conversion. Techniques applicable to general must-
points-to analysis have also been explored. Balatsouras et al. [60] present a declarative model in Datalog
that expresses a wide range of must-points-to analyses. Kastrinis et al. [118] propose an efficient data
structure for pointer graphs.

Sensitivities Various sensitivities have been proposed in the abstract interpretation literature. While
these sensitivities aim to improve the precision of static analysis in a general setting, our write set
sensitivity and nullity sensitivity used in Nopcrat are specifically designed to enhance the precision
of output parameter identification. Call-site sensitivity [181, 182, 150] distinguishes calls to the same
function from different call sites. Since output parameters should act as output parameters regardless of
the calling context, our approach does not employ call-site sensitivity. On the other hand, abstract call
state sensitivity [181] is often utilized for bottom-up analyses to distinguish various abstract input states
of functions. Our nullity sensitivity can be viewed as a restricted form of abstract call state sensitivity,
focusing solely on nullity information within the abstract input state. Trace history sensitivity, or trace
partitioning [146, 173, 96], distinguishes different execution trace histories. Our write set sensitivity can
be considered a restricted form of trace history sensitivity, specifically concerned with the history of
effective writes to parameters. Object sensitivity [151, 152, 184] is commonly employed in static analysis
for object-oriented languages. However, as neither C nor Rust is object-oriented, object sensitivity is
not a consideration in our work. For a formal understanding of sensitivities, refer to the study by Kim
et al. [121].

Neural Machine Translation of Programming Languages Neural machine translation of pro-
gramming languages has been extensively studied over the past decade. Most existing studies have
focused on training models to translate code without considering the integration of additional informa-
tion and guidance, which is the primary focus of this work. Supervised learning approaches, which rely
on code translation data for training, have been applied to only a limited number of language pairs,
such as Java and C# [160, 117, 161, 71]. To address this limitation, TransCoder [175] introduces unsu-
pervised learning to programming language translation, enabling training with monolingual code bases.
Further studies [126, 176, 188] enhance TransCoder’s translation capabilities by utilizing obfuscated
code, unit tests, and compilers’ intermediate code representation during training. SDA-Trans [138] also
employs unsupervised learning but leverages syntax structure and domain knowledge to allow effective

141

learning even with limited training data. TransCoder, its successors, and SDA-Trans primarily focus
on translating small programs containing one or two functions. Consequently, the need for augment-
ing functions with callee signatures has not been motivated. There exist several LLMs capable of code
translation [197, 70, 87, 95], which can be effectively leveraged by Tymcrat.

Only a few studies have focused on utilizing pre-trained LLMs for code translation. Notable among
them is UniTrans [201], which, like this work, provides additional information and guidance to LLMs.
UniTrans augments each function with generated unit tests before feeding it into the LLM and iteratively
requests the LLM to fix the translated code if it does not pass the unit tests. Since UniTrans targets
small programs without complex types, it does not aim to migrate types. Furthermore, because type
errors rarely occur after translating such programs, UniTrans focuses on fixing semantics errors rather
than type errors. Pan et al. [166] categorize incorrect code translation results produced by LLMs. They
conducted experiments with multiple source and target programming languages. Their categorization
covers various kinds of translation bugs, including both type errors and runtime errors. In contrast, this
work focuses specifically on translating C to Rust and aims to reduce type errors. A promising future
direction for this work would be to use a methodology similar to Pan et al.’s for classifying unresolved
type errors. This would help develop techniques to fix each kind of error.

While we evaluate Tymcrat with the number of type errors, various metrics have been proposed.
BLEU, which treats code as a token sequence and measures syntactic similarity between translated code
and human translation, has been used by several studies [160, 117, 161, 71]. CodeBLEU [171], a recently
introduced metric, enhances BLEU by considering the similarity of syntax trees and dataflow graphs.
Roziere et al. [175] proposed computational accuracy, which verifies if the translated code preserves the
semantics through the execution of unit tests. We do not empoly existing metrics due to the absence
of human-translated Rust code for the benchmark programs and the presence of type errors preventing
compilation and unit test execution.

Modular Abstractions for A&M Patterns Various A&M patterns and their modular abstractions
in Rust have already been proposed outside the context of OSs. For example, Rust’s standard library [26]
and intrusive collection libraries [130, 77] provide modular abstractions for well-known A&M patterns.
Several cells such as GhostCell [202], QCell, TCell, TLCell, and LCell [168] have been proposed, but they
are different from ArcCell. The spin [191] and parking_lot [78] crates have proposed OS-independent
synchronization primitives, but not lock-protected immovable values or separated values.

Existing clean-slate Rust OSs rarely propose new modular abstractions for A&M patterns. They pri-
marily utilize A&M patterns in the standard library to guarantee safety straightforwardly. Theseus [67]
supports live evolution—changing modules while the kernel is running—and fault recovery without in-
troducing new A&M patterns. RedLeaf [156] also features fault isolation of modules but introduces a
new A&M pattern, RRef<T>, for safe zero-copy communication between modules. RRef<T> is the same as
Box<T> [33] or C++’s unique_ptr<T> [108, §23.10.2] except that it counts the number of borrows to defer
its deallocation in case of its owner module’s fault. RRef<T> is not necessary for xv6Rust because it is a
monolithic kernel without isolated modules.

142

Chapter 8. Conclusion

In this dissertation, we propose techniques to improve C-to-Rust translation using static analysis.
For each C feature, we design (1) specialized static analysis to gather information on how the feature
is used in C2Rust-generated code and (2) code transformation that replaces the feature with its Rust
counterpart based on the analysis results. Specifically, we target three key features: locks, tagged
unions, and output parameters. To replace C’s locks with Rust’s locks, we compute data-lock relations
and flow-lock relations through bottom-up dataflow analysis and top-down data fact propagation. The
analysis results allow us to merge each lock with the protected data and properly pass guards through
function calls. To replace unions that are accompanied by tag values with tagged unions, we employ
intraprocedural must-points-to analysis, which identifies the tag field for each union and the tag values
associated with each union field. Using the analysis results, we update type definitions and apply two
kinds of transformations, naïve and idiomatic, to the use sites of unions. To replace output parameters
with tuples and the Option/Result types, we introduce write-set-sensitive and nullity-sensitive bottom-up
dataflow analysis, which identifies output parameters and the return values signifying success or failure.
The analysis results facilitate the replacement of must-output parameters with tuples and may-output
parameters with Option/Result. Our evaluation shows that the proposed approaches are scalable, precise,
and mostly correct.

Additionally, to complement the static-analysis-based translation, we propose type-migrating LLM-
based translation. To promote type migration, we explicitly instruct the LLM to generate candidate
signatures and translate the function using each candidate. To reduce type errors, we iteratively fix
them using compiler feedback, leveraging compiler-generated fixes and providing the error messages
from the compiler to the LLM. Our evaluation shows that the proposed techniques effectively promote
type migration and reduce type errors.

Furthermore, to facilitate future development of static analysis targeting A&M patterns in OSs, we
identify six A&M patterns and propose their modular abstractions. The six patterns are process-owned
values, CPU-owned values, memory pools, lock-protected immovable values, lock-protected separated
values, and asynchronous ownership transfer for DMA. Our evaluation shows that these patterns are all
present in Linux, implying practicality, but the proposed modular abstractions do not currently exist in
clean-slate Rust OSs, demonstrating originality.

143

Bibliography

[1] C2Rust. https://github.com/immunant/c2rust.

[2] Crate libc. https://docs.rs/libc.

[3] Crate reffers. https://docs.rs/reffers.

[4] Crate rental. https://docs.rs/rental.

[5] Fuchsia guides: Rust. https://fuchsia.dev/fuchsia-src/development/languages/rust.

[6] GNU package blurbs. https://www.gnu.org/manual/blurbs.html.

[7] Goblint documentation: configuring. https://goblint.readthedocs.io/en/latest/

user-guide/configuring.

[8] Miri. https://github.com/rust-lang/miri.

[9] OpenAI documentation: Models. https://platform.openai.com/docs/models.

[10] Redox. https://redox-os.org/.

[11] Rust by example: if let. https://doc.rust-lang.org/rust-by-example/flow_control/if_

let.html.

[12] Rust compiler development guide. https://rustc-dev-guide.rust-lang.org/.

[13] Rust compiler development guide: Dataflow analysis. https://rustc-dev-guide.rust-lang.

org/mir/dataflow.html.

[14] Rust compiler development guide: The HIR. https://rustc-dev-guide.rust-lang.org/hir.

html.

[15] Rust compiler development guide: The MIR. https://rustc-dev-guide.rust-lang.org/mir/

index.html.

[16] The Rust programming language. http://rust-lang.org/.

[17] The Rust programming language: Defining an enum. https://doc.rust-lang.org/book/

ch06-01-defining-an-enum.html.

[18] The Rust programming language: Pattern syntax. https://doc.rust-lang.org/book/

ch18-03-pattern-syntax.html.

[19] The Rust programming language: Unsafe Rust. https://doc.rust-lang.org/book/

ch19-01-unsafe-rust.html.

[20] The Rust reference: Behavior considered undefined. https://doc.rust-lang.org/reference/

behavior-considered-undefined.html.

144

https://github.com/immunant/c2rust
https://docs.rs/libc
https://docs.rs/reffers
https://docs.rs/rental
https://fuchsia.dev/fuchsia-src/development/languages/rust
https://www.gnu.org/manual/blurbs.html
https://goblint.readthedocs.io/en/latest/user-guide/configuring
https://goblint.readthedocs.io/en/latest/user-guide/configuring
https://github.com/rust-lang/miri
https://platform.openai.com/docs/models
https://redox-os.org/
https://doc.rust-lang.org/rust-by-example/flow_control/if_let.html
https://doc.rust-lang.org/rust-by-example/flow_control/if_let.html
https://rustc-dev-guide.rust-lang.org/
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
http://rust-lang.org/
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html

[21] The Rust reference: Lifetime elision. https://doc.rust-lang.org/reference/

lifetime-elision.html.

[22] The Rust reference: Static items—mutable statics. https://doc.rust-lang.org/reference/

items/static-items.html#mutable-statics.

[23] The Rust reference: Unions. https://doc.rust-lang.org/reference/items/unions.html.

[24] The Rust RFC book: 2094-nll. https://rust-lang.github.io/rfcs/2094-nll.html.

[25] The Rust RFC book: 2585-unsafe-block-in-unsafe-fn. https://rust-lang.github.io/rfcs/

2585-unsafe-block-in-unsafe-fn.html.

[26] The Rust standard library. https://doc.rust-lang.org/std.

[27] The Rust standard library: Module std::option. https://doc.rust-lang.org/std/option/.

[28] The Rust standard library: Module std::pin. https://doc.rust-lang.org/std/pin/index.html.

[29] The Rust standard library: Module std::result. https://doc.rust-lang.org/std/result/

index.html.

[30] The Rust standard library: Module std::sync. https://doc.rust-lang.org/stable/std/sync/

index.html.

[31] The Rust standard library: Primitive type never. https://doc.rust-lang.org/std/primitive.
never.html.

[32] The Rust standard library: Primitive type tuple. https://doc.rust-lang.org/std/primitive.
tuple.html.

[33] The Rust standard library: Struct std::boxed::Box. https://doc.rust-lang.org/std/boxed/

struct.Box.html.

[34] The Rust standard library: Struct std::cell::Cell. https://doc.rust-lang.org/std/cell/

struct.Cell.html.

[35] The Rust standard library: Struct std::cell::RefCell. https://doc.rust-lang.org/std/cell/

struct.RefCell.html.

[36] The Rust standard library: Struct std::rc::Rc. https://doc.rust-lang.org/std/rc/struct.Rc.
html.

[37] The Rust standard library: Struct std::sync::Arc. https://doc.rust-lang.org/std/sync/

struct.Arc.html.

[38] The Rust standard library: Struct std::sync::Condvar. https://doc.rust-lang.org/stable/

std/sync/struct.Condvar.html.

[39] The Rust standard library: Struct std::sync::Mutex. https://doc.rust-lang.org/std/sync/

struct.Mutex.html.

[40] The Rust standard library: Struct std::sync::RwLock. https://doc.rust-lang.org/stable/

std/sync/struct.RwLock.html.

145

https://doc.rust-lang.org/reference/lifetime-elision.html
https://doc.rust-lang.org/reference/lifetime-elision.html
https://doc.rust-lang.org/reference/items/static-items.html#mutable-statics
https://doc.rust-lang.org/reference/items/static-items.html#mutable-statics
https://doc.rust-lang.org/reference/items/unions.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://rust-lang.github.io/rfcs/2585-unsafe-block-in-unsafe-fn.html
https://rust-lang.github.io/rfcs/2585-unsafe-block-in-unsafe-fn.html
https://doc.rust-lang.org/std
https://doc.rust-lang.org/std/option/
https://doc.rust-lang.org/std/pin/index.html
https://doc.rust-lang.org/std/result/index.html
https://doc.rust-lang.org/std/result/index.html
https://doc.rust-lang.org/stable/std/sync/index.html
https://doc.rust-lang.org/stable/std/sync/index.html
https://doc.rust-lang.org/std/primitive.never.html
https://doc.rust-lang.org/std/primitive.never.html
https://doc.rust-lang.org/std/primitive.tuple.html
https://doc.rust-lang.org/std/primitive.tuple.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/stable/std/sync/struct.Condvar.html
https://doc.rust-lang.org/stable/std/sync/struct.Condvar.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/stable/std/sync/struct.RwLock.html
https://doc.rust-lang.org/stable/std/sync/struct.RwLock.html

[41] std::lock_guard. https://en.cppreference.com/w/cpp/thread/lock_guard.

[42] std::mutex. https://en.cppreference.com/w/cpp/thread/mutex.

[43] Ubuntu 18.04 LTS (Bionic Beaver). https://releases.ubuntu.com/18.04.

[44] The Rust unstable book: thread_local. https://doc.rust-lang.org/beta/unstable-book/

language-features/thread-local.html, 2015.

[45] Netstack3 - a Fuchsia owned rust based netstack. https://fuchsia.dev/fuchsia-src/

contribute/roadmap/2021/netstack3, 2021.

[46] Introducing ChatGPT. https://openai.com/blog/chatgpt, 2022.

[47] GPT-4o mini: advancing cost-efficient intelligence. https://openai.com/index/

gpt-4o-mini-advancing-cost-efficient-intelligence/, 2024.

[48] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, and Hans Hansson. Concurrency bugs
in open source software: a case study. Journal of Internet Services and Applications, 8(1), April
2017.

[49] Toufique Ahmed and Premkumar Devanbu. Few-shot training LLMs for project-specific code-
summarization. In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’22, New York, NY, USA, 2023. Association for Computing Machinery.

[50] Eyad Alkassar, Mark A. Hillebrand, Wolfgang J. Paul, and Elena Petrova. Automated verification
of a small hypervisor. In Proceedings of the Third International Conference on Verified Software:
Theories, Tools, Experiments, VSTTE’10, page 40–54, Berlin, Heidelberg, 2010. Springer-Verlag.

[51] Rita Z. Altucher and William Landi. An extended form of must alias analysis for dynamic alloca-
tion. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’95, page 74–84, New York, NY, USA, 1995. Association for Computing
Machinery.

[52] Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD
Thesis, University of Copenhagen, 1994.

[53] Brian Anderson, Lars Bergstrom, Manish Goregaokar, Josh Matthews, Keegan McAllister, Jack
Moffitt, and Simon Sapin. Engineering the Servo web browser engine using Rust. In Proceedings
of the 38th International Conference on Software Engineering Companion, ICSE ’16, page 81–89,
New York, NY, USA, 2016. Association for Computing Machinery.

[54] Andrea Arcangeli, Mingming Cao, Paul E. McKenney, and Dipankar Sarma. Using read-copy-
update techniques for System V IPC in the Linux 2.5 kernel. In Proceedings of the FREENIX
Track: 2003 USENIX Annual Technical Conference, June 9-14, 2003, San Antonio, Texas, USA,
pages 297–309. USENIX, 2003.

[55] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexander J. Summers.
How do programmers use Unsafe Rust? Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

146

https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/mutex
https://releases.ubuntu.com/18.04
https://doc.rust-lang.org/beta/unstable-book/language-features/thread-local.html
https://doc.rust-lang.org/beta/unstable-book/language-features/thread-local.html
https://fuchsia.dev/fuchsia-src/contribute/roadmap/2021/netstack3
https://fuchsia.dev/fuchsia-src/contribute/roadmap/2021/netstack3
https://openai.com/blog/chatgpt
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

[56] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. Leveraging Rust
types for modular specification and verification. Proc. ACM Program. Lang., 3(OOPSLA), oct
2019.

[57] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all pointer and array
access errors. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, PLDI ’94, page 290–301, New York, NY, USA, 1994. Association for
Computing Machinery.

[58] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo Kim. Rudra: Finding
memory safety bugs in Rust at the ecosystem scale. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21, page 84–99, New York, NY, USA, 2021.
Association for Computing Machinery.

[59] Xiaolong Bai, Luyi Xing, Min Zheng, and Fuping Qu. iDEA: Static analysis on the security of
Apple kernel drivers. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’20, page 1185–1202, New York, NY, USA, 2020. Association for
Computing Machinery.

[60] George Balatsouras, Kostas Ferles, George Kastrinis, and Yannis Smaragdakis. A Datalog model
of must-alias analysis. In Proceedings of the 6th ACM SIGPLAN International Workshop on State
Of the Art in Program Analysis, SOAP 2017, page 7–12, New York, NY, USA, 2017. Association
for Computing Machinery.

[61] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. A
survey of symbolic execution techniques. ACM Comput. Surv., 51(3), May 2018.

[62] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Ed-
uardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, and Chetan Murthy. The Coq proof
assistant reference manual: Version 6.1. https://hal.inria.fr/inria-00069968, 1997.

[63] Alexis Kenneth Beingessner. You can’t spell trust without Rust. Master’s thesis, Carleton Univer-
sity, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada, 2016.

[64] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ATEC ’05, page 41, USA, 2005. USENIX
Association.

[65] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. RacerD: compositional
static race detection. Proc. ACM Program. Lang., 2(OOPSLA), October 2018.

[66] Jeff Bonwick. The slab allocator: an object-caching kernel memory allocator. In Proceedings of
the USENIX Summer 1994 Technical Conference on USENIX Summer 1994 Technical Conference
- Volume 1, USTC’94, page 6, USA, 1994. USENIX Association.

[67] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. Theseus: An experiment in operat-
ing system structure and state management. In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, OSDI’20, USA, 2020. USENIX Association.

[68] Kyle Bradshaw. Google is officially releasing its Fuchsia OS, starting w/ first-gen Nest Hub.
https://9to5google.com/2021/05/25/google-releases-fuchsia-os-nest-hub, 2021.

147

https://hal.inria.fr/inria-00069968
https://9to5google.com/2021/05/25/google-releases-fuchsia-os-nest-hub

[69] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M. Frans Kaashoek.
Linux kernel vulnerabilities: state-of-the-art defenses and open problems. In Proceedings of the
Second Asia-Pacific Workshop on Systems, APSys ’11, New York, NY, USA, 2011. Association for
Computing Machinery.

[70] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. https://arxiv.org/abs/2107.03374, 2021.

[71] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, page 2552–2562, Red Hook, NY, USA, 2018. Curran Associates Inc.

[72] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C. Necula. Dependent
types for low-level programming. In Proceedings of the 16th European Symposium on Programming,
ESOP’07, page 520–535, Berlin, Heidelberg, 2007. Springer-Verlag.

[73] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’77, page
238–252, New York, NY, USA, 1977. Association for Computing Machinery.

[74] Russ Cox, M Frans Kaashoek, and Robert Morris. xv6, a simple Unix-like teaching operating
system. http://pdos.csail.mit.edu/6.828/2012/xv6.html, 2011.

[75] Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan Zhou. SafeDrop: Detecting memory deallocation
bugs of Rust programs via static data-flow analysis. ACM Trans. Softw. Eng. Methodol., 32(4),
may 2023.

[76] Al Danial. cloc. https://github.com/AlDanial/cloc.

[77] Amanieu d’Antras. Crate intrusive_collections. https://docs.rs/intrusive-collections.

[78] Amanieu d’Antras. Crate parking_lot. https://docs.rs/parking_lot.

[79] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via ChatGPT.
https://arxiv.org/abs/2304.07590, 2024.

[80] Ulrich Drepper. ELF handling for thread-local storage. https://www.akkadia.org/drepper/

tls.pdf.

[81] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. Checked C: Making C
safe by extension. In 2018 IEEE Cybersecurity Development (SecDev), pages 53–60, 2018.

148

https://arxiv.org/abs/2107.03374
http://pdos.csail.mit.edu/6.828/2012/xv6.html
https://github.com/AlDanial/cloc
https://docs.rs/intrusive-collections
https://docs.rs/parking_lot
https://arxiv.org/abs/2304.07590
https://www.akkadia.org/drepper/tls.pdf
https://www.akkadia.org/drepper/tls.pdf

[82] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In Proceedings of the ACM SIGPLAN 1994 Conference
on Programming Language Design and Implementation, PLDI ’94, page 242–256, New York, NY,
USA, 1994. Association for Computing Machinery.

[83] Mehmet Emre, Peter Boyland, Aesha Parekh, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf.
Aliasing limits on translating C to safe Rust. Proc. ACM Program. Lang., 7(OOPSLA1), apr 2023.

[84] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. Translating C to safer Rust.
Proc. ACM Program. Lang., 5(OOPSLA), oct 2021.

[85] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. Automated
repair of programs from large language models. In Proceedings of the 45th International Conference
on Software Engineering, ICSE ’23, page 1469–1481, Melbourne, Victoria, Australia, 2023. IEEE
Press.

[86] Mazdak Farrokhzad. Tracking issue for eRFC 2497, “if- and while-let-chains, take 2”. https:

//github.com/rust-lang/rust/issues/53667, 2018.

[87] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming
and natural languages. https://arxiv.org/abs/2002.08155, 2020.

[88] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. Effective typestate
verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol., 17(2), may 2008.

[89] Jeffrey S. Foster, Robert Johnson, John Kodumal, and Alex Aiken. Flow-insensitive type qualifiers.
ACM Trans. Program. Lang. Syst., 28(6):1035–1087, November 2006.

[90] David Gay and Alex Aiken. Memory management with explicit regions. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation, PLDI
’98, page 313–323, New York, NY, USA, 1998. Association for Computing Machinery.

[91] David Gay and Alex Aiken. Language support for regions. In Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Implementation, PLDI ’01, page 70–80,
New York, NY, USA, 2001. Association for Computing Machinery.

[92] Manish Goregaokar. Fearless concurrency in Firefox Quantum. https://blog.rust-lang.org/

2017/11/14/Fearless-Concurrency-In-Firefox-Quantum.html, 2017.

[93] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based memory management in Cyclone. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Implementation, PLDI ’02, page 282–293, New
York, NY, USA, 2002. Association for Computing Machinery.

[94] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. CertiKOS: an extensible architecture for building certified concurrent OS kernels. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, page 653–669, USA, 2016. USENIX Association.

149

https://github.com/rust-lang/rust/issues/53667
https://github.com/rust-lang/rust/issues/53667
https://arxiv.org/abs/2002.08155
https://blog.rust-lang.org/2017/11/14/Fearless-Concurrency-In-Firefox-Quantum.html
https://blog.rust-lang.org/2017/11/14/Fearless-Concurrency-In-Firefox-Quantum.html

[95] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn Drain,
Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. GraphCodeBERT: Pre-training code
representations with data flow. https://arxiv.org/abs/2009.08366, 2021.

[96] Maria Handjieva and Stanislav Tzolovski. Refining static analyses by trace-based partitioning
using control flow. In Giorgio Levi, editor, Static Analysis, pages 200–214, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[97] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’09, page 226–238, New York, NY, USA, 2009. Association for Computing Machinery.

[98] John Hodge. Tifflin experimental kernel. https://github.com/thepowersgang/rust_os/blob/

master/Kernel/Core/arch/mod.rs.

[99] Jaemin Hong and Sukyoung Ryu. Tymcrat: Type-migrating C-to-Rust automatic translator.
https://github.com/kaist-plrg/simcrat.

[100] Jaemin Hong and Sukyoung Ryu. Concrat: An automatic C-to-Rust lock API translator for
concurrent programs (artifact). https://doi.org/10.5281/zenodo.7573490, January 2023.

[101] Jaemin Hong and Sukyoung Ryu. Don’t write, but return: Replacing output parameters with
algebraic data types in C-to-Rust translation (artifact). https://doi.org/10.5281/zenodo.

10795858, March 2024.

[102] Jaemin Hong and Sukyoung Ryu. To tag, or not to tag: Translating C’s unions to Rust’s tagged
unions (artifact). https://doi.org/10.5281/zenodo.13373683, August 2024.

[103] Jaemin Hong, Sunghwan Shim, Sanguk Park, Taewoo Kim, Jungwoo Kim, Junsoo Lee, Sukyoung
Ryu, and Jeehoon Kang. xv6Rust , a complete rewrite of xv6 in Rust. https://github.com/

kaist-cp/rv6.

[104] White House. Back to the building blocks: A path toward secure and measurable software. https:
//www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf,
February 2024.

[105] Tim Hutt. Would Rust secure cURL? https://blog.timhutt.co.uk/

curl-vulnerabilities-rust/, 2021.

[106] IEEE. IEEE standard for information technology–portable operating system interface
(POSIX(TM)) base specifications, issue 7. IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-
2008), pages 1–3951, 2018.

[107] Ayooluwa Isaiah. Rewriting the GNU Coreutils in Rust. https://lwn.net/Articles/857599,
2021.

[108] ISO. Programming languages — C++. Standard ISO/IEC 14882:2020, International Organization
for Standardization, Chemin de Blandonnet 8, CP 401 - 1214 Vernier, Geneva, Switzerland, 2020.

150

https://arxiv.org/abs/2009.08366
https://github.com/thepowersgang/rust_os/blob/master/Kernel/Core/arch/mod.rs
https://github.com/thepowersgang/rust_os/blob/master/Kernel/Core/arch/mod.rs
https://github.com/kaist-plrg/simcrat
https://doi.org/10.5281/zenodo.7573490
https://doi.org/10.5281/zenodo.10795858
https://doi.org/10.5281/zenodo.10795858
https://doi.org/10.5281/zenodo.13373683
https://github.com/kaist-cp/rv6
https://github.com/kaist-cp/rv6
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://blog.timhutt.co.uk/curl-vulnerabilities-rust/
https://blog.timhutt.co.uk/curl-vulnerabilities-rust/
https://lwn.net/Articles/857599

[109] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Single and loving it:
must-alias analysis for higher-order languages. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’98, page 329–341, New York, NY,
USA, 1998. Association for Computing Machinery.

[110] Sujay Jayakar. Rewriting the heart of our sync engine. https://dropbox.tech/infrastructure/
rewriting-the-heart-of-our-sync-engine, 2020.

[111] Dave Jones. Trinity: Linux system call fuzzer. https://github.com/kernelslacker/trinity.

[112] Ralf Jung. Exclude mutable references to !Unpin types from uniqueness guarantees. https:

//github.com/rust-lang/miri/pull/1952.

[113] Ralf Jung. Stacked Borrows vs self-referential structs. https://github.com/rust-lang/

unsafe-code-guidelines/issues/148.

[114] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. Stacked Borrows: An aliasing
model for Rust. Proc. ACM Program. Lang., 4(POPL), dec 2019.

[115] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing the
foundations of the Rust programming language. Proc. ACM Program. Lang., 2(POPL), dec 2017.

[116] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static data race detection for concur-
rent programs with asynchronous calls. In Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, page 13–22, New York, NY, USA, 2009. Association for
Computing Machinery.

[117] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-based statistical translation of
programming languages. In Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software, Onward! 2014, page 173–184, New
York, NY, USA, 2014. Association for Computing Machinery.

[118] George Kastrinis, George Balatsouras, Kostas Ferles, Nefeli Prokopaki-Kostopoulou, and Yannis
Smaragdakis. An efficient data structure for must-alias analysis. In Proceedings of the 27th Inter-
national Conference on Compiler Construction, CC 2018, page 48–58, New York, NY, USA, 2018.
Association for Computing Machinery.

[119] Uday P. Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and
Practice. CRC Press, 2009.

[120] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and Byoungyoung
Lee. HFL: Hybrid fuzzing on the Linux kernel. In 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society, 2020.

[121] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. A theoretical foundation of sensitivity in an
abstract interpretation framework. ACM Trans. Program. Lang. Syst., 40(3), aug 2018.

[122] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the Linux virtual
machine monitor. Proceedings of the Linux symposium, 1(8):225–230, 2007.

151

https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://github.com/kernelslacker/trinity
https://github.com/rust-lang/miri/pull/1952
https://github.com/rust-lang/miri/pull/1952
https://github.com/rust-lang/unsafe-code-guidelines/issues/148
https://github.com/rust-lang/unsafe-code-guidelines/issues/148

[123] Aleksey Kladov. Spinlocks considered harmful. https://matklad.github.io/2020/01/02/

spinlocks-considered-harmful.html, 2020.

[124] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. seL4: formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09, page 207–220, New York,
NY, USA, 2009. Association for Computing Machinery.

[125] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates
Inc.

[126] Marie-Anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume Lample. DOBF: a de-
obfuscation pre-training objective for programming languages. In Proceedings of the 35th Inter-
national Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA,
2024. Curran Associates Inc.

[127] Stefan Lankes, Jens Breitbart, and Simon Pickartz. Exploring Rust for unikernel development. In
Proceedings of the 10th Workshop on Programming Languages and Operating Systems, PLOS ’19,
page 8–15, New York, NY, USA, 2019. Association for Computing Machinery.

[128] Stefan Lankes, Jonathan Klimt, Jens Breitbart, and Simon Pickartz. RustyHermit: A scalable,
Rust-based virtual execution environment. In High Performance Computing: ISC High Perfor-
mance 2020 International Workshops, Frankfurt, Germany, June 21–25, 2020, Revised Selected
Papers, page 331–342, Berlin, Heidelberg, 2020. Springer-Verlag.

[129] John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp Symb. Comput., 8(4):293–341,
December 1995.

[130] Keunhong Lee, Jeehoon Kang, Wonsup Yoon, Joongi Kim, and Sue Moon. Enveloping implicit
assumptions of intrusive data structures within ownership type system. In Proceedings of the 10th
Workshop on Programming Languages and Operating Systems, PLOS ’19, page 16–22, New York,
NY, USA, 2019. Association for Computing Machinery.

[131] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto, Prabal Dutta,
and Philip Levis. Multiprogramming a 64kB computer safely and efficiently. In Proceedings of the
26th Symposium on Operating Systems Principles, SOSP ’17, page 234–251, New York, NY, USA,
2017. Association for Computing Machinery.

[132] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation.
https://arxiv.org/abs/2305.06599, 2023.

[133] Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. AceCoder: Utilizing existing code to enhance
code generation. https://arxiv.org/abs/2303.17780, 2023.

[134] Yanze Li, Bozhen Liu, and Jeff Huang. SWORD: a scalable whole program race detector for
Java. In Proceedings of the 41st International Conference on Software Engineering: Companion
Proceedings, ICSE ’19, page 75–78, Montreal, Quebec, Canada, 2019. IEEE Press.

152

https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2303.17780

[135] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. MirChecker: Detecting bugs
in Rust programs via static analysis. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’21, page 2183–2196, New York, NY, USA, 2021.
Association for Computing Machinery.

[136] Yi Lin, Stephen M. Blackburn, Antony L. Hosking, and Michael Norrish. Rust as a language
for high performance GC implementation. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Symposium on Memory Management, ISMM 2016, page 89–98, New York, NY, USA, 2016.
Association for Computing Machinery.

[137] Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang, James R. Cordy, and Ahmed E. Hassan. In
Rust we trust: A transpiler from unsafe C to safer Rust. In Proceedings of the ACM/IEEE
44th International Conference on Software Engineering: Companion Proceedings, ICSE ’22, page
354–355, New York, NY, USA, 2022. Association for Computing Machinery.

[138] Fang Liu, Jia Li, and Li Zhang. Syntax and domain aware model for unsupervised program
translation. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE),
pages 755–767, 2023.

[139] Marvin Löbel. Crate owning_ref. https://docs.rs/owning_ref.

[140] Xiaodong Ma, Ji Wang, and Wei Dong. Computing must and may alias to detect null pointer
dereference. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation, pages 252–261, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[141] Aravind Machiry, John Kastner, Matt McCutchen, Aaron Eline, Kyle Headley, and Michael Hicks.
C to Checked C by 3C. Proc. ACM Program. Lang., 6(OOPSLA1), April 2022.

[142] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher Kruegel, and Giovanni
Vigna. DR. Checker: a soundy analysis for Linux kernel drivers. In Proceedings of the 26th USENIX
Conference on Security Symposium, SEC’17, page 1007–1024, USA, 2017. USENIX Association.

[143] Joshua Maros. Crate ouroboros. https://docs.rs/ouroboros.

[144] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pearson, 1st edition,
Aug 2008.

[145] Nicholas D. Matsakis and Felix S. Klock. The Rust language. In Proceedings of the 2014 ACM
SIGAda Annual Conference on High Integrity Language Technology, HILT ’14, page 103–104, New
York, NY, USA, 2014. Association for Computing Machinery.

[146] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation based static an-
alyzers. In Proceedings of the 14th European Conference on Programming Languages and Systems,
ESOP’05, page 5–20, Berlin, Heidelberg, 2005. Springer-Verlag.

[147] Larry McVoy and Carl Staelin. lmbench: portable tools for performance analysis. In Proceedings of
the 1996 Annual Conference on USENIX Annual Technical Conference, ATEC ’96, page 23, USA,
1996. USENIX Association.

153

https://docs.rs/owning_ref
https://docs.rs/ouroboros

[148] Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta
Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. Augmented language models: a survey. https://arxiv.org/abs/
2302.07842, 2023.

[149] Jan Midtgaard. Control-flow analysis of functional programs. ACM Comput. Surv., 44(3), jun
2012.

[150] Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and exploiting the k-CFA
paradox: Illuminating functional vs. object-oriented program analysis. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’10,
page 305–315, New York, NY, USA, 2010. Association for Computing Machinery.

[151] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity for points-
to and side-effect analyses for Java. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’02, page 1–11, New York, NY, USA, 2002.
Association for Computing Machinery.

[152] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, jan 2005.

[153] Antoine Miné. Static analysis of run-time errors in embedded critical parallel C programs. In
Gilles Barthe, editor, Programming Languages and Systems, pages 398–418, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[154] Antoine Miné. Relational thread-modular static value analysis by abstract interpretation. In
Kenneth L. McMillan and Xavier Rival, editors, Verification, Model Checking, and Abstract Inter-
pretation, pages 39–58, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[155] Antoine Miné, Laurent Mauborgne, Xavier Rival, Jerome Feret, Patrick Cousot, Daniel Kästner,
Stephan Wilhelm, and Christian Ferdinand. Taking static analysis to the next level: proving the
absence of run-time errors and data races with Astrée. In 8th European Congress on Embedded
Real Time Software and Systems (ERTS 2016), 2016.

[156] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li, Gerd Zellweger,
and Anton Burtsev. RedLeaf: Isolation and communication in a safe operating system. In Proceed-
ings of the 14th USENIX Conference on Operating Systems Design and Implementation, OSDI’20,
USA, 2020. USENIX Association.

[157] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe retrofitting of legacy
code. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’02, page 128–139, New York, NY, USA, 2002. Association for Computing
Machinery.

[158] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt, Emina
Torlak, and Xi Wang. Hyperkernel: Push-button verification of an OS kernel. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP ’17, page 252–269, New York, NY,
USA, 2017. Association for Computing Machinery.

154

https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842

[159] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Statistical
learning approach for mining API usage mappings for code migration. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, page 457–468,
New York, NY, USA, 2014. Association for Computing Machinery.

[160] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Lexical statistical machine trans-
lation for language migration. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, page 651–654, New York, NY, USA, 2013. Association for
Computing Machinery.

[161] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Divide-and-conquer approach for
multi-phase statistical migration for source code. In Proceedings of the 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’15, page 585–596, Lincoln, Nebraska,
2015. IEEE Press.

[162] Ðurica Nikolić and Fausto Spoto. Definite expression aliasing analysis for Java bytecode. In Abhik
Roychoudhury and Meenakshi D’Souza, editors, Theoretical Aspects of Computing – ICTAC 2012,
pages 74–89, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[163] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[164] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. Design and implemen-
tation of sparse global analyses for C-like languages. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, page 229–238, New
York, NY, USA, 2012. Association for Computing Machinery.

[165] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan
Lowe. Training language models to follow instructions with human feedback. In Proceedings of the
36th International Conference on Neural Information Processing Systems, NIPS ’22, Red Hook,
NY, USA, 2024. Curran Associates Inc.

[166] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost
in translation: A study of bugs introduced by large language models while translating code. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, ICSE ’24,
New York, NY, USA, 2024. Association for Computing Machinery.

[167] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Efficient field-sensitive pointer analysis of C.
ACM Trans. Program. Lang. Syst., 30(1):4–es, nov 2007.

[168] Jim Peters. Crate qcell. https://docs.rs/qcell.

[169] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. LOCKSMITH: context-sensitive cor-
relation analysis for race detection. In Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’06, page 320–331, New York, NY,
USA, 2006. Association for Computing Machinery.

155

https://docs.rs/qcell

[170] ChengXiang Qi, Yu Chen, and Fengjie Li. xv6-rust. https://github.com/Ko-oK-OS/xv6-rust.

[171] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. CodeBLEU: a method for automatic evaluation of code synthesis.
https://arxiv.org/abs/2009.10297, 2020.

[172] H. Gordon Rice. Classes of recursively enumerable sets and their decision problems. Transactions
of the American Mathematical Society, 74:358–366, 1953.

[173] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst., 29(5):26–es, aug 2007.

[174] Stephan Roth. Clean C++20: Sustainable Software Development Patterns and Best Practices.
Apress, 2 edition, Jun 2021.

[175] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates
Inc.

[176] Baptiste Rozière, Jie Zhang, François Charton, Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. Leveraging automated unit tests for unsupervised code translation. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

[177] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and Michael Hicks. Achieving
safety incrementally with Checked C. In Flemming Nielson and David Sands, editors, Principles
of Security and Trust, pages 76–98, Cham, 2019. Springer International Publishing.

[178] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued logic.
In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’99, page 105–118, New York, NY, USA, 1999. Association for Computing
Machinery.

[179] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten Holz.
kAFL: hardware-assisted feedback fuzzing for OS kernels. In Proceedings of the 26th USENIX
Conference on Security Symposium, SEC’17, page 167–182, USA, 2017. USENIX Association.

[180] Michael Schwarz, Simmo Saan, Helmut Seidl, Kalmer Apinis, Julian Erhard, and Vesal Vojdani.
Improving thread-modular abstract interpretation. In Static Analysis: 28th International Sym-
posium, SAS 2021, Chicago, IL, USA, October 17–19, 2021, Proceedings, page 359–383, Berlin,
Heidelberg, 2021. Springer-Verlag.

[181] Micha Sharir and Amir Pnueli. Two Approaches to Interprocedural Data Flow Analysis, chapter 7.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[182] O. Shivers. Control flow analysis in Scheme. In Proceedings of the ACM SIGPLAN 1988 Conference
on Programming Language Design and Implementation, PLDI ’88, page 164–174, New York, NY,
USA, 1988. Association for Computing Machinery.

156

https://github.com/Ko-oK-OS/xv6-rust
https://arxiv.org/abs/2009.10297

[183] Sergio De Simone. Linux 6.1 officially adds support for Rust in the kernel. https://www.infoq.
com/news/2022/12/linux-6-1-rust, 2022.

[184] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well: understand-
ing object-sensitivity. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’11, page 17–30, New York, NY, USA, 2011. Associ-
ation for Computing Machinery.

[185] Bjarne Steensgaard. Points-to analysis by type inference of programs with structures and unions. In
Proceedings of the 6th International Conference on Compiler Construction, CC ’96, page 136–150,
Berlin, Heidelberg, 1996. Springer-Verlag.

[186] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’96, page 32–41,
New York, NY, USA, 1996. Association for Computing Machinery.

[187] Jeff Vander Stoep and Stephen Hines. Rust in the Android platform. https://security.

googleblog.com/2021/04/rust-in-android-platform.html, 2021.

[188] Marc Szafraniec, Baptiste Roziere, Hugh Leather, Francois Charton, Patrick Labatut, and Gabriel
Synnaeve. Code translation with compiler representations. https://arxiv.org/abs/2207.03578,
2023.

[189] Gavin Thomas. A proactive approach to more secure code. https://msrc-blog.microsoft.com/
2019/07/16/a-proactive-approach-to-more-secure-code, 2019.

[190] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and Com-
putation, 132(2):109–176, 1997.

[191] Mathijs van de Nes and Joshua Barretto. Crate spin. https://docs.rs/spin.

[192] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo Vene, and Ralf Vogler. Static
race detection for device drivers: the Goblint approach. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE ’16, page 391–402, New York,
NY, USA, 2016. Association for Computing Machinery.

[193] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. RELAY: static race detection on millions of
lines of code. In Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
ESEC-FSE ’07, page 205–214, New York, NY, USA, 2007. Association for Computing Machinery.

[194] Dmitry Vyukov. syzkaller - kernel fuzzer. https://github.com/google/syzkaller.

[195] Dan Wallach. Translating all C to Rust (Tractor). https://www.darpa.mil/program/

translating-all-c-to-rust, 2024.

[196] Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong Li. Automatic detection
and validation of race conditions in interrupt-driven embedded software. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2017, page
113–124, New York, NY, USA, 2017. Association for Computing Machinery.

157

https://www.infoq.com/news/2022/12/linux-6-1-rust
https://www.infoq.com/news/2022/12/linux-6-1-rust
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://arxiv.org/abs/2207.03578
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://docs.rs/spin
https://github.com/google/syzkaller
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust

[197] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. https://arxiv.org/
abs/2109.00859, 2021.

[198] Frances Wingerter. C2Rust is back. https://immunant.com/blog/2022/06/back/, 2022.

[199] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era of
large pre-trained language models. In Proceedings of the 45th International Conference on Software
Engineering, ICSE ’23, page 1482–1494, Melbourne, Victoria, Australia, 2023. IEEE Press.

[200] Zhen Yang, Jacky Wai Keung, Zeyu Sun, Yunfei Zhao, Ge Li, Zhi Jin, Shuo Liu, and Yishu Li.
Improving domain-specific neural code generation with few-shot meta-learning. Information and
Software Technology, 166:107365, 2024.

[201] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma,
Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in automated
code translation. Proc. ACM Softw. Eng., 1(FSE), jul 2024.

[202] Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. GhostCell: Separating permis-
sions from data in Rust. Proc. ACM Program. Lang., 5(ICFP), aug 2021.

[203] Hanliang Zhang, Cristina David, Yijun Yu, and Meng Wang. Ownership guided C to Rust trans-
lation. In Constantin Enea and Akash Lal, editors, Computer Aided Verification, pages 459–482,
Cham, 2023. Springer Nature Switzerland.

[204] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. Mining API mapping for
language migration. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, page 195–204, New York, NY, USA, 2010. Association for
Computing Machinery.

158

https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://immunant.com/blog/2022/06/back/

Acknowledgments in Korean

가장먼저대학원기간동안저를지도해주신류석영교수님께깊은감사의인사를올립니다. 교수님과
의 인연은 2015년, 제가 고등학교 3학년이던 시절로 거슬러 올라갑니다. 교수님께서 학교에 방문해 즐겁게
강연하시는 모습에 이끌려 프로그래밍 언어 연구자의 길을 걷게 되었습니다. 그때부터 지금까지 언제나
열정적으로 지도해 주셨기에 제가 여기까지 올 수 있었습니다. 교수님께서 가르쳐 주신 지식, 조언해 주신
내용 하나하나가 제 성장의 밑거름이 되었습니다. 이 학위 논문 역시 교수님께서 지도해 주신 덕분에 탄생할
수 있었으며, 논문에 미흡한 부분이 있다 해도 이는 제가 부족한 탓입니다.

KAIST 프로그래밍 언어 연구실의 모든 동료에게 감사드립니다. 먼저 졸업한 선배님들 그리고 지금
저와 함께 지내고 있는 동기, 선후배 모두에게 감사합니다. 행복하게 지낼 수 있는 연구실 문화를 만들고
계속 유지해 준 덕에 어려운 대학원 생활을 즐겁게 헤쳐 나갈 수 있었습니다. 날마다 연구실에서 동료들과
나눈 다양한 연구 관련 이야기와 수많은 잡담이 연구를 하는 데 있어 좋은 길잡이가 되었습니다.

저를 낳고 지금까지 길러 주신 부모님께 감사드립니다. 어렸을 적부터 부모님께서 다양한 경험의 기회
를 주신 덕분에 수학과 과학 그리고 전산학에 흥미를 가지게 되었습니다. 언제나 제 의견을 존중해 주시고
제가 하고 싶은 일을 하면서 살 수 있도록 이끌어 주셨기에 프로그래밍 언어 연구자가 될 수 있었습니다.

언제나 제 곁에서 저를 믿어 주고 지지해 주는 아내 임효진에게 감사합니다. 항상 저를 배려해 주고
많은 사랑을 아낌없이 베풀어 주기에 하루하루가 매일 행복하고 그 어떤 힘든 일도 이겨낼 수 있습니다.

마지막으로 가장 친한 친구인 현우 형에게 감사합니다. 고등학교와 학부 시절을 같이 보내며 즐거울
때도 슬플 때도 늘 함께하면서 힘이 되어 주었기에 제가 이만큼 성장할 수 있었습니다.

159

Curriculum Vitae in Korean

이 름: 홍 재 민

생 년 월 일: 1998년 09월 01일

학 력

2013. 3. – 2016. 2. 한국과학영재학교

2016. 3. – 2020. 2. 한국과학기술원 전산학부 (학사)

2020. 3. – 2025. 2. 한국과학기술원 전산학부 (박사)

경 력

2020. 3. – 2023. 8. 한국과학기술원 전산학부 조교

연 구 업 적

1. Jaemin Hong, Sunghwan Shim, Sanguk Park, Tae Woo Kim, Jungwoo Kim, Junsoo Lee, Sukyoung
Ryu, and Jeehoon Kang. Taming shared mutable states of operating systems in Rust. Science of
Computer Programming, 238:103152, 2024.

2. Jaemin Hong and Sukyoung Ryu. To tag, or not to tag: Translating C’s unions to Rust’s tagged
unions. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’24, page 40–52, New York, NY, USA, 2024. Association for Computing Machin-
ery.

3. Jaemin Hong and Sukyoung Ryu. Type-migrating C-to-Rust translation using a large language
model. Empirical Software Engineering, 30(1), October 2024.

4. Jaemin Hong and Sukyoung Ryu. Don’t write, but return: Replacing output parameters with
algebraic data types in C-to-Rust translation. Proc. ACM Program. Lang., 8(PLDI), jun 2024.

5. Jaemin Hong. Improving automatic C-to-Rust translation with static analysis. In 2023 IEEE/ACM
45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
page 273–277, 2023.

6. Jaemin Hong and Sukyoung Ryu. Concrat: An automatic C-to-Rust lock API translator for
concurrent programs. In Proceedings of the 45th International Conference on Software Engineering,
ICSE ’23, page 716–728, Melbourne, Victoria, Australia, 2023. IEEE Press.

7. Jihee Park, Sungho Lee, Jaemin Hong, and Sukyoung Ryu. Static analysis of JNI programs via
binary decompilation. IEEE Transactions on Software Engineering, 49(5):3089–3105, May 2023.

160

8. Jihee Park, Jaemin Hong, and Sukyoung Ryu. Semantic transformation framework for rewriting
rules. In Proceedings of the 2023 ACM SIGPLAN International Workshop on Partial Evaluation
and Program Manipulation, PEPM 2023, page 1–13, New York, NY, USA, 2023. Association for
Computing Machinery.

9. Gyunghee Park, Jaemin Hong, Guy L. Steele Jr., and Sukyoung Ryu. Polymorphic symmetric
multiple dispatch with variance. Proc. ACM Program. Lang., 3(POPL), January 2019.

10. Jaemin Hong, Jihyeok Park, and Sukyoung Ryu. Path dependent types with path-equality. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala, Scala 2018, page 35–39,
New York, NY, USA, 2018. Association for Computing Machinery.

161

